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ABSTRACT 

The efficiency of chain-CVTs depends on friction forces 
and slip between the chain and the pulleys. The slip 
itself results from the elastic deformations of the pulleys, 
shafts, and the chain and from additional motions 
between chain and pulleys when changing the trans-
mission ratio. The local friction forces depend on the 
local axial clamping forces and the local friction 
coefficients. A new mathematical model has been 
developed to calculate these relationships even in 
conditions with variable transmission ratio and 
furthermore with a very high calculation speed. 
Additional results are the relations between the clamping 
forces, which are necessary to transmit a certain torque 
at a certain ratio and a particular adjusting-speed, and 
the efficiency as well as the safety from gross slip. With 
this new tool it is much easier to improve the design of 
the CVT as well as the hydraulic system and the control 
strategies resulting in higher torque capacities and 
reduced power losses. 
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from Audis „multitronic“-CVT 
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INTRODUCTION 

According to Figures 1 and 2, a continuously variable 
chain or belt CVT consists of a first pair of pulleys A and 
a second pair of pulleys B, each having a fixed pulley 
and a pulley movable in axial direction as well as a chain 
or a belt that is wrapped around these pulleys. The 
following considerations apply in particular to gears with 
wrapping elements like push belts or link chains, that is 
to say with a finite number of contacts to the pulleys.  

pair of pulleys B
(output)

wrapping element
(link chain or push belt)

fixed pulley B

movable
pulley B

Fig. 2: Schematic structure of a continuously variable 
wrap gear 

In such a CVT the torque is transmitted through friction 
forces in lubricated contacts between the chain and the 
cone pulleys. In this case the friction coefficients are in a 
range between 0.07<µ<0.11, depending on lubricant 
and surface roughness. Thus, very high contact normal 
forces are necessary for a high torque capacity. These 
high contact normal forces deform the pins of the chain 
links as well as the pulleys, which should remain light- 
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Fig. 3: Operating point with variable ratio:  
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weight with regard to the gear weight. Due to these 
deformations, the chain does not wrap around the 
pulleys on a circular arc, but moves around the pulleys 
with additional radial motions inwards or outwards. 

To these sliding movements in radial direction a 
circumferential slip is added, which arises from the 
longitudinal elasticity of the chain and the changes of the 
contact radii due to the radial movements. Beside this, 
there are some more sliding movements if the ratio is 
changed. 

All sliding movements add up to a total slip between the 
chain and the pulleys. The local friction forces 
counteract the local sliding movements and cause the 
change of forces within the chain and thereby they 
transmit the torque through the gear. 

For an exemplary operating state with a variable ratio, 
Figure 3 illustrates true to the scale the local sliding 
speeds vKS of the chain towards the pulleys, the local 
frictional forces R, the local contact radii r of the chain 
pins in comparison to the average contact radius rm, the 
sliding angles γ which result from the overlay of all 
components of the sliding speeds, the course of the 
chain forces F, and the local clamping forces ∆S. 

Such relationships for stationary operating states are 
known very well for a long time from measurements and 
theoretical studies [1-9]. However, the today available 
calculation algorithms [7, 8] require long CPU times for 
the analysis of an operating point and can often be 
operated only by experts. Up to now, a simple tool is 
missing to support development processes with which 
these parameters can be computed for stationary and 
for transient operating states in a sufficiently exact, fast 
and easy way. For this purpose, a new calculation 
approach is presented in this paper. 

GEAR DATA 

The power transmission in continuously variable chain 
gears shall be explained exemplarily at a gear with the 
following data. 

Data of the variator:  
 
Center distance:    aV  = 155 mm 
Maximum radius of contact:  rmax = 74 mm 
Stiffness of the pulleys:   normal 
Guidance length of the  
movable pulley:    glmp = 68 mm 
Guidance clearance of the  
movable pulley:    gcmp = 20 µm 
Radius of curvature of the  
pulleys:      rcurvature = 1653 mm 
Distance between the center  
of the curvature of the pulleys  
and the axis:     rW = 234 mm 
 
 

Data of the chain:  
  
Length:      LK = 649 mm 
Width:      bK = 24 mm 
Mass:      mK = 0,778 kg 
Number of links:    zKE = 78 
Pitch:      TK = 8,321 mm 
Longitudinal elasticity:   clK = 324,5 µm/N 
Cross-elasticity (at each  
pair of pins):     cqK = 5,714 µm/N 
 
Friction coefficient: 
 
Maximum friction coefficient  
between chain and pulley:  µmax = 0,09 
 

The friction coefficients can either be assumed as being 
constant or as variable according to friction-laws that are 
free to define. These friction-laws result from the 
comparison of calculated results and experimental 
studies. According to previous studies, with constant  
friction coefficients that are equal on both pulleys good 
correspondence with test results was achieved. 

