
C/SST '{)//nlemalioflal Conference 581

Multi-Ani: A Interface for Animating Multiple Graph
Drawing Algorithms

Mao Lin Huang
Department of Computer Systems

Faculty of Information Technology
The University of Technology, Sydney

NSW 2007, Australia.

Abstract Multi-Ani is an interface written in Java
that can be used for implementing and visualizing
grnph-drawitlg algorithms with smooth transitions
between layouts.

Multi-Ani displays a sequence of drawings, DI. D2 •. __

U; of a graph, G = (V, E); each drawing D, is a key
frame of the visualization that is calculated by a
particular drawing algorithm Aj• The system uses the
layout animation to produce a sequence of "in-
betweening" screens between any two drawings.

This gives the user a visual impression of how a
layout algorithm works, and what the differences are
between tlVO drawing algorithms by showing a
sequence of smooth, continuous interpolations. It also
preserves the mental map of the user after each
transformation.

Keywords:
animation,
drawing.

information visualization, algorithm
in-betweening, interpolation, graph

1 Introduction

The are many types of information visualization
techniques exists. Some show the network data
traffic, the flow chart of a process, and database
entries manipulated by a user or program.
However, Algorithm Animation only concerns
the presentation of the procedural steps of a
specific algorithm. The animation techniques can
be used to assist in portraying the steps of an
algorithm.

Throughout the history of algorithm animation,
advances in computer hardware have driven the
evolution of algorithm animation systems. In
198G, the system Animus [I] demonstrated the

utility of smooth transformations of 2D images of
small size graphs. In the late 1980's, the system
TANGO [2] provided a framework for 2D
algorithm animation. In the early 1990's the
system Zeus [3] proposed "algorithm
auralization" - using non-speech sound to convey
the workings of algorithms [4]. Other systems,
such as GraphVBT [5], can also be used for
programming algorithm animations.

This paper describes an interface, Multi-Ani
written in Java that can be used for implementing
and animating graph drawing algorithms. Multi-
Ani provides visual representations for vertices,
edges and other visual attributes that are
associated with vertices and edges. It uses the
layout animation [6,7], to smooth the transitions
between key frames.

Another problem with the transitions between two
drawing algorithms is the "mental map" problem.
When the drawing jumps from one algorithm to
another, there is no smooth transformation between
the layouts. The user's mental map of the view is
broken, and thus the user has to spend extra
cognitive effort to re-form the mental map after
each transition. In Multi-Ani we use layout
animation to guide the user between views: they
make the transitions naturally and smoothly. In the
user's visual sense, there is only one animated image
changing from one algorithm to another. This
greatly reduces the cognitive effort in re-forming
the user's mental map after each transformation.

2 A graph model with multiple
drawings

582 CISST '01 International Conference

A gro!)!1 consists of a finite set V of nodes and a
finite set E of edges. where each edge is an
unordered pair of nodes of graph G. A node p is
said to be adjacent to a node v if (p. 1') is an edge
of G; in this case, the edge (p, v) is said to be
incident with p and v

A straight line drawing of a graph G = (V, E,) is
a function D: N --;} R2 that associates a drawing
D(v) to each node v E N. Since all drawings in
this paper are straight line drawing we omit the
term "straight line".

A drawing D of a graph G = (V, E) consists of a
location for each node v E V and a route for each
edge C E E.

A set of different drawing algorithms Al A2 An
can produce a sequence of different drawings DJ.
D2 ..• D; of the graph G; each drawing D, is a key
[rame of the visualization calculated by drawing
algorithm A"

In the actual layout creation. a drawing D(v) of a
node v E N is normally represented by a graphic
box (perhaps enclosing some text) appearing on
the screen with the position (x", .v,,) at the center
of the box. where (x"' y,.) are the pixel
coordinates of a reference point of the node.
Therefore. there are two additional graphic
attributes li; and \1" •. associated with each drawing
D(1'), where h ,. represents the height of the
graphic node and 11' •. represents the width of the
graphic node.

3 The Animation Model and the
method for calculating Key frames

In this section. we present the details of our
visualization technique. We describe the
animation algorithm that we use to provide a
sequence of animated drawings that transform
smoothly from one layout algorithm to another.
These drawings also assist the user in preserving
their mental map of the view as they move from
one graph drawin; algorithm to another. We
discuss the layout adjustment method that we

used to sol vc the overlap problem. \Vc present the
layout animation mechanism that guarantees the
smooth transitions between drawings.

We now describe the animation model. We use
force-directed animation algorithm [6,7] to
produce key frame sequences. It IS the
combination of Hooke's law sprmg and
Newtonian gravitational forces.

Key frame sequences occur in many interactive
systems [2, 5], that handle relational information.
Most such systems suffer from the "mental map"
problem: a small logical change in the graph
results in a large change in relative positions of
nodes in the drawing. The transition between key
frames is smoothed by "in-betweening". This
technique aims to achieve the twin goals of good
layout and the preservation of the mental map.

The in-bet weening consists of a sequence D,+/,
J 2 k •

D'+I, D'+I' "', D'+I = D'+I of drawings of G
called screens. In Multi-Ani, screens are
computed by using a force-directed algorithm,
described in [spring]. The locations of the nodes
in D'+I} differ only slightly from the locations of
the nodes in D,+1 i+1

; the appearance is that of all
the nodes moving slowly.

