
608 IC '02 International Conference

Incorporating a Runtime Interactive Visualization
into Intelligent Agents

Aizhong Lin and Mao Lin Huang
Faculty of Information Technology,
University of Technology, Sydney

POBox 123, Broadway
NSW 2007, AUSTRALIA

Abstract

Two reasons motivate us to incorporate a real-
time interactive visualization into intelligent
agents. Firstly a visual presentation gives users
a better understanding of the runtime works that
an agent is currently doing, so that they can
evaluate the performance of an agent through
the visual user interface. Furthermore, a real-
time interactive visualization provides functions
to view the inner state transitions of an
intelligent agent. Secondly a real-time
interactive visualization can support direct user
interference while an agent is running. For
example, the user of an intelligent agent may
want to interrupt the running of the agent to
rectify its process if theyfeel the plan chosen by
the agent is not good enough to achieve a goal
or they believe an agent couldfail to achieve a
goal. This paper describes the way of
incorporating a real-time interactive
visualizationinto intelligent agent.

Keywords Intelligent Agent,
Information Visualization,
Interactive Visualization,
Runtime Visualization

1. Introduction

Along with the invention of graphics
workstations in mid 19805, graphics
software applications such as computer-
aided design (CAD) software became
available in the market. Those earliest
applications employed graphics technology
to provide users with a Visual Human-
Computer interface (HCI) for the

engineering designs in some specific areas.
After graphic-based operating systems were
developed for personal computers such as
Mackintoshes and PCs in earlier 1990s,
visualization became very popular in the
design of computer programming
environment. For example, Microsoft visual
programming environment provides
powerful functions to efficiently assist users
creating HCls. In the middle 1990s, Internet
has become the most popular information
resource that is available for access
everywhere in the world. Web browser
provides client-side browsing facilities for
users to retrieve information through the
Internet and display the information in
numerous types (such as text, picture,
image, audio, video, ...). Information
visualization becomes a hot research area
and a large number of tools [HEC98]
[CK97] are developed to help web users to
view, understand and navigate information
space. These techniques include scientific
visualization [EW92], data mining
visualization [FKZ97], visualized concept
map [GS95], and many others.

Research in intelligent system can be
traced back to the earlier 1970s. The oldest
intelligent systems called the expert system
developed to address problems in some
special problem domains [SE76][MJ83].
Since that, a large number of intelligent
principles, methods, and tools covering
computer reasoning, computer decision-
making, computer learning, and knowledge
base are proposed. They were soon evolved
to a very large research area ••• Artificial

IC '02 International Conference 609

Intelligence (AI). Because of the availability
of computer networks and Internet in middle
1990s, research in distributed intelligent
system [CMMM92] became a major area in
AI. An autonomous and cooperative
intelligent system --- intelligent agent
[MP93]--- that worked as a human agent to
solve problems in a specific environment is
the most important research topic in the area
of distributed AI.

An intelligent agent (IA) or agent
defined in this paper is a goal-driven and
problem-solving computer component that is
capable of autonomous, cooperative, and
flexible actions to achieve goals. An action
is a function or method that is written in
computer programming language such as
Java. Like a human agent, once a goal is
given, an agent has its own ways --- plans ---
to achieve the goal. A plan in an agent is a
logical sequence of actions. Unlike a human
agent, a software agent provides the
procedure and middle results to the user
after the goal is achieved.

Figure 1: Agents that maintain state
[adopted from GW99]

The agent can automatically achieve the
goal via its inner state transitions. Functions
such as reasoning, decision-making, and
interaction are built to support the state
transitions in an agent. Figure 1 [GW99]
illustrates how agents that maintain state.
Because agent users are likely to know the
middle stages of agent works, agent systems
in nowadays try to provide middle results to
users in many ways.

However, most of existing IA systems
as described above are not good enough and
inadequate for users to operate. This is
because:
• The user may like to know the real-time

process of the goal achievement. For
examples, the user likes to know what is
the current process stage, which plan is

chosen to achieve the goal currently,
what other agents are the partners of this
agent and which one is currently
communicated, and so on.