SLIDING MOVEMENTS AND FORCES 
BETWEEN CHAIN AND PULLEYS 

For every gear ratio the nominal operation radii and the 
nominal wrap angles result from the chain length and 
the center distance of the pairs of pulleys. In case of a 
gear ratio change with the adjusting-speed diV/dt, the 
changes of the contact radii drA/dt and drB/dt on both 
pulleys are different. Figures 4 and 5 clarify these 
relationsships. 

pair of pulleys B
(output)wrapping element

ωFmin+FF

Fmax+FF

Fig. 4: Nominal radii rA und rB and nominal wrap 
angles αA und αB 
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The pulling force in this chain strand, that runs up the 
driving pulleys A, is called Fmax, whereas the pulling 
force in the other chain strand is called Fmin. On the 
wrap curves the chain is affected by centrifugal forces, 
which lead to a supplementary pulling force FF in the 
chain. This force FF depends on the chain speed and 
the chain mass per length. 
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This chain force influences the power transmission by 
this additional chain strain only to a very small extent. In 
the following, the force F refers to the total chain force 
minus the centrifugal force FF. 
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Fig. 5: Nominal radii rA und rB and their temporal 
change with the variator ratio iV. 

The conical pulleys of the variator may have a curvature 
(rcurvature). In conjunction with crowned chain pins this 
leads to different contact areas between a pin and a 
pulley at different gear ratios. In consequence, the wear 
reduces during the gear lifetime. In addition, this pulley 
curvature leads to variable wedge angles of the pulleys 
changing with the contact radius of the chain/a pin. 

Figure 6 shows a movable variator pulley, which is not 
deformed, and the deformation of a variator pulley 
loaded with a single force. From such FEM calculations 
results a matrix for each pulley for the calculation of the 
deformation at the position k with a load at the position j. 
Subsequently, the entire pulley deformation can be 
calculated from the linear overlay of all single 
deformations as a consequence of all contact forces 
between chain and pulleys. 

Furthermore, the gaping of the movable pulley has to be 
added to these deformations. This gaping depends on 
the guidance length and the guidance clearance of the 
movable pulley and the position and direction of the total 
clamping force. Therefore the gaping causes a wedge 
angle β(α) that varies with the wrap angle α.  

Taking into consideration the shortening of a chain pin 
by a clamping force, it is possible to compute the radial 
local displacement of the chain into the wedge gap. 

Fig. 6: Pulley deformation at load with a single force 
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Fig. 7: Radial pin displacement due to different parts of 
deformation 
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Fig. 8 illustrates the speed conditions at a contact point 
between the chain and the pulleys. At the momentary 
operation radius the pulley has a speed vS. The chain 
has a speed vK changing with the total chain force 
(F+FF). The angle κ indicates the direction of the chain 
speed and depends on the small radial sliding speed 
due to the elastic deformations. A ratio change with a 
gradient of diV/dt leads to additional adjusting-speeds vv 
and vu, that may be relatively large at fast ratio changes. 
According to the law of continuity, the chain can slide 
only at one contact point with the speed vv=dr/dt in 
radial direction towards the pulleys. All other chain pins 
then have an additional sliding speed (vu) in 
circumferential direction, which increases linearly with 



the absolute angle between this chain pin and the 
position, where the chain slides only in radial direction. 
The total sliding speed vKS of the chain towards the 
pulleys as well as the sliding angle γ results from the 
overlay of all these speeds. 

Fig. 8: Speed conditions in a contact point between 
chain and pulley 
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Fig. 10: Change of the chain force F through the 
component R° of the friction force R 

γ

κ

ω

contact 
radius

α

Fig. 9 demonstrates the contact forces at one chain pin. 
The local normal force ∆N operates vertically to the 
pulley surface. It creates a friction force R in opposite 
direction of the total slip with its particular component R° 
in a cross section, which is perpendicular to the pulley 
axis. The axial components of these two forces result 
together in the local clamping force ∆S. The friction force 
R° causes the change of the tractive chain force. 

