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Abstract: The problem of coordinating construction vehicles in formations is tackled using the particle swarm optimization
algorithm. Coordinated multi-vehicles are anticipated to outperform single vehicles in terms of economy and flexibility. A
possible approach is to apply control theoretic methods to vehicle coordination but this may require complicated system
models to be employed. The particle swarm optimization (PSO) algorithm adopted in this work, as an evolutionary
computation based methodology, is able to provide a near-optimal solution without the need for a precise system model. The
control commands for the vehicles are treated as particles in a swarm and a sequence of controls is derived to achieve the
desired formation. With regard to inter-vehicle collision avoidances, behaviour-based control strategies are incorporated into
the formation framework. Simulations for multi-vehicle formation in a construction site scenario are conducted to illustrate
the effectiveness of the proposed approach.

1. INTRODUCTION
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As human civilisation develops, more and more civil
structures are being built at an ever increasing pace. The
application of robotics in automating the construction
process may become an important component in the future
development of construction technologies. Tasks assigned
to and performed by robots during a construction process
can be broadly classified into floor finishing, board
installation, exterior painting, material handling and
delivery, to name a few [I]. Mobile robots or vehicles are
very attractive in these application paradigms and, in
particular, multi-vehicles will outperform a single robot
when operating in the coordinated manner in terms of
flexibility and economy.

One of the critical issues in deploying vehicles in
construction sites rests on their navigational abilities [2],
particularly, with severe spatial constraints and this naturally
leads to the need for formation controls [3]. With this regard,
control theoretic [4][5], behaviour-based [6] and A*-based
searching [7} approaches have been applied. In the former
approach, control designs would be very challenging as
precise descriptions or models of the system are required,
e.g., in a close-form or differentiable expression, and special
consideration may be needed to account for numerical
instabilities. On the other hand, the latter approaches require
expert design knowledge and behaviours are mostly
determined in a problem dependent manner.

Alternative methodologies for path planning or
formation control, such as soft-computing and evolutionary
computation free from the above mentioned burdens, have
increasingly drawn the attentions of researchers and
engineers in recent years. For example, a neural network,
applying the self-learning principle, was employed in the
floor coverage problem scenario [8J in constructions.

However, the coordination of multi-vehicles was not within
the scope of the research work described there. Fuzzy logic
based approaches for vehicle path planning were reported in
[9] for cases of navigation of a single vehicle in construction
sites but multi-vehicle coordination issues were also not
addressed. In [10], the Ant system algorithm was employed
for its natural representation of vehicles as ants and the
major focus ofthe work therein was on the allocation of job
schedules with regard to vehicle coordinations.
Furthermore, the multi-agent concept implemented with
genetic algorithms (GA) was reported in [11][12], where the
problem domain addressed was on roadside following for
vehicle navigation. In essence, vehicles were treated as
living species evolving by adaptation to natural selections
imposed by the constraints from the kerb boundaries.
However, one of the hurdles in applying the GA is the
determination of the many control parameters, e.g., selection
schemes and crossover/mutation probabilities, during the
algorithmic design stage.

From an alternative point of view, the collective motion
of vehicles can be treated as an aggregation of microscopic
particles evolving through the solid and liquid phases [13]
with a balance between diffusion and cohesion. This analogy
thus inspires another form of evolutionary computation,
namely, the particle swarm optimisation (PSO) algorithm
[14] for its simplicity and promising performance in wide
application areas. The principle of PSO is based on the
exchange of social knowledge and personal experiences
among the individuals (particles) in the swarm. Specifically,
the algorithm operates by coding potential solutions as
individual particles and simulates bird flocks or fish schools
moving across the solution space. A solution is produced as
the best particle in the swarm. The PSO algorithm has been
used in robot path planning [151, navigation [16] and many
other design optimisation problems.
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In this work, the PSG algorithm is employed in the
multi-vehicle formation control paradigm. This method will
be applied for the coordination of the motions of
construction vehicles, assuming the available information of
the locations of the vehicles, in a construction site where
there are severe spatial constraints. Speed and steering
commands for the vehicles are derived from the PSG
algorithm in order to establish the required formation.
Moreover, to avoid inter-vehicle collisions during the
formation initialization, behaviour-based control schemes
are applied for its ease in design and promising
performances.

The rest of the paper is structured as follows. In Section
2, the vehicle coordination problem is briefly reviewed and
the particle swarm optimisation algorithm is introduced in
Section 3. In Section 4, the proposed approach is developed
and simulation results are presented in Section 5. Finally, a
conclusion is drawn in Section 6.

