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Abstract
The implementation of a particle filter (PF)
for vision-based simultaneous localisation and
mapping (SLAtvI) for a mobile robot in an un-
structured indoor environment is presented in
this paper. Variations to standard PF are pro-
posed to remedy the sample impoverishment
problem in bearing-only SLAM. A CCD camera
mounted on the robot is used as the measuring
device and image quality is incorporated into
data association, PF update and map manage-
ment. A passive path control strategy to main-
tain the accuracy of the SLAM process is also
illustrated. Experimental results from an im-
plementation using real-life data acquired from
a Pioneer robot are included to demonstrate
the effectiveness of our approach.

1 Introduction
In mobile robot applications, it is a fundamental require-
ment that the robot should be able to know its position
within its operating environment. This can be achieved
by using odometry measurements and referring to a map
of the environment. However, odometry feedback tends
to accumulate errors in time, therefore other measuring
devices are needed. A detail and precise map is also
not always available and we have to build the map as
the robot operates. Therefore, we have to solve the si-
multaneous localisation and mapping (SLAM) problem.
Solutions to SLAM [Dissanayake et. al., 2001] in indoor
environment use a laser range-and- bearing scanner and
put the problem in the extended Kalman filter (EKF)
framework. The laser scanner is accurate but is heavy
and expensive. The EKF operates satisfactorily when
the system is not severely non-linear and non-Gaussian.
If this does not hold true, one has to employ particle
filters (PF) [Gordon et. al., 1993] for a better represen-
tation of the probability density function.

Apart from using a laser scanner as the measuring de-
vice, cameras are popular alternatives because of their

reduced cost, weight and power consumption. Related
work can be found in [Davison, 2002] where a pan-tilt
camera is used for SLAM and also uses the EKF. Work
on a combination of laser and vision is reported in [Perez
et. al., 1999] and [Arras et. al., 2000]. Use of vision and
odometry is reported in [Crowley, 1992], where land-
marks are known and listed in a database. Similarly,
in [Mufioz and Gonzalez, 1998], pre-stored landmarks
are also used in localising a mobile robot using a sin-
gle image. Another approach by pre-recording image
sequences is found in [Jeon and Kim, 1999] but this re-
stricts the operating area of the robot. Although the
use of vision has its many advantages, detection and se-
lection of landmarks from image sequences is challeng-
ing [Livatino and Madsen, 1999]. On the other hand,
some research work for outdoor SLAM can be found in
[Fitzgibbons and Nobet, 2001].

The PF is based on the Monte Carlo simulation tech-
nique and uses samples to represent the system probabil-
ity distribution function (PDF). This filter out-performs
the EKF for non-linear systems. However, the PF is
limited by its need for a large number of samples to
represent the PDFs making it computational expensive.
The PF also suffers from the so-called sample impov-
erishment problem that samples tend to converge to a
confined region in the solution space, making state esti-
mations trapped in local optimums. Methods to remedy
the problems can be found in [Gordon et. al., 1993].

This paper presents research on the use of a fixed cam-
era mounted on a mobile robot for simultaneous locali-
sation and mapping in an unstructured indoor environ-
ment. Landmarks are extracted from edges in the scene
and stored as subsequent matching templates while the
robot is moving.

To ensure that the PF operates over an extended
period of time, we tackle the sample impoverishment
problem by introducing techniques from genetic algo-
rithms (GA). Similarities between PF and GA have been
pointed out in [Higuchi, 1997]. Further reference is
also found in [Bienvenue et. al., 2001] where multi-
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objective estimation is treated. Variations to the PF
using GA techniques are proposed in [Deutscher et. al.,
2001] where enhancements to the PF is achieved with
a crossover operator. Another way of modifying PFs
is found in [Meier and Ade, 1999] where the PDF is
truncated resulting in an extended tail. The PDF is
truncated that allows for dynamic inclusion of newly ob-
served landmarks. Here, we use the BLX-o operator
which fills the undefined supports of the PDF and ex-
pends it [Herrera et. al.. 1998].