Fig. 9: Contact forces at a pin of a chain 

β γ
βs

β

∆

∆

∆

∆

∆

β

ββ

Figure 10 shows the chain pins i-1, i, and i+1 on the 
wrap curve. The tractive chain forces Fi and Fi+1 pull at 
the pin i. The wrapping situation is characterized by the 
local contact radii r. Consequently, the chain pitch yields 
the angles ∆αi and ∆αi+1. Thus, the equations for 
balanced forces can be formulated now. Then it is 
possible to compute both the force changes as well as 

the contact loads. The following four ranges of the 
sliding angle γ can be distinguished for the analysis of 
force changes. 

 decreasing 
chain force 

increasing 
chain force 

Radial sliding of the 
chain outwards the 
wedge gap   

-0° > γ > -90° 0° < γ < 90° 

Radial sliding of the 
chain inwards the 
wedge gap   

-90° > γ > -180° 90° < γ < 180° 

 
The equations to calculate the chain forces and contact 
forces are: 

Fi 1+ Fi

cos ∆α i( ) sin ∆α i( ) µ cos βs( )⋅ sin γ( )⋅

sin β( ) µ cos βs( )⋅ cos γ( )⋅−
⋅+

cos ∆α i 1+( ) sin ∆α i 1+( ) µ cos βs( )⋅ sin γ( )⋅

sin β( ) µ cos βs( )⋅ cos γ( )⋅−
⋅−

⋅

∆N
1
2

Fi sin ∆α i( )⋅ Fi 1+ sin ∆α i 1+( )⋅+

sin β( ) µ cos βs( )⋅ cos γ( )⋅−
⋅

∆S ∆N cos β( ) µ sin βs( )⋅+( )⋅

tan βs( ) tan β( ) cos γ( )⋅

ALGORITHM FOR THE CALCULATION OF AN 
OPERATING STATE 

The force change ∆F depends on the friction angle γ. On 
the other hand, γ depends on the sliding speed vKS that 
is influenced by elastic deformations at the chain and 
the pulleys. Moreover, these deformations depend on 
the chain forces and the contact forces. 

Now the question for the calculation of the entire power 
transmission arises. How is it possible to calculate the 



entire power transmission on both pulleys and the 
subsequent chain forces F(α) that depend on so many 
parameters ? Given inputs are the gear ratio iV and its 
change in time diV/dt, the rotation speed n and the 
torque T which is to be transmitted, e.g. at the input 
pulley A, and the clamping force S adjusted by the 
controller system, e.g. at the output pulley B. 

This new calculation algorithm solves this task by means 
of several interlaced calculation processes. On purpose, 
especially CPU time consuming and numerically large-
scale solutions of connected systems of differential 
equations are avoided.   

With the gear ratio iV and the adjusting-speed diV/dt, the 
average operating radii rA and rB between the chain and 
the pulleys as well as the time gradients drA/dt and 
drB/dt are known. With the input of the torque TA or TB 
the circumferential force Fu, which has to be 
transmitted, is known as well. For the further 
calculations, in a first step the chain force and the chain 
speed in the strand running onwards the pulley have to 
be estimated. The relation ε between the two strand 
forces, that perhaps is known from the experience, helps 
to estimate the chain force quite realistically. 

ε
Fmax
Fmin

Fmax
Fmax Fu−  

As the first chain speed, for example, the pulley speed 
on the mean radius can be chosen.  

A first pulley deformation can now be calculated with an 
estimated course of the chain forces from the force in 
the strand running onto the pulleys up to the force in the 
strand running off the pulleys. Already a simple 
exponential equation is sufficient here for the first course 
of the chain force. In addition, it is necessary to have 
reasonable functions of the slip angles at the pulleys A 
and the pulleys B, which can be estimated from 
experiences or former calculations. 

In fact this computation algorithm would even work with 
a first linear force course and a constant sliding angle. 
However, in this case one or two additional iteration 
steps might be necessary until the exact solution is 
found. 