2. VEHICLE CGORDINA nON CONTROL

The problem scenario considered is that construction
vehicles are deployed for material delivery, navigating
through constrained spaces and in task dependent
formations such as lines, columns or wedges and others.
Furthermore, the formation parameters may be time-varying
as the task requires.

Let the motion of the vehicles under coordination control
be described by the following motion model,

xLI =f(x~,u~)

[
X~+I] [x~ +v~Tcos(¢l +r~T)]
Y~+I = Y~ +v~~sin(~L +rLT) ,
¢k+l t/Jk+rkT

where x~+l is the state of the th vehicle at time k+1
consisting of its xy-coordinate and orientation t/J with

respect to the x-axis, u~ is the control containing the

velocity vi, steering rate ri and T is the sampling time.

The goal of vehicle coordination is to derive a sequence
of controls for each vehicle, i.e.,

U=~~'''''U~}
such that the trajectories

x = ~~"'" xd (3)
followed by the vehicles are attracted to the desired ones ofa
formation determined by a high-level path planner.

These controls can be obtained by applying control
theoretic approaches [4][5J, behaviour-based schemes [6J or
A*-based architecture [7J. However, the need to avoid
inter-vehicle collisions and obstacles may increase the
system complexity, computational load and give rise to
numerical instabilities. Therefore, an evolutionary
computation technique, the particle swarm optimization
algorithm is adopted for its simplicity and flexibility.

(I)

(2)
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3. PARTICLE SWARM OPTIMIZATION

The particle swarm optimization (PSO) algorithm can be
viewed as an agent based heuristic search method where
potential solutions are coded as particles. The algorithm
contains a recursive iteration loop (generations) and can be
described by the following pseudo code.

1. Initialize particles randomly across the
solution space

2. Set generation count to zero
3. While not terminate

3.1. Evaluate the particle fitness
3.2. Find the best particle
3.3. Find the best instances of particles

against generations
3.4. Calculate particle velocities
3.5. Update particle locations
3.6. Increase generation count

4. Terminate if generation count expires.

In the context of vehicle coordination, the vehicle speeds
and steering commands are coded as particles,

U~.k= {v~,k> r'~,k f,i:::: 1,.. ·1, p = I,,,, P, (4)

where p is the particle index and t is the index for a vehicle.
The particles in the solution space are allowed to move

with arbitrary velocities (which is distinguished from the
vehicle speeds). The initial particle velocities may be all set
to zero or random numbers. In subsequent generations, the
velocities are determined as

i i i(i i) i(Ai i)Vp,}+1=WVp,j+C' Ug,}-Up,} +C2 Up,}-Up,} ,

(5)
where w is a weighting factor representing the momentum
of the particle, (CI,c2) E [Cmin ,cmax] are uniform random

numbers denoting as the gain factors, u~,} (group-best) is

the particle that gives the best performance within the swarm

at the r generation, u~,} (personal-best) is the best

performing instance of the pilI particle over the past
generations. The momentum weighting factor determines
the randomness in the search for solutions, while the gain
factors are responsible for the rate of convergence to the
optimum solution.

Assuming a unity sampling time step, the particle
locations in the solution space are updated in the next
generation as

iii (6)Up,}+1 = up,} + v p,}+1.

The algorithm then iterates through a pre-determined

number of generations and the best particle ui ;-at theg,

terminating generation J is used in controlling the th

vehicle to move to its next location from time k to k+ 1 by

letting u~ ~ ui ".s.)
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4. PROPOSED APPROACH

In this paper, the coordination of multi-vehicles into
formations is achieved by combining the PSO algorithm and
the behaviour-based motion strategy in deriving the motion
commands as well as avoiding inter-vehicle collisions.

4.1 Particle Structure

Let there be m vehicles to be coordinated, hence, there
are m sequences of control commands to be determined by
the PSO. The approach adopted assumes that a high-level
path planner is available to design the required formation
and each vehicle knows it current location. This gives a set
of formation locations or virtual vehicles as

F={F1 •. ··Fm}. Ff = {xf,yf}T, f=l,"',m, (7)

where each formation location contains its corresponding
xy-coordinates and the orientations are aligned with the
x-axis. On the other hand, the initial locations of the vehicles
are not specified (i.e., not in a formation) but their locations
are known to the PSO algorithm.

The control commands are represented by a set of
control particles. Note that there are I vehicles each also
contains a set of P location particles describing the possible
locations of vehicles. At each time step, the control particles
are used to move the vehicles according to the motion model
(Eq. l). The predicted vehicle locations are shown in Fig. I.

-'!'.!,---..,,--::-- .••"!;-------7.,..........-::-~.
.<001

Fig. I- Predicted vehicle locations according to the speed
and steering commands determined by particles.