To improve the robustness of SLAl\L we incorporate
the image quality [Wang and Bovik, 2002] for data as-
sociation in addition to the usual nearest-neighbour val-
idation test. Image quality is used in the update step of
the PF as motivated by the data association method in
[Dezert and Bar-Shalom, 1993]. Map management as in
[Dissanayake et. al.. 2002] is also used where we remove
landmarks by an index combined from image quality and
detected edge height. \Ye also consider the effect of robot
path that affects the SLA::..rperformance. Related work
can be found in [Bianco and Zelinsky, 2000] where navi-
gation guidance is treated.

The rest of this paper is arranged as follows. In section
2, we briefly review the SLAM problem. Then, the PF is
introduced in section 3. In section 4, modifications to the
particle filter will be presented. Data association using
images will be discussed in section 5 followed by the map
management in section 6. In section 7, we will propose a
passive path control strategy. Experiment results will be
presented in section 8 and the discussion and conclusion
in section 9.

2 SLAM Problem
Given a mobile robot deployed in its operating environ-
ment, we denote its position at time zero as the origin
of the world co-ordinate system. That is

where :1:1), Yv is the location in Cartesian co-ordinates and
o; is the heading with reference to the x-direction

Fig.l depicts the system definitions. When a control
11. consisting of speed and turn rate, is issued: the robot
moves according to a transition equation .

[

xv(k + 1)] [X"(k) + vtcos(rPv(k) + ,(k)) + Vx ]
yv(k + 1) yv(k) + vtsm(rPv(k) + ,(k)) + vy

rPv(k + 1) rPv(k) + ,(k)t + v"
(2)

where v is the velocity command, "( is the turn rate. t is
the time step and l.'xy6 are noise terms lumping in the
effects of control response. wheel slip, etc" the noises are
characterised by N(O, axy¢)

While moving, the robot makes measurements to land-
marks in the operating environment. The observation is
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Figure 1: System definition
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where :1: fi, Yfi is the location of a stationary landmark,
VII is the measurement noise N(O, ae)

The SLAM problem is to estimate the aggregated
robot and landmark locations. in the form of a state vee-
tOL provided with the measurement, The state vector is
given as

3 Particle Filter

(1)

The particle filter (PF) is based on the Bayesian estima-
tion framework. Information about the system is embed-
ded in a probability distribution function (PDF). Using a
large number of samples (particles) as in the Monte Carlo
methods, the PDF is represented and evolves according
to the system transition equation. Upon reception of a
measurement. the PDF is updated and the estimation
process repeats.

At time zero, we have the system PDF given by p(xo).
The system then evolves according to the transition
equation, giving p(i:k+llxk), When a measurement is
available, a likelihood of obtaining that measurement can
be found as p( Zk+l Ii:k+l), Finally, we combine the PDF
according to the Bayes' rule and get a recursive equation

Details of theoretical development can be found in [Gor-
don et. al.. 1993]. Implementation of the particle filter
can be described as follows.

1. randomly initialise particles. xi
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2. in every time step, propagate particles through the
transition equation, xi <- xi

3. calculate the likelihood (weight) from the measure-
ment, p(Zi[xi)

4. re-sample (select) particles according to their
weights, xj <- Xi

The implementation of a PF includes propagating the
particles through the transition equation. However, in
the SLAM problem, the landmarks are stationary and
the landmark particles! will soon collapse onto a single
point, which is called sample impoverishment.

4 Modified Particle Filter
There are several research works on the similarity be-
tween particle filtering and genetic algorithms (see intro-
duction). We will make use of GA techniques to modify
the PF implementation.

4.1 Crossover
We will adopt the BLX-o: operator [Herrera et. al., 1998]
to move the landmark particles in each iteration. The
procedure is given below.

