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A Highly Accurate Algorithm for the Estimation of
the Frequency of a Complex Exponential in
Additive Gaussian Noise

Sam Reisenfeld

Abstract— A new algorithm for the precise estimation of the
frequency of a complex exponential signal in additive, complex,
white Gaussian noise is presented. The algorithm has low
computational ceraplexity and is well suited for numerous real
time applications. The DFT based algorithm performs an initial
coarse frequency estimation using the peak search of an N
point complex Kast Fourier Transform. The algorithm forms a
frequency estimate using a functional mapping from two modified
DFT coefficients which are onc half DFT frequency bin below
and above largest magnitude FFT coefficient. Recursion is used
to provide frequencies of the modified DFT coefficients which
minimize the variance of the frequency estimation error. For large
N and large signal to noise ratio, the frequency estimation error
variance obtained is 0.063 dB above the Cramer-Rao Bound. This
excellent performance is achieved with low computational com-
plexity. The algorithm provides exact frequency determination in
the noiscless case.

Index Terms— I ast Fouricr Transform, Discrete Fourier Trans-
form, frequency estimation, frequency tracking, exact frequency
determination.

I. INTRODUCTION

There has been substantial prior work in the use of the
Fast Fourier Transform (FFT) to estimate the frequency of a
time sampled complex exponential signal in additive white
Gaussian noise [1-4]. A recursive technique for frequency
cstimation which uscs two DFT cocfficients was described in
[9]. This paper introduces a new FFT based method to obtain a
very accurate frequency estimate [5-6). In particular, the coarse
egtimate is the frequency corresponding to the maximum
amplitude FFT coefficient. Two modified DFT coefficients are
then defincd which are functionally rclated to the index of
the maximum FFT coefficient. The frequency estimate is a
function of the two modified DFT coefficients. The functional
form is provided in this paper. The analysis of the frequency
estimation performance of this algorithm and the comparison
to thé Cramer-Rao Bound are also included. Simulation re-
sults for the performance of the algorithm are also provided.
The algorithm provides exact frequency determination in the
noiseless casc.

I1. COARSE FREQUENCY ESTIMATION
The received signal plus noise, r[n], is given by

rin] =sip]+n(n), forn=0,1,2,...,N -1, (1)

This work was supported in part by the Commonwealth Government of
Australia through the Cooperative Research Centers Program. The author is
with the Univessity of Technology, Sydney, Faculty of Engineering, Broadway,
NSW 2007, Australia.

where s{n| is a complex exponential signal with frequency:
f given by s[n] = Aef?™/»T: and n[n] is a scquence o
independent, identically distributed complex Gaussian randos :
variables with zero mean and variance o2, It is desired &

process rr], n =0,1,..., N — 1, to obtain an estimate of /.=
where f is a fixed and unknown parameter, f € 0, f,). Tk
sampling frequency is fs, and T, = —fl— The signal to noie
ratio (SNR) is defined as .

Rife and Boorstyn [1] described a technique for freque
estimation using the Fast Fourer Transform (FF1). The
quency corresponding to the maximum amplitude FFT cod
cient is chosen as a frequency quantized approximation to s
maximum likelihood cstimate. Define

r(0] Y[t }

r{1] YL r

r= and Y = ;
PN~ 1] YIN - 1] j

where Y = FFT(r) and FFT(-) is the N point complex Fif
operator. Following Rife and Boorstyn [1], a coarse freqieng
estimate, fg, may be obtained from

kmax = max‘l[lY[k]l 0<k<N- 7

and
fo= T2,
Assuming that the SNR is sufficiently high, it is higlf
probable that f € [fy — ﬁ,fo + -21,’7!. This is an 2k
threshold condition [I]. A fine interpolation may be obt
to improve the frequency accuracy.

&

111. MODIFIED DFT COEFFICIENTS

Define the modified discrete Fourier transform (DFT) coel
ficients o and 8 as

1, & P
a = Y(kmax - :2') = nZ:OT{n]e—JQWn.—g_L Q
and
N—1
1 —42 nt“l“txz
ﬁ: Y(kmax-l —2— =z Z ,r[,n]e jem

n=0
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Fig. 1: Normalized frequency discominant for v = 1 and N = 16 as a
fanction of normalized frequency.

A number of functional forms, which map « and 3 to an
estimate of the error in f), are possible. Functional forms
contained in a particular class [S] may be characterized by
1 7 — el
Ajolr) — L 18T = el
ANy |87 + ||y
The parameter « defines the shapc of the frequency discrimi-
nant function as a function of jﬁlﬁl—f—
The frequency discriminant function shown in (6) with ~
1 may be used for frequency estimation. This function is

fs, fory>0. 6)

13] = lof
— - Zr e
Fig. 1 shows ——;—A(f“()r as a function of —,f— Emax fOr 4 = 1

N

and NV = 16.

