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Abstract [n this paper, a number recognition
algorithm on Spiral Architecture is developed and
experimented. This algorithm uses affine integral
invariants with invariant parameterization. It
firstly separates the object edge into a few closed
boundaries. Each boundary is segmented into a
few sections according to their directions
(clockwise or anticlockwise) around a common
central. Finally, a feature vector rather than a
single feature value is computed for each number.
This proposed algorithm successfully computes
the unique feature vectors for ten standard Arabic
numerals. Every number can still be distinguished

from others even experiencing an affine
transformation.
Keywords: Spiral  Architecture, number

recognition, affine integral invariants

1 Introduction

Number recognition and character recognition are
playing more important roles in image processing
field. In the international trade, as a result of the
accelerated development of global industries,
thousands of containers and trucks need to be
registered every day at container terminals and
depots. Normally, this registration will be done
manually. However, this is not only prone to error
but also slow to meet the increasing volume of
containers and trucks. Hence, an automatic, fast
and exact number recognition process is required.
The fundamental issue in pattern recognition is
shape description and recognition. Shape analysis
has been a field of intense study in image
processing. Many methods have been seen in the
past ten years such as a morphological function [1],
a gradient propagation method [2] or a special
weighted graph for shape similarity [3]. Many

other techniques such as Fourier description,
template matching, invariant moments or neural
network [4] are also used for shape description and
recognition.

Number recognition and character recognition
are the fields to which shape anmalysis is applied.
Traditionally, different approaches in this field can
be classified into two categories: global analysis or
structural analysis [5], which are used in
conjunction with statistical classification methods
or a syntactical classification approach. Tsang [6]
proposed a mnovel algorithm which encodes the
image using the neighborhood relations. In this
way, information about the paitern structure is
maintained under translation invariance, while the
shape is examined taking into consideration the
whole area instead of just the borders. The
encoding results are fed into a back-propagation
neural network to get the final recognition result.
The correctness of this algorithm depends on how
much noise is depressed by the pre-processing.

In fact, many existing algorithms used in
general object recognition application can be
extended to number recognition. The importance
of invariants in object recognition and
identification has been revealed in computer vision.
Actually, the number can also be recognized and
identified by such invariance. There are many
kinds of invariants, which can be classified to two
categories: global invariants and local invariants.
Either type of invariants has advantages and
disadvantages in computer vision application. Sato
[7] summarized the properties of these existing
invariants based on important requirements in
computer vision application-noise sensitivity,
correspondence, occlusion. In this paper, we
choose integral invariants which take advantages
of both differential invariants and algebraic
invariants.
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In order to improve the performance of
recognition and speed up processing, an algorithm

is achieved within Spiral Architecture in this paper.

Spiral Architecture [8] is inspired from anatomical
considerations of the primate’s vision . From the
research about the geometry of the cones on the
primate’s retina we can conclude that the cones’
distribution has inherent organization and is
featured by its potential powerful computation
abilities. The cones with the shape of hexagons are
arranged in a spiral clusters. This cluster consists
of the organizational units of vision. Each unit is a
set of seven-hexagon [9] as shown in Figure 1.

Figure 1. Seven-hexagon unit of vision

On Spiral Architecture, two algebraic
operations have been defined, which are Spiral
Addition and Spiral Multiplication {8]. These two
operations can be wused to define two
transformations on Spiral address space
respectively, which are translation of image and
scaling rotation of image. During Spiral
Multiplication, the original image is segmented
into several parts. Each part is a near copy of the
original image rotating in some degree. However,
such image rotation will not affect image
processing for object recognition if we choose
affine integral invariant to represent the object’s
feature. In this paper, Spiral Multiplication will be
used to make seven near copies of the original
number firstly, so we can calculate seven feature
vectors for the processed number. The final feature
vector is the average of these seven vectors. In this
way, the correctness of the final result is improved
and the algorithm is more robust to mnoise.
Moreover, these seven copies can be distributed to
seven machines to be processed independently, so
the processing time is greatly reduced.

The organization of this paper is as follows.
Affine invariant parameterization and integral
invariant representation are introduced in Section
2. Section 3 shows the procedure of number
recognition within Spiral Architecture. This is
followed by experiment results in Section 4. We
conclude in Section 5.

