
Understanding Service Reusability 

George Feuerlicht, 
Josip Lozina 

Faculty oflnformation Technology, 
University of Technology, 

Sydney, Australia 
jiri@it.uts.edu.au, jlozina@it.uts.edu.au 

Abstract: Reusability of software components is a key determinant of application development 
productivity and maintainability of applications. Reuse is regarded by many organizations as the top 
driver for the adoption of SOA. However the mechanism for achieving reusability of services is poorly 
understood at present and there is evidence that design of services for reuse is not a prime objectives 
when implementing SOA. The design of services is driven primarily by performimce and scalability 
considerations, rather than any sound software engineering principles. In this paper we argue that 
excessive use of coarse-grained, document-centric messages results in poor reuse and undesirable 
interdependencies between services. We discuss the relationship between granularity of services, 
service reuse and service composability and describe how developers of Web Services applications 
can get a better understanding of the tradeo.ffs between performance, reuse, and maintainability of 
service-oriented applications. 

Keywords: SOA, Web Services, Service Granularity, Service Reusability 

1 Introduction 
Many organizations are moving towards Service Oriented Architecture (SOA) in order to closely align 
IT capabilities with their business goals. SOA based on Web Services standards allows applications to 
exchange data and participate in business processes regardless of the underlying technological 
platform, and provides a more agile technical infrastructure that can rapidly adapt to new business 
requirements (Newcomer and Lomow 2004). Among the many perceived SOA benefits it is the 
expectation of greater reuse that is regarded by many organizations as the top driver for the adoption 
of SOA (Hurwitz 2006). Service reusability is essential for organisations to achieve good return on 
investment (McGovern, Tyagi, Stevens & Matthew 2003). 

From a business point of view there is a direct relationship between reuse and ROI (Return on 
Investment); reuse reduces the costs associated with design, development and testing, as well as 
significantly reduces maintenance effort (Erl 2005). For example, in a recent Credit Suisse study of 
SOA implementation the main benefits of SOA were attributed to reuse of services that resulted in 
more efficient application development (Krafzig et al 2004). Another case study describes a project 
conducted in a life insurance organisation in the UK with the strategic objective to leverage its 
catalogue of reusable business services to lower the costs and increase competitive advantage. The 
organisation achieved service reuse of 51% which represented a development savings of over 
£2,000,000 without taking into account other areas of the business such as operational support and 
service delivery functions (Bieberstein et al 2005). 

Software reuse is a well-established principle in object-oriented programming and component-based 
development. Existing object-oriented and component-based methodologies provide many principles 
and practises that can be applied to developing SOA applications. Component-based development has 

144 SYSTEMS INTEGRATION 2007 



UNDERSTANDING SERVICE REUSABILITY 

demonstrated ability to build large software systems by integrating new and existing software 
components, promoting software reuse and reducing development time and cost. SOA embraces the 
basic principles of component-based design such as information hiding, modularization, separation of 
concerns and abstraction, but also differs from component-based design in a number of important 
respects. Unlike components, services are implemented at a higher-level of abstraction directly 
supporting business processes and functional units (Zimmermann et al. 2004). SOA is regarded as the 
next evolutionary step extending object-oriented and component-based methods to facilitate the 
development of loosely-coupled inter-enterprise applications, providing a mechanism for composing 
complex applications that consist of highly autonomous program modules (services) (Chappell & 
Jewell 2003). Services interact via service interfaces that define the contract between a service 
provider and a consumer and determine the scope of functionality implemented by the service, i.e. 
service granularity. Because of the emphasis on high-level of abstraction, most SOA practitioners 
recommend the use of coarse-grained services that typically encapsulate entire business processes (e.g. 
air travel booking, course enrolment, etc.). Coarse-grained services avoid the need to maintain state 
information between service invocations, and reduce the number of network interactions required to 
implement a given business function, improving performance and simplifying recovery in the case of 
failure. However, there is an inverse relationship between service granularity and service reusability; 
as the scope of functionality implemented by a given service increases, the potential for its reuse 
diminishes. Also importantly, excessive service granularity impacts on the ability to evolve service­
oriented applications without producing undesirable side-effects. Coarse-grained services externalize 
complex data structures and exhibit high levels of data coupling (Feuerlicht 2005). Consequently, one 
of the main challenges for the developers of service-oriented applications is to determine the most 
appropriate level of service granularity to ensure that services are reusable, exhibit a high degree of 
mutual independence, and at the same time have good performance characteristics. Decisions about 
service granularity play a key role in the design of services, and need to be considered in the context 
of a methodological framework, rather than based purely on heuristics. While most experts agree that 
service granularity impacts on service reuse, the exact mechanism for reuse of autonomous services in 
highly distributed (domain-wide) service-oriented applications is poorly understood at present 
(Feuerlicht 2006). 