From Fig. 1, it is obvious that the frequency discriminant
function described in (7) provides an almost linear discrimi-
nant which may be used to obtain the estimate of the frequency
of the complex exponential signal [5-6].

This paper introduces an improved frequency discriminant
function, denoted AF,,(r} [5-0], relative to the almost linear
discriminant given in (7).

IV. RECURSIVE ALGORITHM
The algorithm is defined as

A’m X
fo= - 1 (8)
For m == 0, 1,2,..., define
N-1 .
~32Tn Im A,
Oy, = Z r[n]e 72 (7; QN) (9)
n=>0
N1 .
B = Y 7l 2t o) (10)
n=0
|Bm| = 'C"ml \
= 1
P =18, Janl (an

Jr = Jon Gy (2)

Recursion is done in whxch the index m is incremented.
The estimate of the frequency is foo. The new frequency
discriminant, AF,(r) is shown in (12), where,

— tan’ "D, tan(

1 e
Ztan’ YD tan{ —

AN .
Apm\r}_ - ! 2/\7)} fs (13)
Then putting (13) into {12) yields
Sma1 = fon + AF(r) (14)

The frequency discriminant A, (r) is used in the recur-
sion.

V. TRUNCATION OF THE RECURSION
ALGORITHM TO A FINITE NUMBER OF

ITERATIONS
foo is the explicit solution of Dy = 0, f, is the mth
recursive estimate of frequency, m = 1. 2,3, .. In practice,

fa is sufficiently close 10 feo to be used as the frequency
estimate. The recursion may be truncated to the evaluation
of fg Therefore, the algorithm is rapidly converging and the
frequency estimate may be obtained with only the computation
of the FFT and four additional modified DFT coefficients.

VI. THE MAPPING FROM THE ERROR
DISCRIMINANT TO THE FREQUENCY IN THE
NOISELESS CASE

In the noiscless case, the exact frequency may be obtained
from the identification of the FIFT coefficient with the maxi-
mum absolute value and then forming « and 3 as shown in
{4) and (5), respectively. D may be computed from
18] — |
18] + |
It is proven in Appendix A that for the noiseless case,

D= (15)

f=Jo+ ltan' ap, tan()v)] S

Ilma.x 1

=1 N T3
Therefore, (1€) is an exact functional mapping from the FI'T
output and two modified DFT coefficients to the frequency of

a complex exponential signal in the noiseless case.

tan‘lil) tan(7\,}}fq (16)

VI1I. REDUCTION OF THE RMS ERROR USING RECURSION
The rms frequency estimation error due to additive noise,
using the proposed frequency discriminant, decreases sharply
for ﬁ(irf)— 0. Since the iterative solution adaptively pro-
duces a frequency estimate which is close to this condition,
the recursive use of the discriminant produces a frequency
estimate with small rms error. By means of the recursion, the
discriminant converges 10 a minimum rms error condition.
Fig. 2, which was obtained by simulation, shows the normal-
ized mms frequency error, \/ B{|(fi — f)T,]2} , as a function

of the normalized frequency Uf_?_ Ermax-
N
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Fig. 2: Normalized rms frequency eslimation error as a function of the
normalized signal frequency relative to the FFT bin center frequency lor
SNR = 10dB, N = 64.

As can be seen from Fig.2, the rms frequency error in
the noisy case sharply decreases as the signal frequency
approaches the mid-point between the frequencies of the
two modified DFT coefficients. This justifies the use of the
recursion to obtain an estimate that is close to this minimum
rms frequency error condition. For the recursion described in
(8), (9), (10), (11) and (12), the final estimate approaches
the minimum rms error condition because the modified DFT
coefficient frequencies approach one half DFT frequency bin
width above and below the actual frequency. The initial
estimate is

which is obtained from the FFT peak search. The second
estimate is

N “ 1 . T
fi = fo+ ;tan [Do tan(z—ﬁ)]fs

where, Dy = lf;gl_:[zz!, will be in a region of low rms
estimation error. The third estimate is

. .1 . i
fo=fi+ p tan~![D, tan(Q—N)]fs
1'%1—};—}%, is obtained from fl. The third

estimate, fo, is characterized by extremely low cstimation
error. The recursion essentially converges for fs.

where, D} =

VIII. PERFORMANCE OF THE ALGORITHM

As shown in Appendix B, using the Taylor Series [7] at
high signal to noise ratios, the performance of the algorithm
is

_ N sin®(y) tan® ()

7 A SNR 2

(17

A )
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Fig. 3: —.;[-— in dB as a function of N.
?CRLB

where, o7 is the mean square value of (foo — /)T and wh
f is a uniformly distributed random variable in the int
[0.£,)-

The Cramer-Rao lower bound on the unbiased freqy
estimation mean square error [1] is .