1. select 2 particles Xi, xj, with equally likely proba-
bility

2. calculate the distance dij between the 2 particles in
Cartesian co-ordinate

3. move the particles according to the product of the
0: parameter and the distance, giving xij = xij ±
(0: x dij)

4. further move the particles by a uniform random pa-
rameter r E [01], giving Xij = r x Xi + (1 - r) x xj

Here, we choose parameter 0: = 0.5. This choice results
in spreading of particles and helps in reduce the sample
impoverishment problem by introducing new potential
solutions to the estimation. Referring to [Gordon, 1994],
this corresponds to jittering and prior editing.

To minimise the effect of the sample redistribution on
the shape of the PDF, we limit the crossover using a
small crossover probability (Pc = 0.1) and this appears
to work well in practice. We are currently in the pro-
cess of developing a more rigorous algorithm to find an
appropriate value for Pc-

Landmark particles far away from the robot have
smaller bearing error than those particles near the robot
provided they have the same perpendicular displacement
from the bearing measurement. The result is that the
re-sampling process favours particles far away and makes
the estimation biased. Using the same method as above,
we again move the particles as follows.

INote that a particle represents the system vector, we
violate the terminology here for the ease of description

1. separate landmark particles into 2 groups with
equally likely probability

2. for 1 group, rotate the particles by 1800 centred at
the expectation value of the 2 groups, that is

When we rotate the particles at the expectation value,
this value is un-altered. The rotation by 1800 does not
involve any scaling or translation and this retains the
covariance between the particles. The result is that
we have redistributed the particles leaving their statis-
tics un-altered. This reduces far away particles to the
re-sampling process and consequently reduces the bias.
Fig.2 through Fig.4 shows typical landmark particle his-
tograms (PDF) before and after rotate and move.

4.2 Batch Update

Each update in the particle filter involves re-sampling,
thus increases the possibility of sample impoverishment.
We try to minimise this possibility by performing batch
update by accumulating a series of measurements before
each update.

4.3 Measurement Quality

The likelihood function represents the probability of ob-
taining the real-life measurement given the expected
robot and landmark locations. When using a camera as
a measuring device, we can incorporate the image qual-
ity into the calculation of the likelihood function. We
use the following equation to calculate the likelyhood.

(7)

where ei is the expected bearing measurement for a par-
ticle and Q E [01] is the quality of the landmark image
(see section5). When the image quality is poor, most
particles will be retained through the re-sampling pro-
cess. That is, we take a rather conservative approach
when measurement is not sure then reduce the effect of
updating.

5 Data Association

Data association maintains the correspondence between
a measurement and a landmark. It is crucial for the
operation of any estimation. In this work, we will use a
hybrid association that the nearest neighbour and image
quality are combined. We also use hysteresis thresholds
to reduce ambiguities.
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Figure 4: Landmark PDF after move

5.1 Nearest Neighbour

This is a classical approach that determines the differ-
ence between the real-life and the expected measure-
ments. The result is thresholded against some confidence
level in the X2 sense. That is, if

then declare the measurement from a particular land-
mark. Where v = (}- {j is the innovation, a is the
error covariance between the robot and the landmark,
")'1 ;:::; 3.8 for 95% confidence with 1 degree of freedom
(bearing-only measurement).
Otherwise, if

(9)

then declare the measurement from a new landmark.
Where ")'2 ;:::; 10.8 for 99.9% confidence.

5.2 Image quality
A camera is used in our work as the measuring device
providing the bearing-only measurement for SLAM. Im-
age quality then plays a critical role in matching image
patches for data association. We follow the criteria pro-
posed in [Wang and Bovik, 2002] using correlation, con-
trast and intensity characteristics as a metric between
successful image frames I, and Ij. Image I, is the patch
of image in the current frame and Ij is the previous im-
age frame stored during PF iterations. The image qual-
ity Q E [01[is defined as

(10)

where aij is the correlation between the images I, and
t., a«, aj are the variances of the 2 images, 7 and J are
the mean values respectively

To reduce ambiguity, hystersis threshold is used. If
Q > ")'3 then declare as matched landmark, otherwise, if
Q < "/4 then declare as new landmarks. Where

