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A Highly Accurate Algorithm for the Estimation of
the Frequency of a Complex Exponential in

Additive Gaussian Noise
Sam Reisenfeld

Abstract-A new algorithm for the precise estimation of the
frequency of a complex exponential signal ill additive, complex,
white Gaussian noise Is presented. The algorithm has low
computational complexity and is well suited for numerous real
time applications. The DIT based algorithm performs an initial
coarse frequency estimation using the peak search of an N
point complex Fast Fourier Transform. The algorithm forms a
frequency estimate using a functional mapping from two modified
DIT coefficients which are one half DIT frequency bin below
and above largest magnitude FFT coefficient. Recursion is used
to provide frequencies of the modified DFT coefficients which
minimize the variance of the frequency estimation error. For large
N and large signal to noise ratio, the frequency estimation error
variance obtained is 0.063 dB above the Cramer-Rae Bound. This
excellent performance is achieved with low computational com-
plexity. The algorithm provides exact frequency determination in
the noiseless case.

Index Terms-s-- Fast Fourier Transform, Discrete Fourier Trans-
form, frequency estimation, frequency tracking, exact frequency
determination.

I. I:'-iTRODUCTION
There has been substantial prior work in the use of the

Fast Fourier Transform (FFT) to estimate the frequency of a
time sampled complex exponential signal in additive white
Gaussian noise [1-4]. A recursive technique for frequency
estimation which uses two OF!' coefficients was described in
[9]. This paper introduces a new FFT based method to obtain a
very accurate frequency estimate [5-6]. In particular, the coarse
estimate is the frequency corresponding to the maximum
amplitude FFT coefficient. Two modified OFT coefficients are
then defined which are functionally related to the index of
the maximum FFT coefficient. The frequency estimate is a
function of the two modified OFT coefficients. The functional
form is provided in this paper. The analysis of the frequency
estimation performance of this algorithm and the comparison
to the Cramer-Rao Bound are also included, Simulation re-
sults for the performance of the algorithm are also provided.
The algorithm provides exact frequency determination in the
noiseless case.

II. COARSE FREQUENCY ESTIMATION
The received signal plus noise, r[nJ, is given by

r[nl = s[nl + 1][n), for n = 0,1,2, ... , N - 1, (1)
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where sin] is a complex exponential signal with
f given by sIn] = Aej21rInT. and I][n] is a sequence
independent, identically distributed complex Gaussian
variables with zero mean and variance a2. It i;; ccsired s
process t[n], n = 0, 1, ... , N -I, to obtain an estimate off
where f is a fixed and unknown parameter, f E /iJ,) II::
sampling frequency is Is, and T, c= }., The sif:I12.1to nOl:;,]

ratio (SNR) is defined as

A2

SNR = -".a-
Rife and Boorstyn [1] described a technique for freqL1f'

estimation using the Fast Fourier Transform (FFJ). The
quency corresponding to the maximum amplitude FFT c
cient is chosen as a frequency quantized approximation to
maximum likelihood estimate, Define

r=

Y[N-l]

rIO]
r[l]

Y[U
Y[l

and Y =

7'[N -1]

where Y= FFT(r) and FFT(·) is the N point compl
operator. Following Rife and Boorstyn [l], a coarse fre
estimate, fa, may be obtained from

kmax = max -1 [jY[kll : 0 s; k S; N -;)

and
f' - kmaxJ
0- N s-

Assuming that the SNR is sufficiently high,
probable that J E Ifo - !:Fr, J~ + !:FrI. This is all
threshold condition [1]. A fine interpolation may be
to improve the frequency accuracy.

Ill. MODIFIED DFT COEFFICIE:-ITS
Define the modified discrete Fourier transform IT";"1'\.,~

ficients c< and B as

I

and

(3 = Y(kmaxl ~) = 'tlr[n]e-j21rnk"~1
n=O
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FIg. 1: Normalized frequency discnrninaut for "I -~ 1 and N = 16 as a
function of normalized frequency.

A number of functional forms, which map 0' and ,3 to an
estimate of the error in 10, are possible. Functional forms
contained in a particular class [5 J may be characterized by

1 Im"l - 10'11'
6/0(r) '" 2N 11/31"1 + 10'11' Is> fori> O. (6)

The parameter 'Y defines the shape of the frequency discnrni-,.
nant function as a function of f-7~f, .

The frequency discriminant fundion shown in (6) with ')
I may be used for frequency estimation. This function is

1 1,31 - !0:1
61o(r) = 2N 1;31+ led Is (7)

Fig. I shows D.(~~(;) as a function of m- kmax for ~/ = 1

and N = 16.
From Fig. I, it is obvious that the frequency discriminant

function described in (7) provides an almost linear discrimi-
nant which may be used to obtain the estimate of the frequency
of the complex exponential signal [5-6].