Having estimated the pulley deformations, one gets the 
information about the local contact radii of the chain pins 
as well as the sliding speeds of the radial sliding 
movement inwards or outwards the wedge gap due to 
the elastic deformations. Together with the sliding 
speeds from the gear ratio change, a new curve of the 
sliding angle is available. Thus, the force change from 
the force in the on-running strand to the end of the wrap 
curve can now be calculated. The speed of this 
calculation is very high, since the force change is not 
being determined in infinitesimally small steps dF/dα, 
but from pin to pin, that is to say by a gradient ∆F/∆α. 
However, the necessary CPU time will rise with a 

smaller chain pitch respectively a larger number of chain 
links. 

But now the force in the off-running strand does not 
correspond anymore with the force required from the 
torque-transfer. Therefore, it is necessary now to vary 
the chain speed in a first iterative loop until the strand 
force difference Fmax-Fmin corresponds to the 
circumferential force Fu, which has to be transmitted. If 
the chain speed is much larger than the pulley speed on 
the average radius, the sliding angle γ is almost 90° and 
the chain force increases significantly in wrapping 
direction. If the chain speed is much smaller than the 
pulley speed on the mean radius, the sliding angle γ 
comes to almost -90° and the chain force strongly 
decreases into wrapping direction. Between these 
extreme operating points there is obviously only one 
chain speed in the on-running strand that is exactly 
corresponding with the required torque transfer. The 
relation between the chain speed and the circum-
ferential force is strongly nonlinear. Nevertheless, with a 
dexterous interpolation routine it is possible to find the 
correct solution in just a few steps. 

However, the chain force course, that has been 
determined in this way, is still based on estimated pulley 
deformations. For this reason, with these new chain 
forces new pulley deformations are calculated now in a 
second iterative loop. These more accurate deforma-
tions allow a more precise formulation of the chain force 
course. This iteration processes will be repeated until 
the course of the chain force  does not change anymore. 

The sum of the local clamping forces ∆S is the total 
clamping force S, which increases with the chain force in 
the strand that runs onto the pulleys. This chain force, 
up to now only estimated, can now be varied in a third 
iterative loop until the total clamping force S 
corresponds to the input from the controller. Here, the 
relation between S and the function 1/(ε-1), which is 
almost linear, supports a fast convergence.  

In total, these three interlaced iterative loops run very 
fast. The CPU time rises with smaller chain pitches. It 
rises also with locally very smooth pulleys, because then 
a different distribution of the contact forces leads to 
significantly different deformations. 

On principal, this calculation algorithm is the same for 
both pairs of pulleys. The first step is the calculation for 
that pair of pulleys, for which the clamping force S is 
controlled by the hydraulic system. Often this is the 
driven pair of pulleys B. As one result we already get 
both strand forces Fmax and Fmin. This is now one 
main input for the calculation at the other pair of pulleys. 
Here the third iterative loop can be omitted. The second 
clamping force necessary for the power transmission is 
also yielded from the contact loads on this second pair 
of pulleys. An important result of this calculation is 
therefore the so-called clamping ratio ζ as the relation of 
the clamping forces SA/SB. 
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Fig. 11: Operating point with constant ratio:  

100 0 100 200 300

100

0

100

friction forces acting on the chain

0
0

aV

mm

0 10 20 30 40
0

0.5

1

1.5

bolt-Nr. on the wrap curve

Fmin

kN

Fmax

kN

X

 ∆ S [kN] 

 F [kN] 

input A                                       output B

SB 6kN=ζ 0.897=

SA 5.4kN=ε 1.02=

PVB 11.6W=Fmin 709 N=

PVA 10.6W=Fmax 723 N=

µmax 0.09=FF 65 N=

ηKS 78.77%=Fu 14 N=

Pan 0.1kW=TA 0.5 Nm=

100 mm⋅ 398N scale_F⋅=

 

iV=2.0, diV/dt=0 Hz,  
TA=0.5 Nm, nA=2000/min, ε=1.02, SB=6 kN 

 



100 0 100 200 300

100

0

100

vKS  from the chain towards the disks

0
0

aV

mm

0 10 20 30 40
450

360

270

180

90

0

90

180

270

360

450

bolt-Nr. on the wrap curve

180−

180

X

100 mm⋅ 335mmps scale_v⋅=

stiffness "normal"=

iV 0.5= vK 14.72
m
s

=

rA 70.3mm= nA 2000min 1−
=

rB 35.1mm= nB 3981min 1−
=

drAdt 0
mm
s

=
diVdt 0

1
s

=

drBdt 0
mm
s

=

input A                                       output B

  γ  [°]  

  

 

 r-rm [µm]

Fig. 12: Operating point with constant ratio: 
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Fig. 13: Operating point with constant ratio:  
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Furthermore, the local power losses ∆PVA and ∆PVB 
can be derived from the sliding speeds between the 
chain pins and the pulleys and from the friction forces 
being effective there. The addition of the local power 
losses yields the total losses PVA and PVB in the 
contacts between the chain and the pulleys. Finally this 
results in the degree of efficiency ηKS of the power 
transmission. 