2 Affine Invariant Parameteriza-
tion and Integral Invariant
Representation

Integral invariants under affine transformation are
chosen to represent an object, which are less
sensitive to noise than the classical invariants. In
order to compute the affine invariant feature value
at each point, it is necessary to parameterize the
object contour with a correct parameter.

2.1 Invariant Parameterization

Consider a pre-extracted contour on the plane,
CeR? , represented by (x(1),y(t)) with
parameter ¢. There is a well-known parameter
which is linearly transformed under an affine
transformation [7], can be used for parameterising
object contour. It is the area size, o, defined as
15+
st)=3 [kOyO-yoxor O
o-d
at (x(t,),¥(t,)) . After the object undergoes a
general affine transformation, its parameterization
values will change. Hence, a normalization
process is necessary to make these values same.
After analysis, we know that the affine
transformation only make parameterization area
size, o(t) , time a determinant of a coefficient
matrix, which is decided by the affine
transformation [10]. So if we use ratio of each
point’s parameterization area size and the whole
contour parameterization area size as represented
on Equation 2 below, the multiplication constant

can be removed
H+AL

Iy ©-x©y@)a

s(t,) =22 2
U [xoy - x 0yt ®

where L denotes the line integral along C , then

s is invariant parameter under the general affine
transformation. This new parameter, sef[0,1},

will be used in this paper to parameterize the
contour.

2.2 Integral Invariant Representation

Under the general affine transformation, we use
integral invariants to represent the object in the
form of

5 +4s

I6s))=" [F(s)ds ®)

$-4a8
where I(s,) is invariant feature value at point
(x(s,), ¥(s,)) , parameterized by s, defined in
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Section 2.1. F(s) is a differential invariant under
general affine transformation. The function F is
chosen such that the integral formula can be
solved analytically and the resulting invariant has
a simple form. For this purpose, let the contour
C be represented by

x(s)
V(s)= 4
© (y(S)] @
for s €[0,1]. We define F(s) in the form of
F(s)=det[V'(s),g] &)

V'(s) denotes the derivative of V(s) with respect
to s . gis a given constant for ge®R?® .
det[v,,v,] denotes the determinant of a matrix
which consists of two column vector, v,,v, € R,

They are substituted into Equation (4), we get
5 +4s

1(s)) = . I :et[V'(s),g]ds 6

=det[V(s, + As)-V(s, —As), g]
for s, €{0,1]. For each fixed parameters, , we can
define constant, g, as

g=V(s+As)-V(s) Q)

Then, Equation (6) changes to
I(s)=det[V(s + As)—V(s5),V(s-As)-V(s)] (8)
fors €[0,1]. Actually, it is the cross product of
two vectors, V(s +As)~V(s) and
V(s —As)-V(s) as shown in Figure 2.

"

e

v

Figure 2. Cross Product of Two Vectors

In fact, /(s) is only an affine relative invariant
representation [10]. In order to protect this value
from being affected by affine transformation, I(s)
can be represented as a ratio form

M(s)=1) ©)

I(v)
where |/(v)| = max|I(s)| for s €[0,1]. Equation (9)
is defined as the affine integral invariant

representation at the contour point for each
parameter value s .

3 Number Recognition within
Spiral Architecture

Spiral Architecture is a relatively new and
powerful approach to general purpose machine
vision system. It contains very useful geometric
and algebraic properties. In this paper, we use it to
separate the original image into seven near copies.
After that, every copy will be processed
independently to get the affine invariant feature
vector. By doing this, we not only shorten the
processing time via distributed processing but also
create the multiple feature vectors to improve the
performance of the final recognition scores.

3.1 Pre-processing

Spiral Architecture contains very useful geometric
and algebraic properties, which can be interpreted
in terms of the mathematical object, Euclidean
ring. Two algebraic operations have been defined
on SHM, Spiral Addition and Spiral
Multiplication [8). Among them, Spiral
Multiplication can achieve uniform image
segmentation. Each smaller part after separation is
a near copy of the original image. That means
each copy results in a unique sampling of the
input image. Each sample is mutually exclusive
and the collection of all such samples represents a
partitioning of the input image. As each smaller
part is the scaling down copy of the original
image, each copy has less information. However,
as none of the individual light intensities have
been altered in any way, the scaled images in all
still hold all of the information contained in the
original. The whole process consists of process
donw on individual near copies. But the
processing time is greatly decreased if we put
such processing into a distributed cluster system.
Gaussian Multi-Scale theory introduced by
Linderberg [11] is applied here for edge-detection.
According to this theory, image brightness
function is parameterized. Image is blurred and the
noise is removed when the parameter is positive.
We can use this theory for edge detection to
remove and suppress image noise, and then to
simplify the processing tasks. In general, global
Gaussian processing provides us the high precision
but with the huge computation. On the other hand,
local Gaussian processing certainly decreases
computation with the comparatively low precision.
So it is required to balance the computation and
the precision when processing. Fortunately,
because the original image has been separated into
seven smaller parts before the Gaussian processing
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(a)