4.2 Vehicle-Formation Indexing

In order to follow a formation, vehicles need to be
allocated an index corresponding to the virtual vehicles in
the formation. At the start of the formation with the available
knowledge on the virtual formation and vehicle locations, a
cross-correspondence distance table is formed by
calculating the distances

dfi =~(xf _xi)2+(yf _/)2, (8)

where the superscriptfdenotes the formation and i denotes
the vehicle. Then, for each vehicle, find the minimum
distance to the virtual vehicle and assign the correspondence
index.

iHf.ifdfl =min~fl}. (9)
f
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By adopting this indexing scheme, the initial distances
between the real and virtual vehicles are minimized.
Consequently, the time taken to reach the formation may be
reduced.

4.3 Formation Strategy

The formation of vehicles into platoons is treated as a
tracking problem. Due to the non-holonomic constraints of
the vehicles they cannot tum abruptly. First, the distances
between the vehicle particles and the virtual vehicles are
calculated, giving tixt ,Ayt respectively. Assume that the

formation is required to move along the x-axis from left to
right (it is straightforward to generalize to other formation
movements as it is assumed to be performed by a high-level
path planner). The strategy adopted is to assign a pseudo
target behind the virtual vehicle such that the vehicle chases
and tracks the formation, The pseudo target is given by

tix~ ;: tixt - O.85dfl

AY~;: Ayt -O.05dflsign(Ayt),
where superscript v denotes the target vehicles. The factors
0.85 and 0,05 are scales determined experimentally. By
examining the expressions above, it is revealed that the
pseudo target will approach the virtual vehicle when the real
vehicle is moving into the vicinity of the formation
wheredfi ~ 0 and, thus, provides a smooth tracking.

(10)

4.4 Particle Fitness

The PSO algorithm relies on the determination of
relative fitness values among the particles where the
group-best and personal-best particles are obtained. The
fitness function is an aggregation of the vehicle-formation
distance and the vehicle-formation angular separation. The
distances were as in Eq. 8, giving dt on a particle basis,

while the angular separation is given by
ef ;:;~ -tan-I(AY; I(tix; +L»), (11)

where L is the vehicle length. Here, each angle is referred to
the angular separation between a vehicle particle to that of a
virtual vehicle. The fitness value for each vehicle particle is
given as

ff =df +Iefl·
The group-best fitness is obtained from

JI =max{ff}·
p

Similarly, the personal-best fitness is

f" fl - lffl }p,j - m~x p,j'
}

determined from the history of the fitness of the p/h particle
up to the/h generation.

Finally, these fitness values are used in calculating the
particle velocities and updating their locations in the
solution space (see Section 3).

(12)

(13)

(14)
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4.5 Control Bounds

Since the PSO is a heuristic search method, the speed
and steering commands derived may be infeasible for typical
vehicles that exceed their kinematic or dynamic limitations.
Therefore, the control signals should be bounded or
clamped. Taking this into account, the values of the control
particles are assigned as

i "f ivp,k f- vmax' I vp.k: > vmax
(15)

V~.k f- 0, if V~.k < O.
That is, the vehicle is not allowed to travel backward in
normal formation for smooth motions. Similarly, the
steering command is bounded in magnitude as

Yp,k f- rmax' if r~,k> rmax

i if iYp,k f- -Ymax' I Yp,k < -rmax'
(16)

4.6 Inter-vehicle Collision Avoidance

The path required to reach the next vehicle location may
introduce collisions between vehicles, since collision was
not considered in the PSO routines. Therefore, a collision
avoidance strategy is developed to mitigate this drawback.

For each vehicle located at x~ at time k, calculate the

distances between other vehicles, i.e.,

dji =~(xj _xi)2 +(yj - /)2, (17)

which is a 2-dimensional array of distances. Similarly,
calcul~te the anrul~r se~arati~n b~tween vehicles as

ell = tan-1\(yl _ y')/(xl -X'»). (I 8)

For each vehicle i, find the distance to their associated
virtual formation vehicle,

r =~(xj_xi)2+(yj_/)2. (19)

Check for the collision condition defined as

(dji < 2.5L + 0.05jii) " (I eji I< 1& 13) , (20)

where L is the length of the vehicle, " is the logical and
operator. The scale factors, 2.5, 0.05 and 1013, determining
the relative importance of the inter-vehicle separations in
distance and orientation, are obtained experimentally. Fig. 2
shows the situation when collision occurs.