• The user may want to be involved in the
middle of process. For an instance, if a
user believes the current plan that the
agent chose is not a good plan to
achieve a goal, he/she may want to
interrupt the process immediately to
help the agent to choose a good plan.
Visualization is the most advanced

method because it can show the runtime
works of an agent vividly by using graphics
and animation. AgentBuilder [RS99]
provides visualized output interfaces to
display the runtime interactions from one
agent to another that has excited the agent
users because they are aware of which agent
is the agent interacting with at real-time.
However, such visualized interfaces have
not been used to express the internal state
transferring of intelligent agents.

Interactive real-time visualization
(IRTV) is a branch of technology that can be
used in a computer component to provide
graphic-based hurnan-computer interface.
By using IRTV as part of the IA system, the
running situation of the component can be
visualized on-line on a standard output
device such as a computer monitor allowing
users to understand what the component is
doing at any time. Meanwhile, the user may
interrupt the running of the component to
redress the running of the component if the
user believes that the component went in a
wrong way.

There are two reasons that motivate us
to incorporate IRTV into agents. Firstly,
users want to understand the runtime works
that are performed by an agent so that they
can evaluate the performance of the IA, and
IRTV can provide such functions. Secondly,
users may like to interact with an IA at be
runtime to rectify the running of the agent if
they feel the process efficiency ~ow or the
agent could fail to achieve a goal. Therefore,
our goal is to provide a general runtime
interactive visualization for generating
visual output and on-line control and
interrupts of the IA.

610 IC '02 International Conference

This paper describes a way to
incorporate IRTV in IA. Firstly an agent
architecture for hybrid BDI (Belief, Desire,
and Intention) is introduced. Then, an
approach that is used to visualize the
runtime state transitions -- visualize the
output --- of an agent is described. Thirdly,
an approach that allows an agent accepts
users' interrupts and recalls its processes to
suitable stages --- visualize the input --- are
discussed. Finally, we introduce our future
work.

2. An Hybrid Agent

Our agent as illustrated below uses a
conceptual model adapted from BDI (Belief,
Desire, and Intention) model [RG92]. This
model describes reasoning from messages to
beliefs (reactive), from beliefs to services
(reactive), and from beliefs to goal
(deliberative). If a plan goal matches the
process goal, then the plan is chosen to
achieve the process goal. A commitment is
generated to schedule the actions of the plan.
All actions are executed according to the
commitment.

Figure 2 shows that agent automation
starts from coming messages that could be
text command from a user, a button being
clicked by a user, or a message sent by other
agents. An agent is controlled by a top-level
algorithm hybridJ1DI_control (Figure 3)
(ALOO]. This main function includes
perceiving, reasoning, decision-making, and
even interacting sub functions. It first
detects the coming messages in a certain
period of time. Those messages are put to
the correspondent message queue according
to triggers. After messages come to message
queue, they trigger reactive reasoning, and
then deliberative reasoning. After the goal
has been achieved, the function drops all
successful and impossible messages, beliefs,
goals, and plans. Unless an agent is
terminated manually, this control algorithm
keeps running.

~

c$':j-~: f-~
....•..

__-__ ../"f-----------11 •••••

Figure 2: The conceptual architecture of an
agent

:-:t~~):
I

IJIll4MIP tCWll1Ua'. bDtlDcI
MCMaJa _ •. radMcsMtc(qIlCll\.....".; ~C);.
"__ to. ••••1)"'- -

Mc:ISlIcn",-~,CIII_.,1taII):tt••••• p&oa~ __ I"1km

JroI_p;w._-_\J~CIUi'-.,.-..);.
for_c:u:III("' __)

I
Tria_"" pcT,.FfI(c):
~_GHIIlI.W)

I ·_lIJ·1ON_~--e--.t):,

•.• rc&Triacn(8l);
~__ ..do(I. III)

••.beUdJt..yhiun(t)I .•.....u.
_ •• Wicr~""'):

a-i(~f}!--U)
~.Wcn.,.c.(ld.,"):r._~ ..•)

I
•••••••• oo:oti ••• ',,);
Ibr_...:i(•• ~}~ .•..•.):
...-u- •••••••• hre~b):
~ •.• ~ •• Ic(_Ii ••••);
r-_.-d(lCIiDIIe ~)