This paper introduces an improved frequency discriminant
function, denoted 6F m (r ) [5-6], relative to the almost linear
discriminant given in (7).

IV. RECURSIVE ALGORITHM

The algorithm is defined as
, krnax

10= TIs
For rn. = 0, 1,2, ... , define

11'-1 -
_ "" . [ ] - j27rn ( f.p;. - ~\. )am - L....J r 11 e .

11.=0

i3 -, 1T," -

,y·-l _
~ l 1 -;27Tn(7'n>.+ .,"')c: rn,c ,-"
n~O

, ,1 -1 IT
1m'll = 1m+ - tan [Dm tan(-)] Is (12)

IT 2N
Recursion is done in which thc index m is incremented.

The estimate of the frequency is 1~. The new frequency
discriminant, 6.Fm(r) is shown in (12), where,

1 I IT )
6Fm(r) = ;;:tan [Dmtan(2N)1 I, (13)

Then putting (13) into (12) yields,

fm+l = fm + 6Fm(r) (14)

The frequency discriminant 6F',.,,(r) is used in the recur-
sion.

V. TRUNCATION OF THE RECURSION
ALGORITHM TO A FINITE NUMBER OF

ITERATIONS
feo is the explicit solution of Deo c-: 0, i; is the mth

recursive estimate of frequency, m = 1, 2, :~, .... In practice,
II is sufficiently close to leo to be used as the frequency
estimate. The recursion may be truncated to the evaluation
of i2. Therefore, the algorithm is rapidly converging and the
frequency estimate may be obtained with only the computation
of the FFT and four additional modified DFT coefficients.

VI. THE MAPPING FROM THE ERROR
DISCRIMINANT TO THE FREQUENCY IN THE

NOISELESS CASE
In the noiseless case, the exact frequency may be obtained

from the identification of the FFT coefficient with the maxi-
mum absolute value and then forming 0' and ;3 as shown in
(4) and (5), respectively. 1) may be computed from

D = 1,61 - I<AI
//31 + I<AI

(15)

It is proven in Appendix A that for the noiseless case,

- 1 _ \ ITI= JiJ +;;: tan [D tan(2N)] Js
kmax 1 . 1 IT

= {-V' +-tan- \1)tan(:;v)J}I, (16)
J IT 2J'i

Therefore, (16) is an exact functional mapping from the FFT
output and two modified DFT coefficients to the frequency of
a complex exponential signal in the noiseless case.

(8)

VII. REDUCTION OF THE RMS ERROR USING RECURSION
The rms frequency estimation error due to additive noise,

using the proposed frequency discriminant, decreases sharply
for ({~~) :::::O. Since the iterative solution adaptively pro-
duces 'a frequency estimate which is close to this condition,
the recursive use of the discriminant produces a frequency
estimate with small rms error. By means of the recursion, the
discriminant converges to a minimum rrns error condition.

Fig. 2, which was obtained b simulation, shows the normal-

ized rms frequency error, E{I(]1 - J)TsF} , as a function
of the normalized frequency (i) - krnr;x.

(9)

(10)

( 11)
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Fig. 2: Normalized rms frequency estimation error as a function of the
normalized signal frequency relative to the FFT bin center frequency for
SNR == !OdB, N =: 64.

As can be seen from Fig. 2, the rrns frequency error in
the noisy case sharply decreases as the signal frequency
approaches the mid-point between the frequencies of the
two modified DFT coefficients. This justifies the use of the
recursion to obtain an estimate that is close to this minimum
rms frequency error condition. For the recursion described in
(8), (9), (10), (II) and (12), the final estimate approaches
the minimum rms error condition because the modified DrT
coefficient frequencies approach one half DFT frequency bin
width above and below the actual frequency. The initial
estimate is

f' kmaxfo=N s

which is obtained from the FFT peak search. The second
estimate is

, , 1 1 [ 11" 1fl=f01 :;tan- Dotan(2N)f.

where, Do = l~~l~l:~" will be in a region of low rms
estimation error. The third estimate is

, , 1 I.. 11"
h = It +:; tan- [DI tan(2N)J!.

h D Illll-I"',I· btai d f f'were, 1 = IIl,I+I"',I' IS 0 tame rom 1.

estimate, J2' is characterized by extremely low
error. The recursion essentially converges for 12.

The third
estimation

VIII. PERFORMANCE OF THE ALGORITHM

As shown in Appendix B, using the Taylor Series [7] at
high signal to noise ratios, the performance of the algorithm
is

n N sin2(2!....) tan2(2!....)
, 2N 2N

(Jj = 4 SNR 11"2
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Fig. 3: _,uL- in dB as a function of N.
O'CRLB

where, a} is the mean square value of (100 - nT. a
f is a uniformly distributed random variable in the
[0,(,).