In this paper we first discuss service design principles (section 2), and then focus on service 
granularity (section 3) and analyse the relationship between service granularity and service reuse 
(section 4). We conclude by noting that further research is needed to develop a comprehensive 
methodological framework for making design decisions about service granularity so that reuse can be 
maximized (section 5). 

2 Service Design 
Reusability is not an automatic consequence of implementing SOA or using Web Services. Similar to 
reusability of objects and components, reusability in the context of services is a matter of good design. 
More specifically, it is the design of service interfaces that determines service reusability. Of equal 
importance is the stability of the resulting service interfaces so that the impact of changing 
requirements is minimized (i.e. confined to small number of services, ideally a single service). The 
task of designing service interfaces is conceptually similar to the design of method signatures in 
object-oriented applications. The key guiding principles for interface design include orthogonality, 
maximization of method cohesion and minimization of method coupling. The orthogonality 
requirement is closely related to service cohesion and states that each service (or service operation) 
should implement a distinct function (i.e. the functionality of services should not overlap). The 
principles of maximization of cohesion and minimization of coupling have been studied extensively in 
the context of structured and object-oriented programming and have been applied to service design 
with some minor refinements (Feuerlicht, 2005a). 

2.1 Service Coupling 

SYSTEMS INTEGRATION 2007 145 



GEORGE FEUERLICHT, JOSIP LOZINA 

Coupling is a measure of the strength of the relationship between two or more services; minimization 
of coupling reduces interdependencies between services facilitating service evolution (Larman 2004). 
The concept of loose coupling is one of the most important SOA design principles, but there is a 
considerable confusion about its interpretation. For example, Kaye (Kaye 2003) differentiates between 
tight and loose coupling in the context of Web Services using a set of characteristics listed in Table 1 
below. 

Tightly Coupled Loosely coupled 

Interaction Synchronous Asynchronous 

Messaging Style RPC Document 

Messaging Paths Hard Coded Routed 

Technology Mix Homogenous Heterogeneous 

Data Types Dependent Independent 

Syntactic Definition By Convention Published Schema 

Bindings Fixed and Early Delayed 

Semantic Adaptation By Re-coding Via Transformation 

Software Objective Reuse, Efficiency Broad Applicability 

Consequences Anticipated Unexpected 

Table 1: Loose versus tight coupling (Kaye 2003 p.J32) 

The table includes a wide range of characteristics, and in some cases the interpretation of coupling is 
too simplistic. For example, it can be argued that the use of the document-centric approach (i.e. 
document messaging style) leads to increased data coupling as the service interface typically contains 
complex data structures. Conversely, using RPC messaging style does not necessarily result in tight 
coupling as RPCs can be deployed asynchronously and the service operations can be designed to 
minimize data coupling. It is primarily the (data) coupling via interface parameters that determines 
both the stability of the interface and its reuse potential and needs to be minimized when designing 
services (Feuerlicht, 2006). As the service interface constitutes a contract it cannot be changed once 
externalized, and should be the subject of careful design considerations. Once the service interface is 
designed, other issues (e.g. interaction and messaging style) can be considered separately during later 
design stages, or even managed during the deployment of applications. 

2.2 Service Cohesion 

Cohesion refers to the level of interrelationships between the elements of a software module (Stevens 
1999). High level of service cohesion increases application stability as cohesion limits the impact of 
changes to a small number of services (ideally, a single service operation). According to Larman 
(Larman 2004) the benefits of highly cohesive methods include easy maintenance (as the method 
interfaces are less likely to change over time) and increased reuse potential. Functional cohesion is 
achieved in situations where each service operation implements a single clearly-defined task; this leads 
to low coupling and high levels of reuse (Vinoski 2005). Maximizing functional cohesion leads to 
modular design; this well-known principle has been exploited in object-oriented design that promotes 
modularity via decomposition of systems into a set of cohesive and loosely coupled modules (Booch 
1993). Applying this principle to the design of services results in simple, mutually independent 

146 SYSTEMS INTEGRATION 2007 



UNDERSTANDING SERVICE REUSABILITY 

interfaces with good reuse potential. There is a close relationship between service cohesion and 
coupling as poor cohesion leads to high levels of coupling. Furthermore, poor service cohesion leads 
to overlapping service functionality, i.e. loss of orthogonality. 