~):

Figure 3: The top-level control algorithm
of an agent

Figure 4: The common interface of an agent
Our agent is written in Java and based

on the conceptual architecture and control
algorithm described above. Normally, when
achieving a goal, more than one agent was
constructed. They may situate in the same
environment and be responsib~ for a
specific set of events in the environment.
Different agent could be generated with
different plans and actions (that can be built
in design time as well as running time), so
different individual agent could have

~ '02 Intemational Conference 611

different abilities (the combination of plans
and actions). The common interface of our
agent is shown in Figure 4.

3. Output Visualization

We use graphics and animation to present
the agent inner state transitions. Firstly, a set
of display visual elements --- graphic
entities --- that represent different concepts
such as agents, messages, believes, goals,
plans and actions are defined, Then the
graphic links that present the relationships
between those graphics are defined,
Eventually, this graphic diagram
visualization - is used to visually present
an agent running situation.

3.1 Visual Concept Elements

The concepts and actions in our agent
system are represented with visual pictures.
Figure 5 lists most of the pictures of agent
concepts:
• AE:

•

An agent environment
(environment) is an environment
that an agent situates in and the
agent is looking after. An agent
environment could include
message communication
channels, other agents in a
multi-agent system, specific
databases, and so on.

Agent: An agent is a computer
component that situates in an
agent environment and that is
capable of autonomous and
flexible actions to achieve goals.

Message: A message is a piece of
information passed from one
agent to another. A message in
our agent system is wrapped by
using ACL protocol (pIPA98].

Belief: A belief in our agent is a
statement that the agent
believes it is true.

Goal: A goal is an outcome that an
agent is going to achieve. A
goal could be achieved or failed

•

•

•

• Plan: A plan is a logical sequence of
actions.

• Action Queue: An action queue
(actions) is a queue used to
store actions.

• Schedule: A schedule is a timetable in
which each action is associated
with a predefined time.

• Action: An action is a function or
method that is built in computer
programming language and can
be executed by computer
system.

~'

Figure 5: Visual concept elements

3.2 Visual Relationship Elements

Relationships exist between agent concepts.
For example, a "perceiving" relationship
connects concepts from "Agent
Environment" to "Message", i.e., message
comes from perceiving agent environment.
Similarly, a "reasoning" relationship
connects the concepts from "Goal" to
"PJan". A relationship is an action that
converts the input concept to output concept.
If a relationship is represented with an edge,
it is a directed edge. For example, the
"reasoning" relationship could not connect
the concepts from "Plan" to "Goal". The
relationships in our agent system are also
represented with visual pictures. Figure 6
shows most of them:
• Perceiving: perceiving is a

relationship that connects the
concepts from "Agent
Environment" to "Message"

• Belief revision: beliefrevsing is a
relationship that converts 1he
concepts from "Message" to
"Belief'

612 IC '02 International Conference

• Trigger: trigger is a relationship that
converts the concepts from
"Belief' to "Goal" .

• Reasoning: reasoning is a relationship
that converts concepts from
"Goal" to "Plan" and from
"Plan" to "Actions"

• Decision: decision is a relationship
that converts concepts from
"Actions" to Intention

• Scheduling: scheduling is a relationship
that converts concepts from
"Intention" to "Schedule"

• Pick up: pickup relationship converts
concepts from "Schedule" to
"Action"

• Doing: doing relationship converts
concepts from "Action" to
"Agent Environment"

3.3 Structures and APIs

Two types of visual entities, Icons and
Links, are used in the visualization system to •
present the relational structures of inner state
transitions, where Icons present the states
and Links present the transfers. In the
visualization, each agent concept is defmed
as a "state" and each relationship is defined
as a "transfer". Those defmitions are
compatible with the principle of agent
achieving goal via its inner state transfers. A
state has attributes such as name, geometric
coordinators, and graphic attributes
associated with its graphic entity "Icon". A
transfer relationship has attnbutes such as
the start point, end point, direction, and
graphic attributes associated with its
graphic entity "Link".

