

METHOD ENGINEERING, THE OPEN PROCESS
FRAMEWORK AND CASSIOPEIA

B. Henderson-Sellers, Q.-N. N. Tran and J. Debenham
University of Technology, Sydney

Abstract: The Cassiopeia approach adopts an organization-oriented approach to
multiagent systems design. In order to support the concepts in Cassiopeia
using an existing process framework (the OPEN Process Framework or OPF),
we identify two new Tasks, together with two new
subtasks for a pre-existing Task and one additional Work Product, that
need to be added to the existing OPF repository. Using method engineering
it then becomes possible to generate a tailored agent-oriented
methodology from this suite of process components.

Key words: Agent-oriented methodology, OPEN Process Framework, Cassiopeia

1. INTRODUCTION

Method engineering [1] provides a means of creating methods (or
methodologies) that are constructed and tailored for specific situations.
Indeed, a better name for method engineering is suggested as “situated
method engineering” or SME [2]. With SME, a method is constructed based
on a methodological requirements statement made by the organization that
requires methodological support for their software development. This
requirements statements helps the method engineer to identify appropriate
method components or method chunks [3] held in the SME repository and
then to use construction guidelines [4,5] to finalize the highly specific
methodology for use by the aforementioned organization.

Ideally, the elements in an SME repository should be compliant with (in
fact generated from) a set of concepts described by a metamodel [6]. One
such example is the metamodel+repository-based OPEN Process
Framework or OPF [7]. The OPF contains a number of conceptual entities

IFIP holds the copyright. The URL for the IFIP web site is http://www.ifip.org.

modelled by object-oriented “classes”, typically described using the UML
notational concepts. Those concepts most relevant to the process aspects of
a methodology (as to be discussed here) are (i) Task, (ii) Technique and (iii)
Work Product. Each of these metaclasses can be instantiated to create
numerous instances of Task, Technique and Work Product respectively, all
of which are stored in the OPF repository. It is the elements of this
repository that form the focus of our analysis here, in which we analyze
existing process elements in the OPF repository for their potential support for
the Cassiopeia agent-oriented approach to software development.

Since using a metamodel-based repository of method elements permits
the construction of situated or individual methodologies, it is highly
appropriate to ask if the existing OPF repository can support agent-oriented
software development. Our project aims to ensure that adequate support is
added to the OPF repository to enable this to occur successfully. Our
approach is to analyze each existing AO methodological approach in turn,
add any necessary method chunks to the repository and then, later, analyze
potential conflicts. In this paper, we concentrate on the Cassiopeia approach
for agent-oriented development [8,9]. In Section 2, we present an overview
of Cassiopeia followed, in Section 3, by a detailed analysis of the Tasks,
Techniques and Work Products required in Cassiopeia, evaluating whether
the OPF already offers such support and, where not, what additional method
chunks need to be added to the OPF repository.

2. BRIEF OVERVIEW OF CASSIOPEIA

Cassiopeia provides a (arguably incomplete) methodological framework
for the development of collective problem-solving MASs, i.e. MASs where
agents work together to achieve a collective task(s). Cassiopeia assumes
that, although the agents can have different aims, the goal of the designer is
to make them behave cooperatively. It adopts an organization-oriented
approach to MAS design, as do some other AO approaches such as Gaia
[10]. In other words, it views an MAS as an organization of agents that
implement/encapsulate roles. These roles not only reflect the agents’
individual functionality, but also the structure and dynamics of the
organization of the MAS.

Cassiopeia models agents as implementers of roles, which are, in turn,
abstracted into different layers (see below) and identified in an iterative,
incremental manner, following either a bottom-up approach (i.e. proceeding
from the Domain-Dependent Role Layer), top-down approach (i.e.
proceeding from the Organizational Role Layer) or a combination. This is
compatible with OPF's “Iterative, Incremental, Parallel Life Cycle” model.

With respect to lifecycle phases, Cassiopeia proceeds from the definition
of the system collective task to the design of MAS, thus being supported by
the OPF Phases of “Initiation” and “Construction”.