6
2 —
TCRLE T (3N (N? — 1) SNR

Therefore, the performance of the frequency estir
algorithm compared to the Cramer-Rao Lower Bound |

o7 NYN?-1) sin’(F) tan®(f)

- N
9L RLB 6
For large SNR and large N,
2 4
. Uf T :
NI}an 10 logm(ggcRm) =10 1°g10(§'§) =0.06

This limiting value was also obtained by a di
in [8].

Fig. 3 shows a plot of (19) in which the converge
asymptotic limit with increasing NV is apparent,
values of N, the degradation of the estimation
to the Cramer-Rao Bound is less than 0.06334]
N, less information is discarded by not usi
coefficients, and the performance degradatio
large NV,

IX. SIMULATION OF THE PERFORM;

Figs.4 and 5 show the rms estimation error, oy
of the SNR in dB for the cases of a 64 point
point FFT, respectively. The simulation resulls
analysis for the asymptotic value of the degrada
Cramer-Rao Lower Bound of 0.0633 dB.

X. CONCLUSION

An algorithm for frequency estimation has!
For the noiseless case, the algorithm prov
relationship from the FFT output and two m
ficients to the exact frequency of a complex ex
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Fig. 4: The s frequency estimation error as a function of the SNR in dB.
Results are shown for one and two iterations. The results are compared to the
Camer-Rao Lower Bound. The FFT length is N = 1024.
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Fig. S: The rms frequency estimation error as a function of the SNR in dB.
Results ate shown for one and two iterations. The results are compared to the
Cramer-Rao Lower Bound. The FFT length is N = 64.

For the case of signal plus Gaussian noise, one iteration of
ihe recursion provides sufficient frequency estimation accuracy
r many applications. For applications requiring performance
ilose to the theoretical limit, two iterations of the recursion
movide frequency estimation performance which is only 0.063
4B above the Cramer-Rao Lower Bound on frequency estima-
ton error. The algorithm has low computational complexity
and is suitable for real time digital signal processing appli-
astions including communications, radar, sonar, and spectral
sralysis.

APPENDIX
EXACT FREQUENCY DETERMINATION FOR THE NOISELESS
CASE
Theorem I: In the noiseless case, £ = (f — fm)To =
Lgan~![D,, tan(s%)] and in particular, f = {%#= 4 1
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tan™ Do tan(5%)]} fs where,
1Bo| — |exo]
Dy = 22— 1701
° = ol T ool @D
-t . i 1
ag =Y rlnje T2 ~aw), (22)
n=0
and Nt
Bo= 3 rlnje P (23)

n=0
Proof: For the noiseless case,
Alcos(mwN¢))

ol = T aimfrte = AN
and AJcos(rNo)
COS(TTIVE
ol = T aintrte + o
I.Bml — |°‘ml
D,, = \Pml — loml
]ﬁm‘ + iaml
_ tan(me)
tan( )
Then,
€= :1: tan~ 1Dy, tan(%)]

and, for the first iteration in the recursion,

f=fo+ % tan™"|Do tan(—2-7]r—v—)]fs

kmax -
={ v +;17- tan I[Dotan(g—r—)}}fs

VARIANCE OF THE NORMALIZED FREQUENCY
ESTIMATION ERROR

Theorem 2: For sufficiently high signal to noise ratio, such
that the probability of error in the FFT peak search is negli-
gible, and for sufficiently large m such that foo = fi,

. N sin?(%) tan?(-%;
0‘% = Va"'[(f — fm)Ts] = 4( ZSI\I;)R ) 2N)

Proof: For high SNR and f,, & f,
Ma = E“am”

4

sin(55)

e

and
pp = E||Bml)
A
sin( 55 )
Also, |am| and [Bm| are uncorrelated random variables.
Furthermore,

?

ol =Var|lanll = —;—NOQ
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and 1
0’% =Var||Bul] = §Ncr2

Using the standard technique of finding the variance at the
output of a nonlinear function of two variables by expanding
the nonlinearity in a two dimensional Taylor Series Expansion

(71,
4(;1502 + V«ad,g)
(Ba + pg)*
N sinz(f’;v)
4 SNR

Var|D,) =

Then,
4., 1 _ T
e={f—fm)Ts = —tan 1 [Dm tan(z—ﬁ)],

E|D,,] = 0 and therefore, E[e] =0
For small D,,, which is the case for f = fm,

= —D tan(zN)

Therefore,
Varle]

HZ

——Var[D,,,] tan (-7;\—)

B Nsm (55) tan? ()
e 4 SNR 72
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