Figure 3. Image Pre-processing;
a) Original Image; b) Uniform Image Segmentation; ¢) Edge Map

and each part is a near copy of the original one as
mentioned above, we can still achieve global
processing but with shorter time.

Whether affine integral invariants can
successfully represent the object depends on the
quality of image edge. But naturally, the edge map
after Gaussian Edge-detection seldom forms a
high quality image edge that is required for the
object feature measurement due to the gaps left by
noise and shading effects, so an edge-point-linking
procedure is necessary. In our work, we use a
three-step approach of edge-thinning, edge-point-
linking and region mergence to improve the edge
map quality. After this pre-processing, we get
perfect single-pixel-wide connected boundaries.
Figure 3c shows an after pre-processing edge map.

3.2 Boundary Segmentation

Normally, if we can segment the restored image
edge after pre-processing (see section 3.1) into a
few meaningful units before affine integral
invariant representation and then measure each
unit to get the feature value, the recogaition
performance can be improved, because many
numbers have been distinguished from others
according to such segmentation results. Two
kinds of segmentations will be done in this sub-
section.

In the ten Arabic numerals, some of them have
more than one boundary such as number six (See
Figure 3). Because these boundaries are separated,
we had better process them respectively to get the
individual affine integral invariant representation.
In addition, in most case any two numbers can be
distinguished from each other by the outmost
boundary, which has the main features of the
original number, so potentially the processing time
can be shortened and the processing procedure can
also be simplified.

Moreover, while walking on each boundary
around the common central the direction often

changes. Sometimes it is clockwise, but sometimes
it is anticlockwise. Actually, this is also an
important feature to distinguished one number
from others. For this reason, each boundary will
be segmented into many sections according to
such walking direction. However, due to the noise
and the errors introduced by digital processing,
some very short sections will appear after
segmentation. Since these short sections are not
profitable to the final feature measurement but
may damage the final results when they scatter
along the main sections, it is very necessary to
merge them into their neighboring sections. By
doing this, we can avoid the interference brought
by noise and errors without loosing the main
features of the number. Finally, we define the
longest clockwise section as the first section
followed by other sections clockwise (see Figure
4).

Figure 4. Boundary Segmentation
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3.3 Computation of Parameter within
Spiral Architecture

After boundary segmentation, each section will be
parameterized independently. In this subsection,
we show the methods for computation of
parameterization area size, s, for each point within
Spiral Architecture.

We choose the first point of the section along
the walking direction on the original boundary as
the starting point, which is the point with value 0
of the parameter s Our definition of
parameterization area is based on the assumption
that the origin of Cartesian coordinate system is
the centroid or the centre of the boundary section.
Hence, it is important to find the centroid of
boundary section. Let C be the boundary section,
which is a set of contour points (hexagonal pixels).
For any given hexagon aeC , denote the
Cartesian coordinates of a by (x,y) , ie,

a=(x,y). Suppose that the number of hexagons
on Cis N.Let

f=-117 x
. aeC (10)
Y =—ﬁncy

Then the centroid or centre of the boundary
section Cis (%, 7).

Let a,=(x,,y,) and a, =(x,,y,) be two
conjoined points along the walking direction on
the original boundary. Then the area size at point
a, is defined by

E(@) =5 {50, 72) = 75, 70~ G- 7]
an

i.e., one half of the absolute value of the cross
product of the wvectors (x,-X,y,—-¥) and
(x, -X,y, —y) denoted by E(a). Suppose that
there are N points on the boundary section, the
parameterization area size, s , of each point is
defined by
5, =0
!

R i a2

N-]
CH

=

where i=1,2,«:-,N-1.

3.4 Affine Integral Invariant Feature Value
Calculation and Feature Matching

Now we can calculate the affine integral invariant
feature value of each point on every boundary
section according to Equation (8) and Equation (9)
using the parameter, s, computed in subsection
33.