The main modelling concepts in Cassiopeia are role, agent, dependency,
and group where an agent’s roles are distinguished into three layers:

Domain-dependent roles: behaviours that individual agents perform
Relational roles: descriptions of how agents interact with each other,

given the mutual dependencies of their domain-dependencies
Organizational roles: descriptions of how agents manage their

interactions to dynamically organize themselves into groups

3. CASSIOPEIA TASKS, TECHNIQUES AND WORK
PRODUCTS IN AND THEIR SUPPORT IN OPF.

In this section, we identify process component descriptions within the
Cassiopeia documentation, captured here as instances of elements in the
OPF metamodel. In particular, we seek Tasks, Techniques and Work
Products. For each of these three elements, we analyze the Cassiopeia
descriptions and then recast them into the OPEN Process Framework
method engineering approach. This leads us to propose two new Tasks with
two new subtasks and one new Work Product for addition to the OPF
Repository as we extend this repository to encompass not only an object-
oriented approach to software development but, increasingly, an agent-
oriented approach. These new process components in the OPF repository
add to those already proposed to support agent-orientation in e.g. [11,12,13].

3.1 Tasks: Cassiopeia and the OPF

For each Cassiopeia task identified, we first describe it and then create a
parallel OPF method chunk.

3.1.1 "Defining Domain-Dependent Roles"

Description: Roles are sets of behaviours that are put into operation by
the agents to achieve the collective system task. In this task, after identifying
the behaviours required for the system task and the set of roles encapsulating
these behaviours, the designer should define agents by the set of roles they
can play.

Support from OPF: The identification of system behaviours is addressed
to some extent by tasks within the OPF Activity of "Requirement
Engineering" and by Task: "Construct the Object Model". However, due to
the different nature of "system requirements" and "system behaviours", the

above OPF tasks should be extended to explicitly address the
analysis/identification of system behaviours. We thus suggest introduction of
a new task called "Identify system behaviours", which takes as inputs outputs
from other OPF Requirement Engineering tasks such as "Elicit
Requirements", "Analyze Requirements" and "Specify Requirements".

The identification and modelling of domain-dependent roles can be
supported by Task "Identify agent's role" recommended by [14], together
with OPF Task "Identify CIRTs" and a new Task: "Construct the Agent
Model" to parallel the OO “Construct the Object Model”. The existing OPF
Task "Map roles on to classes" can also be used to support the identification
of agent classes in Cassiopeia.

TASK NAME: Identify system behaviours
Focus: Modelling of system functionality
Typical supportive techniques: Functional analysis techniques such as
CRC modelling, Scenario development, Hierarchical task analysis,
Responsibility identification, Service identification.
Explanation: Elementary activities required to fulfil the system’s goals and/
or tasks need to be identified. These will later be performed by the system
actors (in this case, agents) to achieve the collective goals and/or tasks.

TASK NAME: Construct the agent model
Focus: Static architecture
Typical supportive techniques: Intelligent agent identification, Control
architecture
Explanation: An analogue of the “object model” as the main description of
the static architecture needs to be constructed. This model shows the
agents, their interfaces and their connectivity with other agents and objects.

3.1.2 "Defining Relational Roles"

Description: This Cassiopeia task analyses the organizational structure of
an MAS based on the dependencies between domain-dependent roles. It
includes two sub-tasks:

- Identify the dependencies between Domain-Dependent Roles,
thereafter between agents.

- Determine relational roles of agents
Regarding the former sub-task, inter-role dependencies can be functional

(i.e. when they are derived from behaviours implemented by domain-
dependent roles), or relational (i.e. when they take place at the abstraction
level of roles e.g. goal-based dependencies). Inter-role dependencies can
then be naturally translated into dependencies between agents playing these

roles. The modelling of inter-role/inter-agent dependencies is done by a
Coupling Graph and Influence Graph (see Section 3.3 for more detail).

Regarding the latter sub-task, an agent involved in a dependency can play
one of two relational roles: the role of an influencing agent or role of an
influenced agent. (Note: Cassiopeia resorts to the abstract notion of
“influence”: an influence relationship between an agent A and an agent B
relies on an existing dependency between the domain-dependent role played
by A and the domain-dependent role played by B). The names of the
relational roles are determined by the dependency being considered, e.g. the
inhibition dependency would give rise to the relational roles of inhibitor and
inhibited. In this sub-task, the designer should also define:

- The influence signs, which can be roughly understood as interaction
messages/commands sent by the influencing agent to the influenced
agent. The designer should also take into account influence signs from
sources other than agents, e.g. the environment.

- The relational behaviours that enable the agents to identify and handle
the influence signs, i.e. how the influenced agent can choose among
several influences to handle, which domain-dependent role the
influenced agent should activate and in what fashion.