The basic APIs (Application
Programming Interface) provided by the
general visualization system are:

• AgentVisulization()
Any agent can generate a visual frame
by creating a AgentVisualization object

• addState(String name, int x, int y, String
imagename)

Add a state in an agent system
• addTransfer(String from name, String

to_name, String imagename)
Add a tranfer in an agent system

• frreTransfer(String from_name, String
to_name, String imagename)
Display an animated connection from
"from" state to "to" state with the
specific image

3.4 Agent Hybrid Control
Algorithm with Visualization

For incorporating visualization into our
agent, we changed the hybrid_BDCcontrol
algorithm (Figure 7). Firstly, an agent
visualization frame is constructed; then the
states that are associated with visual icons
are added to a state queue; and finally we
draw a link when a state transfer in an agent
is taken place.

•• .Ilo.T••.•....-.s ••••••••• ~."t4_ •••.·,... ••••• ••-'f"):..- _ -•..•..,.-.-- ..-.,:
•• .n..I' ••• "'-f"I •.•••.•• _t' .••• -..- •• ,....; .•••. ,w"'b.•__ _ .•.. ...-f .• _,_):;
•••A.T•••.,....••__ .~.· ••_.·.· __ - •.,.rk
11I •••••• _ ••• _ ••• _ •.•• _ ••• oP_1;:

r;;"._.1 •••,
Ill•••• ,. •.•••••••"!"'·.,

••.••• T•••• hof""_ •• ,... ••• _,..~ •••••..•••• l"'l••
•.•••••••. m. •••••• t-"lt

Figure 7: The BDI control algorithm for
visualization

4. Input Visualization

There are two major components in the
interactive visualization system. The first
component as described in lastl'section is
used to visualize the agent output. The
second component is used for on-line
manipulating of the workflow. The system
accepts users' real-time interrupt --- input
and then backward the current process of

IC '02 International Conference 613

agent to a suitable stage. A stage must
consist of at least one transaction (Figure 8).
A transaction in an agent is a set of actions
that cannot be executed separately. For
example, a belief revision is a transaction
including actions such as picking up a
message, parsing the semantics of the
message, changing associated beliefs, and
then save those beliefs to belief library. An
agent deals with a user's interrupt after a
transaction is completed. If an interrupt
event happens in the middle of a transaction,
it is accepted and saved in an interrupt event
queue. All transactions related to a goal are
saved in a persistent transaction queue. After
the goal is achieved, those transactions are

moved to a tr~ansa~~~~,~~.:r'

C..··"'...I.•..• .,...,1
-Su,".1~:~._'

Figure 8: stage and transaction
A "Pause" button is provided in the

toolbar of the agent visualization frame
(Figure 9a). When click this button, if the
agent is working in a transaction, it will
keep working until the transaction is
completed. Otherwise, it will stop its work
immediately. A "Back" button is provided
in the same toolbar (Figure 9b). After an
agent stops its work, the ''back'' button is
activated. One click of "back" button will
cause one transaction backward. All states
and transfers of agent are going back to that
stage when the process is backward to a
stage.

~
~J5IOft'~'1 1"':''''3 i"""~'1 ",·;0".3
Figure 9a: Pause button Figure 9b: Back

button
Nothing could be more understandable by
showing an example to explain the input
visualization functions in this stage. Suppose
that a user (a Ph.D student) uses an agent to
help him finding fund (a goal) to support
attending an oversea conference. The agent
has three plans to achieve the goal. Firstly,

the agent could send an email to ask the
student's supervisor; secondly, it can send
email to ask the student's department; and
finally, it can send email to ask the faculty.
For some reason, the agent believes "ask
department" is a good plan on its own way
(Figure 10). The user, however, thinks this
plan is not good because he/she knows that
hislher supervisor is going to fund himlher.
Then the user could interrupt the agent's
work and ask the agent back to goal state,
and then choose a plan for the agent (double
click the "ask supervisor" plan icon). After
the "good" plan is selected by double
clicking its icon in the agent visualization
frame, and then click "Go" button, the agent
continues its work using an "input" plan
(Fi ell).