CALCULATION EXAMPLES 

Some exemplary calculations shall now demonstrate the 
performance of this new development instrument. 

Figure 11 clarifies the contact situation with the constant 
gear ratio iV=2.0 and a very small input torque TA=0.5 
Nm with a minimal clamping force at the driven pair of 
pulleys of SB=6 kN. Although the torque is almost 0, the 
chain force changes on both wrap curves. The contact 
pressures  at  the pulleys lead  to  disk deformations  so  
that the chain slides first into  to the wedge gap on both 
wrap curves and then out again. At the beginning of the 
wrap curve this leads to a chain force decrease. Then 
the sliding motion turns outwards and the chain force 
increases. The graphs of the sliding angles at the 
variously big wrap curves are similar at both pairs of 
pulleys. The sliding movements and friction forces cause 
a power loss which leads to a low degree of efficiency 
ηKS at a small input power. 

Figure 12 shows the contact conditions at a constant 
gear ratio iV=0.5 and a relatively high load TA=250 Nm. 
On the driving pair of pulleys A close to the centre of the 
wrap curve the typical bend in the force graph can be 
seen. The reason for that is, that at this position the 
sliding angle γ  jumps from values around -180° onto 
values around 0°. Thereby, the local contact forces in 
this area increase very strongly and with that also the 
friction forces increase rapidly. This leads to the change 
in the force gradient ∆F/∆α.  

On the driven pair of pulleys B the wrapping begins with 
sliding angles of about 180°. That is to say that here the 
force changes ∆F/∆α  are almost 0. In the past this 
range at the beginning of this wrap curve was described 
as a “rest curve". With increasing wrap angle the sliding 
angle decreases from γ=180° to γ=90°. With these 
sliding angles the chain slides into the wedge gap. The 
force change is at maximum at γ=90°. If the sliding angle 
is lower than 90°, the chain slides out of the wedge gap 
and the change of the chain force becomes smaller 
again. 

The only difference between the operating state to 
Figure 3 and that to Figure 12 is the supplementary 
adjusting-movement diV/dt<0 towards an even smaller 
gear ratio. With the same strand force ratio this can be 
achieved by a larger clamping force SA at the driving 
pair of pulleys A and a smaller clamping force SB at the 
other pair of pulleys B. The supplementary sliding 
movements from changing the gear ratio overlay the 

sliding movements from the elastic deformations. At the 
pair of pulleys A the absolute sliding movements 
decrease on the first part of the wrapping, where the 
chain moves into the wedge gap, and they increase in 
the range, where the chain moves outwards the wedge 
gap. By that the regions of inward and outward sliding 
do slightly change. This effect becomes visible in the 
changed position of the point where the sliding angle 
jumps from γ=-180° to γ=0°. In total, the contact forces 
do slightly increase. As a result, the losses increase a 
little at this pair of pulleys in the comparison to the 
stationary operating state. At the pair of pulleys B the 
inwards movements, that are dominating at this gear 
ratio, are reinforced by the negative adjusting-speed 
drB/dt<0. In spite of the contact forces, which are 
somewhat smaller, the contact losses therefore increase 
to some amount here. The degree of efficiency of the 
power transmission between chain and pulleys 
decreases by approximately 0,5 %. Changes of the gear 
ratio to underdrive with small adjusting-speeds at first 
even lead to an increasing of the efficiency. Only very 
fast adjusting-movements reduce the degree of 
efficiency noticeably. 
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Fig. 14: ζmax-test  

Operating point: iV=1.5=constant, nA=2000/min, µ=0.09, 
SB=28 kN 

In the operating point in Figure 13 the contact pressure 
SB is reduced in comparison to the operating point in 



Figure 12. By that, the strand forces become smaller 
and the strand force ratio ε increases. In order to be able 
to transmit the same circumferential force Fu in this case 
of reduced contact pressure, bigger force gradients 
∆F/∆α are necessary. At the input pulleys the course of 
the sliding angles approaches the limiting angle γ=-90° 
and at the driven pair of pulleys it approaches the 
limiting angle γ=90°. The "rest curve" at the driven pair of 
pulleys B has disappeared. A further enlargement of the 
torque would very soon lead to a complete 
circumferential slip of the chain towards the driven 
pulleys. 