2.3 Service Granularity 

In follows from the above discussion that one of the most important aspects of designing service­
oriented applications relates to decisions about service granularity. In practice, such decisions are 
often based on heuristics and rules of thumb. For example, Schmelzer (Schmelzer 2006) defines 
granularity as "a relative measure of how broad a required piece of functionality must be in order to 
address the need at hand". Service granularity is often measured in terms of the amount of data in the 
message payload of a service; thus coarse-grained services typically have aggregated message 
payloads resulting from executing multiple operations before returning the data (McGovern, Tyagi, 
Stevens & Matthew 2003). Fine-grained services, on the other hand typically implement individual 
operations directly, resulting in excessive chattiness and complex interaction dialogues (Erl2005). 

In general, SOA best practices advocate the use of stateless, asynchronous, and coarse-grained Web 
Services (Sperberg-McQueen 2003). Stateless asynchronous services are significantly more scalable 
and result in improved performance. Implementation of coarse-grained services can be achieved using · 
a fa<;ade pattern over fine-grained service operations (Keen M. 2004). Using this design pattern the 
client sends all the required information in a single call, avoiding invocation of separate methods 
(Singh et al 2004). This Coarse-Grained Remote Interface design pattern has been used extensively in 
distributed computing as a technique for reducing communication overheads (Lannan 2004). Coarse­
grained services typically correspond to individual business functions identified by top-down analysis, 
or are the result of bottom-up service aggregation. XML provides a natural mechanism for transmitting 
coarse-grained messages using the Web Services SOAP protocol (Bellur & Narendra 2006), 
(McKusick 2003). 

Fine-grained services typically correspond to elementary business functions and implement highly 
reusable business logic (Bieberstein et al 2005). The benefits of fine-grained services include 
improved cohesion, reduction in coupling and better clarity of the design (Buchmann 2002). It has 
been demonstrated that data properties of service interfaces determine the level of service cohesion 
and that data normalization techniques can be used to maximize cohesion and minimize coupling of 
services (Feuerlicht 2005). 

A recent quantitative comparison of fine-grained and coarse-grained services confirmed that fine­
grained services exhibit lower levels of coupling resulting in easier propagation of changes and more 
flexible and maintainable services (Perepletchikov et al, 2005). The study compared coarse-grained 
services with business logic embedded into a hierarchical object-oriented design structure with a fine­
grained BPEL implementation based on embedding business rules and logic into executable BPEL 
scripts. 

The level of abstraction of coarse-grained services corresponds to business processes while fine­
grained services tend to operate at a more technical level. The recursive nature of service composition 
allows the construction of business level services from reusable fine-grained services. Business-level 
services can then be made available to external client applications (i.e. external to the enterprise or 
administrative domain), while fine-grained services are used within the enterprise taking advantage of 
greater flexibility and reuse (Umar 2004), (Warner 2006). BPEL (Business Process Execution 
Language) is regarded as the standard service composition language and can be used to implement 
high level business processes by assembling and composing individual Web Services. BPEL forms a 
layer on top of services and provides a mechanism for the implementation of business logic, state 
maintenance, and failure recovery. Services can be designed for reuse in various BPEL composition 
scenarios, and the explicit implementation of business logic (i.e. business process workflows) using 
BPEL makes maintenance easier (Erl 2005). 