In theory, any parameter  value
5 €[0,]] corresponds to a point on the boundary
section, but due to digital processing we cannot
get the comect previous point V(s—As) and the
correct successive point V(s+As) for each
reference point V(s) . So interpolation is used here
to estimate the potential point position. In the
experiment, it is found that in order to decrease the
interpolation errors the reference points adopt the
practically existing points on the boundary section.
We only estimate its previous point and its
successive point. To some shorter section, we still
need to decrease As properly.

In this work, we use the average M(s) as the
invariant feature value for each boundary section
and denote it by M, i.e.,

M =7‘1’—Z{M(J)l V(s)ecC} 13)

At last, we create the feature value vector for
each boundary. The dimension of the vector is
determined by the number of sections. The first
component value is the longest section’s affine
invariant feature value defined by Equation (13)
followed by other section’s affine invariant feature
values along the walking direction on the original
boundary. So finally we have seven feature vectors
of seven near copies because of distributed
processing as mentioned in subsection 3.1. We use
the average of these seven feature vectors, denoted
by

—_— 7
M=YH, (1)

im]
as the final feature vector to recognize the
numeral. To compare the feature value vector of
two boundaries with the same fixed As value. The
difference between the two feature vectors should
be small if the two boundaries represent the same

numbers under the affine transformation.

One important application of the recognition of
an unknown numeral is to recognize the numeral
in an image as one of ten model Arabic numerals.
This process requires the representation of the
numeral be matched with one of those in the
database. An numeral in an image is considered to
belong to a specific class if the degree of
dissimilarity between the numeral and models of
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Figure 6. Outmost Boundaries with Different Sections Including

the Centre Point of Each Section
Table 1. Feature Vectors of Ten Standard Arabic Numerals
Zero One Two Three Four Five Six Seven Eight Nine
[-0.02099] [0.01248 1] ~0.00423] | [0.001312] | [-0.0159] |[-0.01007 [—0.02047] [-0.00034] fo.00191] [-0.02047]
0.000717} | | 0.019323 | | | 0.002607 0.009813 || | 0.008493 | | | 0.004505 0.008493
0.004147 | | { 0.010798 0.00004
0.001618 | | | 0.011079 0.006291

that class is the smallest in comparison to the
others.

4 Experiment

We use this algorithm to process ten standard
Arabic numerals (See Figure 5) to calculate their
affine invariant feature vectors. After boundary
segmentation, their outmost boundaries with
different sections including the centre point of
each section can be seen in Figure 6. In the
computation of affine integral invariant

representation, let As=0.01 and linear
interpolation is used to estimate the previous
points and the successive point for each reference

point. The values of M of ten numerals are listed
in Table 1. From Table 1 it is evident that each
numeral is distinguished from others clearly
except between numeral six and numeral nine,
since numeral six actually is the rotation of
numeral nine. We will discuss it in Section 5 and

propose the methods we are researching to resolve
this problem.
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In order to verify the correctness of the
algorithm under affine transformation, the
additional two numerals, two and three, which are
affine transformation results of standard number
two and numeral three (See Figure 7). Table 2 lists
their feature vectors. It shows that after affine
transformation the feature vector still approach
their corresponding model vectors.

Figure 7. Affine Transformation of
Numeral Two and Numeral Three

Table 2. Feature Vectors of ‘2° and “3° After

Affine Transformation
Two Three
-0.00522 0.001483
0.011382 0.001343
0.002675 0.010316
0.010711 0.00659

5 Conclusion

This paper presents the number recognition using
affine integral invariant representation within
Spiral Architecture. Based on affine integral
invariant theory combined with  Spiral
Architecture theory, we get the feature vector
rather than a single feature value for each Arabic
numeral, which is average of multiple feature
vectors. The experiment results show that such
algorithm can calculate the affine invariant feature
value of the Arabic numerals, and then distinguish
one numeral from others.

During the work, we find since numeral six is
the rotation of numeral nine vice versa, they
cannot be distinguished from each other.
Currently, we use the relationship of two centre
points of two sections on their outmost boundaries
(See Figure 6) to distinguish them, but surely this

simple method does not work when the numerals
rotate in a large degree. Another potential method
we are counsidering is to investigate the space
relation between numeral six, numeral nine and
other numerals when they are put with other
pumerals together.
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