The Cramer-Rae lower bound on the unbiased f
estimation mean square error [I] is

6
(Jb RL B = -;----:-O:-::-:'77::;;--~=-=-

(211")2N(N2 - 1) SNR

Therefore, the performance of the frequency
algorithm compared to the Cramer-Rae Lower Bo

(J} N2(N2 - 1) sin2(fJv) tan2Czil
(JbRLB 6

For large SNR and large N,
(J2 4

lim 10 IOgIO(-2-J-) = 10 loglO(1I"96)=0
N ·--t00 (J C RI,B

This limiting value was also obtained by a di
in [8J,

Fig.3 shows a plot of (19) in which the co
asymptotic limit with increasing N is apparen
values of N, the degradation of the estima
to the Cramer-Rao Bound is less than 0.06
N, less information is discarded by not
coefficients, and the performance degradati
large N.

IX. SIMULATION OF THE PERFO

Figs. 4 and 5 show the rms estimation e
of the SNR in dB for the cases of a
point FFT, respectively. The simulation r
analysis for the asymptotic value of the d
Cramer-Rae Lower Bound of 0.0633 dB.

( 17)

X. CONCLUSION

An algorithm for frequency estimation h
For the noiseless case, the algorithm p
relationship from the FFT output and t
ficients to the exact frequency of a comp
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Fig. 4: The rms frequency estimation error as a function of the SNR in dB.
Resultsare shown for one and two iterations. The results are compared to the
Cramer-Rae Lower Bound. The FFT length is N = 1024.
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Fig. 5: The rms frequency estimation error as a function of the SNR in dB.
Resultsare shown for one and two iterations. The results are compared to the
Cramer-RaeLower Bound. The FFT length is N = 64.

For the case of signal plus Gaussian noise, one iteration of
the recursionprovides sufficient frequency estimation accuracy
f,0rmanyapplications. For applications requiring performance
dose to the theoretical limit, two iterations of the recursion
orcvide frequency estimation performance which is only 0.063
ill) above the Cramer-Rae Lower Bound on frequency estima-
son error. The algorithm has low computational complexity
iilld is suitable for real time digital signal processing appli-
.e31ionsincluding communications, radar, sonar, and spectral

I •~na:ysis.

ApPENDIX

EXACT FREQUENCY DETERMINATION FOR THE NOISELESS

CASE

Theorem I: In the noiseless case, E: ,= (J - fm)T. =
~ tan-I\Dm tan( 2~ )), and in particular, f = {~+ ~

lan-lIDo tan(2;"))} f. where,

D _ 1.Bo1-laol
o - 11101+ laol'

lV-I .
ao = L r[n]e -j271'n( ~ - i-};r) ,

n=O
(22)

(21)

and
lV-I
"" '2 (fa. J )110 = 6 rlnle~J 1fnr,"'271

n=O
Proal For the noiseless case,

111m I = ~Icos(7rN ~)I
Ism[7r(e - 2N)11

(23)

and
laml = AI COS(lTNe)I

Isinl7r( e + 2~ )JJ

lI1ml-laml
II1ml+ laml
tan( 7re)
tan( 2;" )

Then,
1 IT

e ~ -tan--1[Dmtan(2f\')]1i
and, for the first iteration in the recursion,

,1 1 IT
f = fo +;; tan- [Do tan(2N)lf.

{ kmax 1 I[ (1i)= "IV" +;; tan- Do tan 2N) } f.

20

VARIANCE OF THE NORMALIZED FREQUENCY
ESTIMATION ERROR

Theorem 2: For sufficiently high signal to noise ratio, such
that the probability of error in the FFT peak search is negli-
gible, and for sufficiently large m such that i;~i:

2 = V [(f _ f' )T. J = N sin
2(i]v) tan

2(i7v)
(7f or m s 4 SNR lT2

Proof For high SNR and t; ~t.
J.1-a = EliamlJ

A
r-v --:-'7"::--7

sine 2;" )
and

J.1-{3 = ElII1mlJ
A"-'----

sin(2;" )

Also, lam I and 111m I arc uncorrelated random variables.
Furthermore,
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and 1
a~ = Varll/3mll = 'iNa2

Using the standard technique of finding the variance at the
output of a nonlinear function of two variables by expanding
the nonlinearity in a two dimensional Taylor Series Expansion
[7],

Then,

• 1 1 [ 71"E=(J-!m)T.=;tan- Dmtan(2N)},

E[Dml = 0 and therefore, E[E] = O.
For small Dm, which is the case for f ~ i;

1 71"
E ~ -D tan(-)

71" m 2N
Therefore,

1 2 71"
VadE] ~ 71"2 Var[Dml tan (2N)

N'2(1I')t 2(11')
_ 1 8m 'iN an 2Fi

4 SNR 1f2
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