SYSTEMS INTEGRATION 2007 147 



GEORGE FEUERLICHT, JOSIP LOZINA 

3 Service Reusability 
Software reuse has been the subject of extensive investigation in the context of object-oriented 
programming and component-based development. The primary mechanism for achieving reuse in 
object-oriented programming is (class) inheritance. Inheritance creates strong dependencies (i.e. 
coupling) among application objects and for that reason is generally not used in distributed 
environments. The mechanism for maximizing reuse of service components in the context of highly 
distributed (domain-wide) service-oriented applications with services developed by autonomous 
services providers is not fully understood at present. We define service reuse as the ability to 
participate in multiple service assemblies (compositions). Given this perspective, services must be 
composable to achieve good levels of reuse, i.e. service reuse is closely related to service 
composability. For example, a well-designed credit card verification service can be reused in a large 
number of payment applications, and therefore is highly reusable. It follows from the above discussion 
that the bias towards coarse-grained (i.e. aggregated), message-oriented services, favoured by most 
SOA practitioners makes achieving reuse difficult in practice as such services are not readily 
composable. 

3.1 Identifying Reusable Services 

In this section we briefly consider the problem of design of reusable services. Only a brief overview of 
the method is presented here; the design method has been described in detail in previous publications 
(Feuerlicht, 2005; Feuerlicht, 2005a). The design method consists of three main design stages: the first 
stage involves top-down decomposition with the objective of identifying elementary, reusable service 
components (i.e. service operations). The second stage involves service aggregation with the aim of 
optimizing service granularity with respect to the requirements of a particular message interchange 
scenario (e.g. airline travel booking dialogue). This stage could also include consideration of 
performance, state management and other related issues. The final design stage involves mapping the 
resulting service operations to a BPEL process that implements a specific (high-level) business 
function. 

During the decomposition stage complex business functions are progressively decomposed into 
elementary functions and then mapped to corresponding candidate service operations. This is 
consistent with maximizing cohesion as elementary business functions typically accomplish a single 
conceptual task and exhibit high levels of cohesion. Decomposition can be achieved by modeling the 
interaction between services using a Sequence Diagram. Each step in the Sequence Diagram dialog 
produces a request/response message pair that corresponds to an elementary business function. 
Alternatively, elementary business functions can be identified as leaf functions in a business function 
hierarchy. Given the initial set of candidate service operations, further decomposition can be achieved 
by applying data normalization to the interface data parameters (Feuerlicht, 2005a). However, this 
produces a large number of service operations and results in an excessively complex interaction 
dialogue characterized by a large number of runtime calls. While the resulting services are highly 
reusable this low-granularity solution is not practical. Finding an optimal level of service granularity 
requires further examination, identifying operations that are suitable candidates for aggregations. We 
have shown that service aggregation can be performed by applying relational operations over service 
interface parameters. Finally, the resulting (aggregated) services are mapped to a BPEL process and 
externalized as a high-level service. 

4 Conclusion 
We have noted that reuse is one of the main reasons for organizations to adopt SOA, however so far 
the perception of improved reuse can be mainly attributed to the ability to derive business value from 
legacy applications by externalizing existing functionality as Web Services. While reusing 

148 SYSTEMS INTEGRATION 2007 



UNDERSTANDING SERVICE REUSABILITY 

functionally locked in legacy applications is clearly important, it is the reusability of services in newly 
developed applications that will ultimately determine the long-term business benefits derived from 
SOA. Some argue that the costs involved in identifying, understanding and administering reusable 
services may outweigh the benefits of gained by reuse (Krafzig et al 2004). Others maintain that 
promoting reuse potential is important even if it there is not an immediate opportunity for reuse (Erl 
2005). 

Most SOA practitioners advocate coarse-grained services mainly on the basis of performance 
considerations, but also because SOA is regarded as a message-oriented paradigm. This results in 
poorly designed services that suffer from limited reuse. Applying proven software design principles 
will ensure that organisations will achieve higher levels of service reuse and better return on 
investment in the long term. 

5 References 
Bellur, U. & Narendra, N., 2006 'Towards a Programming Model and Middleware Architecture for 

Self-configuring systems' First International Conference on Communication System Software 
and Middleware, 2006. Comsware 2006. 08-12 Jan. 2006 Page(s):1- 6 

Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah R., 2005 Service-Oriented Architecture 
Compass: Business Value, Planning, and Enterprise Roadmap, IBM Press 

Booch, G., 1993 Object-Oriented Analysis and Design with Applications, Benjamin-Cummings 
Publishing Co. 