Although the clamping forces and, because of that, the 
contact forces are clearly lower than those in the 
operating state in Figure 12, the degree of efficiency 
ηKS is somewhat smaller. This is the result of the higher 
sliding speeds just before the total slip. 
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Fig. 15:  Graphs of the clamping ratio, the clamping 
forces and the efficiency via the gear ratio iV 

Operating point: TA=150 Nm, nA=2000/min, µ=0.09, 
diV/dt=0/s 

Therefore, for every operating state there must be an 
optimal contact pressure at which both the safety from 
total slip as well as the degree of efficiency are equally 
good. For this exemplary gear Figure 14 shows the 
graph of the clamping ratio ζ=SA/SB via the input torque 
TA. Further parameters are the constant gear ratio of 
iV=1.5 and the constant clamping force SB at the driven 

pair of pulleys. Such experiments are known as “ζmax-
tests”. With increasing input torque TA the clamping 
ratio ζ increases at first up to a peak value in order to fall 
again afterwards. The torque at ζmax is the “nominal 
torque” TAnominal=135 Nm for this clamping force SB=28 
kN. At this point the chain efficiency is almost at 
maximum and a sufficient safety from total slip exists 
there. 

The control maps for such CVTs regarding the optimal 
clamping are often evaluated from those experimental 
ζmax-tests. Furthermore, some other maps like those 
for an optimal strand force relation εK can be determined 
with these ζmax-calculations. These information can be 
useful for further simulations regarding an optimal 
design for the hydraulic control system. Moreover, the 
power transmission can be computed even faster with 
knowledge of the strand force ratio ε. 
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Fig. 16:  Influence of the friction coefficient on clamping 
ratio ζ and efficiency ηKS 

Operating point: iV=1.5=constant, TA=150 Nm, nA= 
1000/min, ε=2.205, µ=0.09 

Figure 15 shows the graph of the clamping ratio ζ  for 
this gear via gear ratio, which is constant in each case. 
For this example the optimal strand force ratio ε = εK has 
been determined from ζmax-calculations. Obviously, in 
case of a constant ratio the clamping force SA at the 



input pulleys A is always higher than the clamping force 
SB at the output pulleys B. This is even the case in 
operating points with a big gear ratios iV and a small 
wrap curve at the input pulleys when there are little 
contact radii. 

At the input pulleys there are far larger wrapping ranges 
with sliding angles around γ=0°. As a result of this the 
local clamping forces increase significantly. In 
underdrive ratio the clamping ratio ζ is only slightly 
bigger than 1 and increases noticeably when the ratio 
turns to overdrive. The high clamping forces in 
underdrive cause relatively large sliding movements and 
thereby relatively high losses. The chain efficiency rises 
when changing the ratio from underdrive to overdrive. 
These results are proven through many experiments. 

40 20 0 20 40
4

2

0

2

4

0diVdt

Hz

0

drAdt

mmps

40 20 0 20 40
90
91
92
93
94
95
96
97
98
99

100

ηKS

%

0

drAdt

mmps

40 20 0 20 40
0

0.5

1

1.5

2

2.5

1ζ

0

drAdt

mmps

40 20 0 20 40
0

12

24

36

48

60

SA

kN

SB

kN

0

drAdt

mmps

Fig. 17: Influence of the adjusting-speed drA/dt on the 
clamping forces SA und SB, the clamping ratio ζ and the 
efficiency ηKS at constant force ratio ε. 

Operating point: iV=1.5, TA=150 Nm, nA= 1000/min, 
ε=2.205, µ=0.09 

During the lifetime of a chain-CVT the pulleys and the 
contact surfaces of the chain pins become burnished. In 
general, this leads to a reduction of the friction 
coefficient. The calculations for Figure 16 show that the 
clamping ratio ζ decreases then and the strand force 
ratio ε as well as the chain efficiency ηKS increase 

slightly. Also these results could be already confirmed 
by experiments. 