C4~

••

ell

CI.\.\T '0I International Conference 583

Figure 1: An initial key frame 00 of a graph G applied
by the h-v drawing algorithm.

\\'hen a new layout algorithm ;\,+1 applied onto
the graph G, the old drawing 0, moves slowly
toward the new drawing 0,+/' All the nodes in 0,
move from their old positions to the new
positions according to the spnng and
gravitational forces: each screen 0,+1 J has energy
a Iittle lower than that of the last screen O,+J J.I.

An equilibrium drawing of the G is a drawing in
which the total force f(v) on each node v EGis
zero. Equivalently, the model seeks to find a
drawing in which the potential energy is locally
minimal with respect to the node positions. The
key frame 0,+1 is at equilibrium.

Consider the in-betweening sequence 0,+/. o.;',
0,+/ ... 0,+/ = 0,+1 of screens leading from the
key frame 0, to the key frame O,+J. This begins
with a drawing 0,+/ that is not at equilibrium,
but as it differs very little from 0" it is close to
equilibrium. Each 0,+/ is a little closer to
equilibrium: that is. the animation is driven by the
a drawing algorithm moving the nodes toward
equilibrium positions.

This is accomplished by moving each node v a
small amount proportional to the magnitude of
f! v) in the direction of j(v) at each step.

We use a very simple numerical technique to
minimize energy. The technique has two aims.
The first is to find an equilibrium layout The
second is to produce smooth motion on the
screen. that is. to give a visual effect of
continuous movement The second aim implies
that we do not use a complex (and perhaps faster)
numerical technique because it may produce a
jerky motion.

4 A example of a smooth transition
between two drawing algorithms

To illustrate how the system works. a simple
cx.u nple session is presented in this section.

The system first displays an initial key frame Do,
a lz'I' drawitis; of the graph G which is based on

the h-v drawing algorithms [8,9]. The drawing
starts to move from key frame Do to 01. a spring
drawing, when a force-directed algorithm applied
to the G. The system applies a layout animation
to produce a sequence of in-betweening screens,
see Figures 1 to 8. These screens provide a
smooth transition from a h-v layout to a spring
layout.

Figure 2: An in-betweening screen D J a that moves
towards the final drawing D,

eo

Figure 3: An in-betweening screen D /' that moves
towards the final drawing D I.

584 CISST '01 Intcrnational Conjcrcnce

Figure 6: An in-betweening screen D,r that moves
towards the final drawing D 1

Figure 4: An in-betweening screen Did that moves
towards the final drawing D 1

Figure 5: An in-betweening screen D / that moves
towards the final drawing D!

Figure 7: An in-betweening screen D / that moves
towards the final drawing D1

Cl",jST '01 International Conference 585

Figure 8: The final screen D/h, which is a new key
frame reaching a spring drawing D I applied by a force-
directed algorithm.

5 Conclusion

By showing the steps of a graph drawing
algorithm. continuous animation can be a useful
tool to help viewers follow the operations that are
occurring. Animation helps viewers identify and
track changes between states, thus helping them
understand how the operations evolve over time.

This paper has described the use of a interface
Multi-Ani for animating a sequence of drawings
with different drawing algorithms. This helps
viewers to identify the differences and track the
change of layouts between drawing algorithms, as
an addition to the normal algorithm animation.

References

[II R Duisbcrg. /vniniated Graphical
lnterjacc Using Tcniporol Constraints,
Proceedings of the ACM SIGCHI'86

Conference on Human Factors in Computing
Systems, Boston, MA, April 1986. pp. 131-
136.

[2] J. Stasko, TANGO: A Framcwor]; and
System for Algorithm Animation, Computer,
vol. 23, No.9, September 1990, pp. 27-39.

[3] M. Brown, ZEUS: A System for algorithm
Animation and Multi-view Editing,
Proceedings of the 1991 IEEE Workshop on
Visual Languages, Kobe, Japan, October
1991, pp. 4-9.

[4] M. Brown and J. Hershberger, Color and
Sound in Algorithm Animation, Computer,
vo1.25, no.12, December 1992, pp. 52-63,

[5] J. DeTreville, (1993), TIle GraphVBT
Interface for Programming Algorithm
Animations, in 'Proceedings of the 1993 IEEE
Symposium on Visual Languages, Bergen,
Norway, pp. 26-31.

[6] P. Eades. A Heuristic for Graph Drawing
Congressus Nurnerantium, vol 42, pp. 149-160,
1984.

[7j M.L. Huang, P. Eades, and J. Wang, Online
animated graph drawing using a Modified Spring
algorithm. in: Proc. of the 21 st Australasian
Computer Science Conference (ACSC98), 1998,
pp. 17-28.

[8] P. Eades, T. Lin and X. LIN, Minimum Si;e
H- V Drawings, Advanced Visual Interfaces 1992,
Rome, Italy, World Scientific Series in Computer
Science Volume 36, 386-394, 1992.

[9] P. Eades, X. LIN and R. Tarnassia. A Nell'
Approach for Drawing a Hierarchical Graph.
Proc. of Second Canadian Conference on
Computational Geometry, 142-146. 1990.