Support from OPF: The task of defining agents' relational roles (i.e.
"influencing" role or "influenced" role), influence signs, and relational
behaviours roughly corresponds to OPF's task "Construct the Agent Model".
The specification of influence signs and relational behaviours, in particular,
can be reasonably mapped to tasks "Determine agent interaction protocol"
and "Determine agent communication protocol" of [14]. If the influence signs
come from the environment, the OPF Task "Model the agent's environment"
[14] can be used to identify these influence signs. The specification of inter-
role/inter-agent dependencies (thereafter agents’ relational roles) can be
supported by the OPF Task "Model dependencies for actors and goals" [11].
An alternative (though not one taken as yet) is to introduce a new task called
"Model agent relational roles/dependencies" as a sub-task of "Construct the
Agent Model".

3.1.3 "Defining Organizational Roles"

Description: This Cassiopeia task models the dynamics of the multi-
agent organization in terms of the instantiation of potential groups of agents in
the system. It consists of:

- specifying the organizational roles that enable the agents to manage
agent groups, i.e. the roles of group initiator and group participant

- specifying the organizational behaviours of agents when playing
these organizational roles, i.e. group formation behaviours, commitment
behaviours, and dissolution behaviours

- defining the influence signs generated by these behaviours, e.g.
commitment signs and dissolution signs.

Support from OPF: The dynamic self-organization of system
components is not explicitly addressed by any existing OPF Task, although
[14] offers the Task "Identify System Organization". This needs extension to
includee the dynamic system organization issue. We thus introduce new
subtasks, "Determine agents' organizational roles" and "Determine agents'
organizational behaviours", for Task "Identify System Organization".

SUBTASK NAME: Determine agents’ organizational roles
Focus: System dynamic modelling
Typical supportive techniques: Collaborations analysis, Control
Architecture, Contract nets, Market Mechanisms
Explanation: At run-time, agents can dynamically organize/re-organize
themselves. Roles of each agent within this dynamic organization should be
predicted at the design time. For example, if agents need to form dynamic
groups at run-time, organizational roles of “group initiator” and “group
participant” need to be assigned to agents.

SUBTASK NAME: Determine agents’ organizational behaviours
Focus: Agent functionality modelling
Typical supportive techniques: Collaborations analysis, Control
Architecture, Contract nets, Market Mechanisms
Explanation: Activities to be performed, or rules to be adhered, by each
agent when playing its organizational role need to be specified. These
activities and rules define how the agent behaves and coordinates with other
agents when the organization is formed, changed, or dissolved.

3.2 Techniques: Cassiopeia and the OPF

For each Cassiopeia technique identified, we first describe it and then
create a parallel OPF method chunk.

3.2.1 For "Defining Domain-Dependent Roles"

Description: To identify system behaviours, Cassiopeia utilizes existing
functional or OO analysis techniques. Given these behaviours, the designer
should determine the appropriate level of abstraction so that the behaviours
should achieve the proper functionality. For example, in the application of the
soccer robot team (for which Cassiopeia was designed), potential system
behaviours are "shoot", "place", "block", and "defend" - much more abstract
than standard robot behaviours (e.g. turn left, right, accelerate).

For identification of domain-dependent roles, the designer should proceed
in an iterative fashion, combining both the bottom-up approach (a behaviour
focus) and a top-down approach (i.e. an organizational focus).

To identify agents based on roles, each agent can take on multiple or all
of the identified roles, or only one role. In the former case, the agent can
assign one domain-dependent role to act as the "active" role at a given time
(while other roles are "idle"). This active role is determined by the agent’s
relational role and organizational role at that point in time. The designer can
also choose to design agents as either homogeneous (i.e. all agents are
provided with the same set of domain-dependent roles), or heterogeneous
(i.e. some agents are supplied with only a subset of these roles).

Support from OPF: For the identification of system behaviours, various
analysis techniques from OPF can be useful, such as "CRC Modelling",
"Scenario Development", "Hierarchical Task Analysis", "Responsibility
Identification", and "Service Identification". The determination of an
appropriate abstraction level for the system behaviours can be supported by
OPF Technique "Abstraction Utilization". With regard to the specification of
roles, OPF offers a "Role Modelling" technique, which only tackles the
modelling of roles and does not address the task of role identification.

To identify agent classes from roles, OPF's Technique "Intelligent Agent
Identification" is relevant, although this technique currently only targets the
need for agents and agent modelling notation. Other OPF Techniques for OO
class identification may be extended/adapted for agents, e.g. "Abstract Class
Identification" and "Class Naming". The extension should take into account
the major differences between OO classes and agent classes, e.g. agent
classes are generally more coarse-grained than OO classes (thus, the
"Granularity" Technique in OPF should be modified to support this).