")'3 = mean(Q) + 0.5 x std(Q)

")'4 = mean(Q)

(11a)
(11b)

5.3 Edge Detection
Landmarks from the image frame are detected by finding
their edges using the sobel mask. Threshold is also used
that we accept edges when their edge heights are above
the mean values from an image frame. Point landmarks
may be detected, however, they are liable to occlusions.
We also use spatial separation to resolve ambiguities that
we only extract edges from a horizontal strip of the mid-
dle of the image. This also speeds up the image pro-
cessing speed. Fig.5 and Fig.6 show typical scenarios in
edge detection, initialising new landmarks and tracking
landmarks.

5.4 Overall Data Association

(8)
We summarise the overall data association below. First,
we pick measurements from nearest neighbour. Second,
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Figure 5: Previous frame with detected edges

Figure 6: Current frame, initialised (left) and detected
edges

compute the image quality and pick the matched edges.
Among the measurements, pick the one with

as matched measurement and tracked landmark. Other-
wise, initialize new landmarks by picking the measure-
ments corresponding to

6 Map Management
It has been shown in [Dissanayake et. al., 2002] that it
is possible to trim the system state by removing some
of landmarks that is not measured and is of low cer-
tainty. In this work, we make use of edge height and
image quality as the criteria to remove landmarks. We
set a maximum number of landmarks, m = 15, in our im-
plementation. When the number of landmarks is more
than m, then remove those tracked landmarks with a
smallest rank. That is, remove the landmark using

where eg is the stored edge height during tracking, Q is
the store image quality

When a new landmark is found, it is initialised by spa-
tial separation that a certain angle span, Os, among the
tracked landmarks has to be met. It is a reasonable
assumption that landmarks are distributed uniformly
within an indoor environment where the robot operates.
Employing our strategy, landmarks with high edges and
high image qualities will remain being tracked.

7 Path Control
With bearing-only SLAM, appropriate path following
strategy should be derived for the success of SLAM. In
this case, we are inferring the 2-dimensional robot and
landmark position from the l-dimensional bearing-only
measurement. The convergence to the true estimation
depends on the bearing sustained between the robot and
landmarks. A ±90° measurement maximises the rate of
convergence. However, our camera has a field-of-view of
90° and maximum convergence rate cannot be obtained.

V'-Iepropose here, to steer the robot in a circular path
with periodic panning back of the robot. This strategy
simulates an extended field-of-view, and the estimation
result (see experiment section) outperforms that of pure
circular path. By panning the back robot, we may limit
the robot uncertainty while it is moving. If this uncer-
tainty is bounded, newly found landmarks will have a
lower uncertainty and be kept tracked. Bounding the
robot uncertainty also enhances the success rate in data
association.

(12)

8 Experiment Results
Experiment results from range-and-bearing SLAM us-
ing a laser scanner are used as the reference to verify
the vision-based bearing-only experiments. The laser
scanner is relatively accurate and with laser reflectors
as landmarks ensures the robustness of data association
and estimation, and is reasonably justified as the refer-
ence. However, because of difficulties in detecting laser
reflectors as landmark in image frames, it is not possible
to make a direct comparison for the landmark locations.
As a compromise, we show the laser scans in the figures
that illustrate vision-based experiments (note that the
laser scans are not used in the estimation) to impose
an indication of the operating environment. We have
kept 15 landmarks in the estimation and that amounts
to 33 states including the robot. In the experiment, we
use 10000 particles and obtain extended PF operation
through 400 time steps.

8.1 Circular Path
In this experiment, we move the robot in a continuous
circular path for about 2 rounds. Fig.7(a) shows a snap-
shot during the estimation using the laser range-and-

(13)

(14)
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Figure 7: Experiment results for Circle Path

bearing measurements. Fig.7(b) shows the correspond-
ing snap-shot for the vision-based bearing-only SLAM.
It can be observed that landmark estimations are not
as good as the range-and-bearing, however, this is ex-
pected as more information is available in the former
case. Fig.7(c) shows a plot of the robot position estima-
tion error with the corresponding covariance 3er bound.
Because of extended close-loop time, errors tend to ac-
cumulate and it is clear that the estimate becomes in-
consistent as time is increased.