Buchmann, F. & Buchmann, A., 2002 'Technologies forE- Services' Third International Workshop, 
Tes 2002, Hong Kong, China 

Feuerlicht, G., 2005, Design of Service Interfaces fore-Business Applications using Data 
Normalization Techniques, Journal of Information Systems and e-Business Management, 
Springer-Verlag GmbH, 26 July 2005, pages 1-14, ISS:1617-98 

Feuerlicht, G., 2005a Design of service interfaces fore-business applications using data normalization 
techniques, Information Systems and E-Business Management, Volume 3, Number 4, December, 
2005, pages 363-376 

Feuerlicht G., Service Granularity Considerations Based on Data Properties oflnterface Parameters, 
International Journal of Computer Systems Science & Engineering, Vol21 No 4, July 2006, 
Special issue: Engineering Design and Composition of Service-Oriented Applications, ISSN 0267 
6192, pp 315-327. 

Hurwitz J, Bloor R, Baroudi C, Thinking from Reuse- SOA for Renewable Business, 2006, Available 
Online: http://www.hurwitz.com/PDFs/IBMThinkingfromReuse.pdf 

Kaye, D., 2003 Loosely Coupled: The Missing Pieces ofWeb services. Rds Associates 

Keen, M., Bishop, S., Hopkins, A., Milinski, S., Nott, C., Robinson, R., Adams, J., Verschueren, P., 
Acharya. A., 2004 Patterns: Implementing an SOA using an ESB, IBM Redbook 

Krafzig, D. 2004, Enterprise SOA: Service Oriented-Architecture Best Practices, Dirk Krafzig, Karl 
Banke, Dirk Slama, Prentice Hall PTR, The Coad Series, ISBN: 0131465759; 2004 

Larman, C., 2004 Applying UML and Patterns: An Introduction to Object-Oriented Analysis and 
Design and Iterative Development, Third Edition. Prentice Hall PTR; 

McKusick, K., 2003 A Conversation with Adam Bosworth, ACM Queue vol. 1, no. I- March 2003 
Retrieved November 12,2006, from 
http://www.acmqueue.org/modules.php?name=Content&pa=showpage&pid=29 

SYSTEMS INTEGRATION 2007 149 



.. 

GEORGE FEUERLICHT, JOSIP LOZINA 

McGovern, J., Tyagi, S., Stevens, M., Matthew, S., 2003 Java Web services Architecture. Morgan 
Kaufmann 

Myers, G.J.: Composite Structured Design, 1978, Van Nostrand Reinhold, ISBN 0-442-80584-5 

Newcomer, E., Lomow, G., 2004 Understanding SOA with Web services. Addison-Wesley 
Professional 

Perepletchikov, M., Ryan, C., Frampton, K., 2005 'Comparing the Impact of Service-Oriented and 
Object-Oriented Paradigms on the Structural Properties ofSoftware',Proc. of 2nd International 
Workshop on Modeling Inter-Organizational Systems (MIOS), in conjunction with the OTM 
2005, October 2005 

Schmelzer, R., 2006 Solving the service granularity challenge. Retrieved November 1, 2006, from 
http:/ /searchwebservices. techtarget.com/tip/1 ,289483 ,sid26 _gci 1172330,00.html 

Singh, 1., et al, 2004 Designing Web services with the J2EE™ 1.4 Platform JAX-RPC, SOAP, and 
XML Technologies Addison-Wesley Professional 

Stevens, W.P., Myers, G.J., and Constantine, L.L., Structured Design, IBM SYSTEMS JOURNAL, 
VOL38, NOS2&3, 1999 

Warner, C., 2006 'Composite Apps ', SOA Web services Journal May 2006 Volume 6 Issue 5 
Sperberg-McQueen, C., 2003 Web services and the W3C. Retrieved November 10,2006, from 
http://www.w3.org/2003/Talks/0818-msm-ws/Overview.html 

Umar, A., 2004 E-Business and Distributed Systems Handbook: Architecture Module Nge Solutions 

Vinoski, S., 2005 Old measures for new services, Internet Computing, IEEE Volume 9, Issue 6, 
Nov.-Dec. 2005 Page(s):72- 74 

Zimmermann, 0., Krogdahl, P., Gee, C., 2004 Elements of Service-Oriented Analysis and Design 
Retrieved November 1, 2006, from http://www-
128 .ibm. com/ developerworks/webservices/library /ws-soad 1 I 

150 SYSTEMS INTEGRATION 2007 