Finally, the Figures 17 and 18 show the influence of the 
adjusting-speed on clamping forces, clamping ratio, and 
contact losses. For the calculations for Figure 17 the 
strand force ratio ε shall remain constant in order to 
have sufficient safety from total slip of the chain at any 
time. If then the ratio iV=nA/nB=rB/rA is changed to 
underdrive, it is necessary to increase the clamping 
force SB at the driven pair of pulleys and to reduce SA 
at the driving pulleys. A ratio change to overdrive 
requires an increasing of SA and a reduction of SB. As 
already mentioned above, the degree of efficiency 
increases slightly if the ratio is changed to underdrive 
comparatively slow. Only if the ratio is changed quickly, 
the degree of efficiency of the power transmission 
decreases in both adjusting-directions. 
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Fig. 18: Influence of the adjusting-speed drA/dt on the 
spread force SA, the clamping ratio ζ and the efficiency 
ηKS at constant spread force SB. 

Operating point: iV=1.5, TA=150 Nm, nA= 1000/min, 
SB=32 kN, µ=0.09 

For the gear ratio change to Figure 18 the clamping 
force SB at the driven pair of pulleys is held at a 
constant level. In order to reduce now the gear ratio 



swiftly, SA must be further increased. The degree of 
efficiency falls off more steeply than with the ratio 
change according to Figure 17 where SB is reduced 
also. In order to extend the gear ratio swiftly, SA must be 
reduced very strongly. By that, the strand force ratio ε 
increases and the safety from total slip drops. Then the 
increased sliding movements lead also to bigger losses. 

CONCLUSIONS 

The power transmission in continuously variable 
wrapping gears is in particular a complex process, 
especially in operating points with variable ratio. Until 
today this process can hardly be described with an all-
encompassing theory. Most of the computational 
programs that have been developed up to now are 
limited to stationary operating states. However, some of 
these programs [9] are capable to consider three-
dimensional chain oscillations. All these programs solve 
very complex systems of equations with time-consuming 
algorithms. But by that these programs become slow 
and in part it is difficult to work with them. Therefore the 
aim of the research work presented here was the 
development of a calculation instrument, whereby the 
power transmission in a wrapping-CVT can be 
determined relatively rapid also in non-stationary 
operating points. Furthermore, this instrument should be 
easy to handle. 

The computational program that was created for this 
purpose works with a new solution algorithm. This 
algorithm balances all the chain forces and the forces on 
the pulleys. Furthermore, it takes into consideration the 
relations between the elastic deformations, the ratio 
change, and all the various sliding speeds. Instead of 
the numeric integration of a connected DGL-system, the 
program uses several iterative loops which are nested 
within each other. With the information about the 
elasticity of the pulleys and the speed of the chain at the 
beginning of the wrap curve, the program computes the 
force change in the chain from one pin to the next. Using 
the additional information about the clamping force, the 
real local pulley deformations can be computed by 
iteration algorithms that converge very fast. In addition, 
this new program can compute all the forces on the 
chain and the degree of efficiency of the power 
transmission from the input pulleys via the chain to the 
output pulleys, even in operating points with dynamic 
ratio changes. Because the necessary clamping forces 
are calculable in these non-stationary operating points 
too, the program can support calculations for the 
dynamic behaviour of chain and belt-CVTs and the 
development of improved hydraulic control systems. 

For all stationary operating points the computational 
program finds solutions which correspond closely with 
the very recent theoretical and experimental results from 
Sattller [7] and Sue [8]. Also the additional relations 
presented here between the adjusting-movements for 
the ratio change and the clamping forces necessary for 

that can be proven experimentally as well as the 
supplementary losses occurring in this case. 

For the calculation of one operating point this new 
computational program needs only between 30 s and 60 
s time, using a personal computer with 512 MB RAM 
and 3 GHz clock frequency. The calculations presented 
in this paper altogether required a total CPU time of less 
than 1 hour. In particular, because of this high 
computing speed this program is well suitable to analyse 
the influences exerted on the degree of efficiency and 
the necessary clamping forces by individual gear 
parameters like the gear geometry, the stiffnesses of the 
components or the friction coefficients, etc. 
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