8.2 Pan-back Path
We basically move the robot in a circular path, but we
pan back the robot for about 90° when the robot moves
about a quarter of a circle. Fig.8(a) shows the laser
range-and-bearing experiment result. The vision-based
bearing-only experiment snap-shot is shown in Fig.8(b).
The result using the laser scanner is quite similar to the
previous case. This is due to the fact that the laser scan-
ner is relatively accurate and has a large field-of-view
(180°), thus making the estimation rather independent
of the path. The vision-based case shows a better per-
formance than the circular path case. This is due to the
fact that we periodically pan the robot back and limits
the estimation uncertainties. The landmark estimation
is inferior to the laser range-and-bearing case, which is
again expected. Fig.8(c) shows the robot position esti-
mation error. A better performance is observed than the
circle path case. However, the robot heading estimation
shows periodic fluctuations, we suspect this is due to er-
rors in the process model that become apparent when
the robot turns rapidly during pan back.

9 Discussion and Conclusion
A vision-based bearing-only SLAtvI is implemented us-
ing a particle filter. Preliminary experiment results show
that extended operation of the particle filter is possi-
ble by manipulating the particle samples by adopting
the crossover technique from genetic algorithms. Image
qualities are incorporated in filter operation, data associ-
ation and map management. The results also show that
effective path planning is crucial to obtaining acceptable
estimation quality, particularly as the field of view of the
camera used is limited to 90°.
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Foreword

Welcome to ACRA 2003.

ACRA, the Australasian Conference on Robotics and Automation, is the annual conference for the Australian Robotics and
Automation Assodation, and Australia and New Zealand's leading forum for work in all areas of robotics and automation. ACRA
attracts researchers and practitioners from around Australia and New Zealand, and an increasing number of roboticists from
overseas. The work presented at ACRA 2003 is highly relevant to current interests in international robotics research, including hot
topics such as autonomous mapping and humanoid robots. ACRA 2003 also has a definite Australian robotics flavour, with an
emphasis on outdoor robotics and applications in the primary industries that continue to form the basis of the Australian and New
Zealand economies in the 21st century.

We have endeavoured to ensure a balanced programme: maintaining a high standard of quality, while being inclusive of the up and
coming students and junior researchers in the Australasian robotics community. The Programme Committee accepted 55 full papers
for presentation and publication after a review process in which full manuscripts were reviewed by at least two committee members.
The accepted papers were drawn from 64 papers submitted in total. In keeping with recent trends, the primary medium for the
proceedings is CD-ROM, and we will be maintaining the proceedings online at the ARAA website: www.araa.asn.au. In addition to the
technical paper programme, the programme includes a number of interesting live robotics demonstrations, the Annual General
Meeting for the ARAA, and plenty of social opportunities for Australasian and international robotics researchers to network and
develop cross-institutional links.

We hope you enjoy your time at the conference and that you come away knowing a little bit more, having met and discussed robotics
issues with a colleague, having attended a paper session, or having had a quite technical debate over dinner. To all, we warmly
welcome you to ACRA 2003, and to Brisbane.

Jonathan Roberts & Gordon Wyeth
Co-chairs ACRA
Brisbane, December 2003

on behalf of the Programme Committee.
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Red is the new black - or is it ?
David Austin & Nick Bames

Sensors I
Wind sensor and robotic model wasp development
David Harvey, Tien-Fu Lu & Michael Keller

Na'ive physics for effective odour localisation
Gideon Kowadlo & R Andrew Russell

Chemical source location and the RoboMole project
R Andrew Russell

Object location and recognition using whisker sensors
R Andrew Russell & Jaury Adi Wijaya