3.2.2 For "Defining Relational Roles"

Description: For identification of inter-role dependencies and then inter-
agent dependencies, the designer should consider various dependency types
such as coordination, conditioning, simultaneous or sequential facilitation.
Inconsistent dependencies should be removed, and when necessary, some
dependencies can be ignored according to the available heuristics of the
application domain. The designers should only retain inter-role/inter-agent
dependencies that are relevant to the collective task achievement.

Cassiopeia provides no techniques for the specification of influence signs
among agents. However, it does suggest that signs of influence produced by
an “influencing” agent should correspond to the domain-dependent role it is
playing. An “influenced” agent should be able to interpret these signs in so as
to activate the appropriate domain-dependent role. In the exemplar soccer

robot application, the potential influence signs are “help”, “shoot”, “place”
and “position” messages.

Support from OPF: For the identification of inter-role/inter-agent
dependencies (thereafter agents' relational roles), the OPF Technique
"Collaboration Analysis" can be used. The specification of influence signs
can be supported by the OPF Technique of "Interaction Modelling", while the
determination of agents' relational behaviour can be supported [14] by
Techniques such as "Deliberative Reasoning" and "Reactive Reasoning".

3.2.3 For "Defining Organizational Roles"

Description: Identification of organizational roles and behaviours of
agents should be guided by the dependencies between domain-dependent
roles and between agents. Specifically, an agent playing the role of “group
initiator” should be the one involved in a dependency relationship, producing
some influence signs to other agents. The initiator agent then evaluates its
potential “teammates” (i.e. agents playing roles dependent on its own) to
decide which are the most appropriate group members.

Regarding techniques for determining organizational behaviours (i.e.
group formation, commitment and dissolution), Cassiopeia refers readers to
other work such as Contract Net (already supported in the OPF[14]).
Exemplar commitment behaviours are that the participant agents only
activate particular domain-dependent roles or only respond to the initiator's
influence signs. Group dissolution can occur when the initiator agent is
satisfied or when a group can be replaced with a more efficient group.

Support from OPF: Determination of agents' organizational roles and
behaviours Is supported by various Techniques found in the OPF repository
of method chunks e.g. "Collaborations Analysis", "Control Architecture",
"Contract Specification", "Contract Nets" "Commitment Management" [14].

3.3 Work Products: Cassiopeia and the OPF

The only two work products explicitly described in the initial version of
Cassiopeia [8] are Coupling Graph and Influence Graph. The former shows
dependencies between domain-dependent roles (Figure 1), while the latter is
derived from the former to show dependencies between agents (Figure 2).
Later versions [9], however, group these two into a single work product – the
Coupling Graph – which is equivalent to the earlier Influence Graph [8].

The paths in the Coupling and Influence Graphs define the potential
groupings of different domain-dependent roles (and hence agents), thus
providing global representation of the organizational structure of the MAS.

 Figure 1. Coupling Graph of [8] Figure 2. Influence Graph of [8]

Figure 3. Coupling Graph of [9]

Although UML Collaboration Diagrams can be adapted/extended to cater
for the Cassiopeia Coupling Graph and Influence Graph, these two models
should be listed as new work products in OPF repository - or preferably
included as a single model equated to Cassiopeia’s later Coupling Graph as
shown in Figure 3.

NAME: Coupling Graph
OPF CLASSIFICATION: Dynamic behavior diagrams
RELATIONSHIP TO EXISTING WORK PRODUCT: None
BRIEF DESCRIPTION: This diagram shows dependencies between agents
and between roles encapsulated inside agents.

Blocker d5
d5

d2

d4 d4

d2

d2

d4 d4
Defender

Placer
d3

Shooter

Placer

Shooter

Agent

Agent

Defender d3

d1

conditioning

coordination

simultaneous facilitation

sequential facilitation

d1: Defending depends on the other robots’ defense strategy
d2: Shooting can help oneself or another agent to shoot
d3: Shooting depends on the position of oneself or opponent
d4: Defending may allow to catch the ball of the opponent
d5: Blocking can help oneself or another agent to shoot the ball