Figure 10: Agent has a plan

Figure 11: Agent running in a good plan
after user's input

5. Future Work

IRTV provides a visual approach to direct
manipulate the agent's workflow and
observe the agent inner state transition (its
runtime work) with a icon-link based
visualization. By using this graphic user
interface, a user can correct the agent
working flow by on-line visual interactions.
Agent users are able to improv~e agent
performance to achieve the goal by the
assistance of visual interactions. The design
and implementation of those methods are
simple because it looks like to replace the

614 IC '02 International Conference

traditional text input and output with the
graphic input and output.

Our future research focuses will be on
agent visual programming, i.e., we try to
integrate visual input and output with the
computer programming language such as
Java. The future research will result in a new
Java package. The output and input APls in
that package will be basically associated
with visual interfaces instead of text-based
interfaces. We will also investigate the
layout algorithms which will provide better
layouts for these icon-link based
visualizations that address the problem of
human comprehension of diagrams.

References

[ALoo] Aizhong Lin. Multi-agent
Business Process Management.
Proceedings of ISA'2000, International
ICSC Congress on INTELLIGENT
SYSTEMS AND APPLICATIONS on
December 11-15, 2000, University of
Wollongong, NSW, Australia

[CK97] Jeromy Carriere and Rick
Kazman. WebQuery: Searching and
visualizing the Web through
connectivity. In Proceedings of the Sixth
International World Wide Web
Conference, 1997.

[CMMM92] B. Chaib-Draa, B. Moulin,
R. Mandiau, P. Millot. Trends in
distributed artificial intelligence.
Artificial Intelligence Review 1(6), 6(1),
pp. 35-66, 1992.

[EW92] Earnshaw, R.A., Wiseman,
N. An Introductory Guide to Scientific
Visualization, Springer-Verlag: Berlin,
1992.

[FIPA98] FIPA specification. Agent
Communication Language.
http://www.fipa.org/specs/fipa00003/0
Coo003A.html

[FKZ97] Ronen Feldman, Will
Klosgen, and Amir Zilberstein. 1997.
Visualization techniques to explore data
mining results for document collections.
In Proceedings of the Third Annual
Conference on Knowledge Discovery

and Data Mining (KDD), Newport
Beach.

[GS95] Brian R Gaines and Mildred
L G Shaw. Collaboration through
Concept Maps.
http://ksi.cpsc. ucalgary.ca/artic1es/CSCL
95CM/

[GW99] Gerhard Weiss (Ed.).
Multiagent Systems: A Modern
Approach to Distributed Artificial
Intelligence. MIT Press (1999) pp27-77

[HEC98] Mao Lin Huang, Peter
Eades, and Robert Cohen. WebOFDAV
- navigating and visualizing the web on-
line with animated context swapping.
Computer Networks and ISDN Systems.
Special Issue on the 7th International
World Wide Web Conference, 30(1-
7):638-642, 1998.

[MJ83] M. Mauldin, G. Jacobson,
A. Appel and L. Hamey. ROG-O-
MATIC: A Belligerent Expert System
Technical Report CMU-CS-83-l44,
Carnegie-Mellon University, July, 1983.

[MP93] Jorg P. Mii1ler and Markus
Pischel The Agent Architecture
InteRRaP: Concept and Application.
Research Report, Deutsches
Forschungszentrum fiir Kiinstliche
Intelligenz, Number RR-93-26, p. 99,
1993.

[RG92] Anand S. Rao and Michael
P. Georgeff, An Abstract Architecture
for Rational Agents. in Proceedings of
the Third International Conference on
Principles of Knowledge Representation
and Reasoning, edited by C. Rich, W.
Swartout and B. Nebel, Morgan
Kaufmann Publishers, San Mateo, CA,
1992

[RS99] Reticular System Inc.
AgentBuilder® White Paper.
http://www.reticular.com/Library/white
'-paper J 1.3.pdf

[SE76] Shortliffe, Edward H.
(1976). Computer-Based w Medical
Consultations: MYCIN, American
Elsevier, New York, NY

http://www.fipa.org/specs/fipa00003/0
http://www.reticular.com/Library/white