Vision and Programming
A survey of robot programming systems
Geoffrey Biggs & Bruce MacDonald

Sensing for visual homing
Kane Usher, Matthew Dunbabin, Peter Corke & Peter Ridley

performance of temporal filters for optical flow estimation in mobile robot corridor centring and visual
odometry
Chris McCarthy & Nick Bames

Techniques for impro'{iQ9-vL§]Q!lqI}QJQcornotion on the~Q!lY_AHlQrob9t
Michael J Quinland, Stephan K Chalup & Richard H Middleton

Navigation
HOMER - a high speed robot for indoor exploration
Nathan Wilson, Matt Rozyn & Michael Andrews

Combining wavefront propagation and possibility theory for autonomous navigation in an indoor
environment
Cindy Leung & Adel AI-Jumaily

High precision GPS guidance of mobile Robots
Richard Willgoss, Vivian Rosenfeld & John Billingsley

Short-safe compromise patch for mobile robot navigation in a dynamic unknown environment
Sardjono Trihatmo & R A Jervis

Covert path planning for autonomous robot navigation in known environments
Mohamed Marzouqui & Ray Jarvis

On robotic path planning using rapidly exploring random trees
Zoltan Deak Jnr & Ray Jarvis

Outdoor Robots
Submarine dynamic modelling
Peter Ridley, Julien Fontan & Peter Corke

Submarine automatic control
Peter Ridley, Julien Fontan & Peter Corke

T~rr9iJ] aidedl,mc!er:water navig<ltion - a deeper insight into generic monte carlo localization
Alexander Bachmann & Stefan B Williams

Helicopter automation using a low-cost sensing system
Gregg Buskey, Jonathan Roberts, Peter Corke & Gordon Wyeth

A helicopter named Dolly - Behavioural cloning for autonomous helicopter control
Gregg Buskey, Jonathan Roberts & Gordon Wyeth

Manipulators
On-line singularity avoidance, collision detection and task level programming utilizing a world model
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Per Cederberg, Magnus Olsson & Bunnar Bolmsjo

The effect of ill-conditioned inertial matrix on controlling robot manipulator
Yueshi Shen & Roy Featherstone

New ways of generate better configurations using geometric features
Antonio Benitex & Daniel Vallejo

A chattering-free variable structure controller for tracking of robotic manipulators
Tri V MNguyen, Q P Ha & Hung T Nguyen

Robots in Agriculture
Control of industrial robots for meat processing applications
Zeng Li, Peter Ring, Kym MacRae & Andrew Hinsch

A new approach to detech the cutting position for a robotic beef carcass scribing system
Zeng Li & Andrew Hinsch

Machine vision system for counting macaQamia nuts
Mark Dunn & John Billingsley

Modular decentralized control of fruit picking redundant manipulator
Timothy R Vitior, Richard A Willgoss & Tomonari Furukawa

Localisation and Mapping
A Hybrid approach to finding cycles in hybrid maps
Margaret E Jefferies, Wenrong Weng, Jesse T Baker, Michael C Cosgrove & Michael Mayo

Three-Dimensional robotic mapping
Ian Mahon & Stefan B Williams

Line-based SMC SLAM method in environment with polygonal obstacles
David C K Yuen & Bruce A MacDonald

Bearing-only SLAM in indoor environments using a modified particle filter
N M Kwok & G Dissanayake

Six Dof D-SLAM
Lee Ling (Sharon) Ong, Matthew Ridley, Jong-Hyuk Kim, Eric Nettleton & Salah SUkkarieh

Hippocampal models for simultaneous localisation and mapping on an autonomous robot
Michael Milford & Gordon Wyeth

Sensors II
Tracking people with networks of heterogeneous sensors
Alex Brooks & Stefan Williams

Active monocular fixation using the log-polar sensor
Albert Yeung & Nick Barnes

Uncertainty of line segments extracted from static SICK PLS laser scans
Albert Diosi & Lindsay Kleeman

Proximity Identification and tracking for mining automation
Garry Einicke
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