""" ..,~Illclf' •••

<::-j-

\

Fig. 2 - Inter-vehicle collision. Vehicle I blocks vehicle 3
(marked by a circle).
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A potential collision is then declared between vehicles i
and j when they are close to each other and one of the
vehicles is in front of and blocks the other. This condition
has taken into account for a dynamic threshold depending on
the degree of formation completion where the risk of
collision diminishes when the vehicles are in the formation,

i.e., Iii ~O.
For the colliding vehicles, their reactive movements are

frozen temporarily for a time step. Their locations become
i ij j (30)xk+l = xk' xk+1 ::: xk·

4.7 Dead-lock Release

The inter-vehicle collision avoidance strategy adopted
may give rise to dead-lock conditions, especially when the
vehicles are moving towards each other (both in front and
block the other). A release of the dead-lock condition is
proposed as follows.

During the collision avoidance stage, a list of colliding
vehicle index pairing is maintained. For example, let
vehicles I and 3 are temporarily frozen, the list will read as

L ft = {~ ~} , (31)

which signifies that vehicle I blocks vehicle 3 and the
reverse also holds, thus, producing a dead-lock.

If the number of paired entries in the list is more than
one, the list is searched for duplicated vehicle indices.
Following the above example and applying the proposed
strategy, vehicle I will be driven backward using a random
speed and a random steering angle. Furthermore, the
corresponding entry in the dead-lock list is removed. The
procedure then repeats for other dead-locked vehicle
pairings such that multiple dead-locks are subsequently
removed.

5. RESULTS

The proposed vehicle coordination framework for
formation initialization and control, using PSO and the
incorporation of behavioural control for collision avoidance,
is applied in simulations for different types formations and
each case has a different set of initial vehicle locations. The
simulation conditions are listed below.

Table I - Types of formations
Case Formation

I Column
2 VVedge

Table II - Initial vehicle locations
Case Initial location

1
2
3
4

Left hand regions in a column
Upper-left region randomly located
Lower-left region randomly located

Randomly located across the site boundary
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Consider seven vehicles that are homogeneous with each
vehicle having measures 3m x 2m in length and width. Let
the construction site be bounded, e.g., ±70m in the
xy-coordinates. The formation starts at the centre, x =0 .
The initial vehicle locations are chosen arbitrarily, in
accordance to the cases listed in Table II, and their
orientations are also initialized randomly. The formation
moves from left to right (increasing x-coordinate) and the
formation is allowed to change dynamically. The last virtual
vehicle (located at the most negative y-coordinate) moves in
a higher speed than the first virtual vehicle.

In the column formation, trajectories of the vehicles are
shown in Fig. 3a through 3d. Irrespective of the vehicle
starting locations and the dynamically adjustment of the
formation, the vehicles follow the formation closely. It is
also illustrated that the trajectories are smooth and the
formation virtual vehicles are well tracked. This observation
has verified the satisfactory performances provided by the
proposed PSO algorithm. The trajectories although indicate
some crossovers, however, they are separated in the time
domain where the inter-vehicle collision avoidance
procedure has been operating effectively. Notably, as shown
in the lower-left region of Fig. 3c, one of the vehicle
trajectories contains a rather sharp change. This is caused by
the blocked vehicle that moved backward in order to avoid
inter-vehicle collision and dead-lock.

For the wedge formation case, similar levels of
performances are also observed from the plots in Fig. 4. It is
noted that the successful establishment of the desired
formation, from the initial vehicle locations, is independent
on the type of the desired formation (column vs. wedge).
Furthermore, the tracking of virtual vehicles is
formation-independent and the trajectory complexity is also
not related to the type of formation. In general, the proposed
approach can be straight forwardly extended to cases of a
larger number of vehicles and inhomogeneous vehicle sizes.

6. CONCLUSION

A particle swarm optimisation (PSO) algorithm has been
proposed for the formation control of vehicles deployed in
construction sites. Sequences of vehicle speed and steering
commands are derived from the PSO that can drive the
vehicles to follow near-optimal trajectories leading to a
formation. An interesting feature here is that the formation
parameters can be time-varying. The collisions between
vehicles are avoided by using a behaviour-based strategy.
Simulation results for various initial vehicle locations and
formations have demonstrated the effectiveness of the
proposed approach.
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Fig. 3 - Results for COLUMN formatlon. (a) Vehicles started from left, (b) vehicles started from upper-left region, (c) vehicles started from lower-left
region, (d) vehicles started in distributed regions. The formation changes from their initial form (shown as empty triangles) with increasing vehicle speeds
to the final formation (shown in black triangles).
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Fig. 4 - Results for WEDGE formation. (a) Vehicles started from left, (b) vehicles started from upper-left region, (c) vehicles started from lower-left region,
(d) vehicles started in distributed regions. The formation changes from their initial form (shown as empty triangles) with increasing vehicle speeds to the
final formation (shown in black triangles).
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