Blocker

B: Blocker
D: Defender
P : P lacer
S: Shooter

Agent

Agent

Agent

Agent

 S
B D

P
 S B

D

P

 S

B

D

P S

B
D

P d1: Blocking an opponent can help an agent to better place itself
d2: Defending can help oneself or another agent to better place
itself
d3: Shooting depends on the position of oneself or opponent
d4: Defending may allow to catch the ball of the opponent
d5: Blocking can help oneself or another agent to shoot the ball
d6: Shooting can help oneself or another agent to shoot

d4
d7

d6

d5

d3

d2

d1
Placer

Blocker Shooter

Defender

4. SUMMARY AND ACKNOWLEDGEMENTS

As part of an extensive research programme to combine the benefits of
method engineering and to extend an existing object-oriented framework (the
OPF) to create a highly supportive methodological environment for the
construction of agent-oriented information systems, we have analysed here
contributions from the Prometheus AO methodology. We have identified
two new Tasks, together with two new subtasks for a pre-existing Task plus
one additional Work Product for inclusion in the OPF repository.

We wish to acknowledge financial support from the University of
Technology, Sydney under their Research Excellence Grants Scheme. This
is Contribution number 04/04 of the Centre for Object Technology
Applications and Research.

REFERENCES

1. Brinkkemper, S., 1996, Method engineering: engineering of information systems
development methods and tools, Inf. Software Technol., 38(4), 275-280.

2. Ter Hofstede, A.H.M. and Verhoef, T.F., 1997, On the feasibility of situational method
engineering, Information Systems, 22, 401-422

3. Rolland, C. and Prakash, N., 1996, A proposal for context-specific method engineering,
Procs. IFIP WG8.1 Conf. on Method Engineering, 191-208, Atlanta, GA, USA

4. Ralyté, J. and Rolland, C., 2001, An assembly process model for method engineering,
Advanced Information Systems Engineering), LNCS2068, Springer, Berlin, 267-283

5. Brinkkemper, S., Saeki, M. and Harmsen, F., 1998, Assembly techniques for method
engineering. Procs. CAISE 1998, Springer Verlag, 381-400.

6. Henderson-Sellers, B., 2003, Method engineering for OO system development, Comm.
ACM, 46(10), 73-78

7. Firesmith, D.G. and Henderson-Sellers, B., 2002, The OPEN Process Framework. AN
Introduction, Addison-Wesley, Harlow, Herts, UK

8. Collinot, A. Drogoul, A. and Benhamou, P. 1996. Agent oriented design of a soccer robot
team. Procs. Second Intl. Conf. on Multi-Agent Systems (ICMAS’96)

9. Collinot, A. and Drogoul, A. 1998. Using the Cassiopeia Method to Design a Soccer Robot
Team. Applied Articial Intelligence (AAI) Journal, 12, 2-3, 127-147.

10. Wooldridge, M., Jennings, N.R. and Kinny, D., 2000, The Gaia methodology for agent-
oriented analysis and design, J. Autonomous Agents and Multi-Agent Systems, 3, 285-312

11. Henderson-Sellers, B., Giorgini, P. and Bresciani, P., 2004, Enhancing Agent OPEN with
concepts used in the Tropos methodology, Procs. ESAW'0, Springer (in press)

12. Henderson-Sellers, B. and Debenham, J., 2003, Towards OPEN methodological support
for agent-oriented systems development, Procs. First International Conference on Agent-
Based Technologies and Systems, University of Calgary, Canada, 14-24

13. Henderson-Sellers, B., Debenham, J. and Tran, N., 2004, Incorporating the elements of the
MASE methodology into Agent OPEN, Procs. ICEIS2004 (in press)

14. Debenham, J. and Henderson-Sellers, B., 2003, Designing agent-based process systems -
extending the OPEN Process Framework, Chapter VIII in Intelligent Agent Software
Engineering (ed. V. Plekhanova), Idea Group Publishing, 160-190

	1. Introduction
	2. Brief Overview of Cassiopeia
	3. Cassiopeia Tasks, Techniques and Work Products in and their Support in OPF.
	3.1 Tasks: Cassiopeia and the OPF
	3.1.1 "Defining Domain-Dependent Roles"
	3.1.2 "Defining Relational Roles"
	3.1.3 "Defining Organizational Roles"

	3.2 Techniques: Cassiopeia and the OPF
	3.2.1 For "Defining Domain-Dependent Roles"
	3.2.2 For "Defining Relational Roles"
	3.2.3 For "Defining Organizational Roles"

	3.3 Work Products: Cassiopeia and the OPF

	4. Summary and acknowledgements
	References

