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Abstract: Cathodoluminescence ~CL! spectra from silicon doped and undoped wurtzite n-type GaN have been

measured in a SEM under a wide range of electron beam excitation conditions, which include accelerating

voltage, beam current, magnification, beam diameter, and specimen temperature. The CL intensity dependence

on excitation density was analyzed using a power-law model ~ICL @ J m! for each of the observed CL bands in

this material. The yellow luminescence band present in both silicon and undoped GaN exhibits a close to cube

root ~m 5 0.33! dependence on electron beam excitation at both 77 K and 300 K. However, the blue ~at 300 K!

and donor-acceptor pair ~at 77 K! emission peaks observed in undoped GaN follow power laws with exponents

of m 5 1 and m 5 0.5, respectively. As expected from its excitonic character, the near band edge emission

intensity depends linearly ~m 5 1! in silicon doped GaN and superlinearly ~m 5 1.2! in undoped GaN on the

electron beam current. Results show that the intensities of the CL bands are highly dependent not only on the

defect concentration but also on the electron-hole pair density and injection rate. Furthermore, the size of the

focussed electron beam was found to have a considerable effect on the relative intensities of the CL emission

peaks. Hence SEM parameters such as the objective lens aperture size, astigmatism, and the condenser lens

setting must also be considered when assessing CL data based on intensity measurements from this material.
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INTRODUCTION

Cathodoluminescence ~CL! analysis in a scanning electron

microscope ~SEM! is a very powerful technique used exten-

sively to study the optical and electronic properties of

defects in semiconductor materials and devices at high

spatial resolution ~Yacobi and Holt, 1990!. Recently, the CL

technique has been applied to the investigation of gallium

nitride ~GaN! thin films, which are utilized in a broad range

of technological applications, including UV-blue light emit-

ting diodes and lasers, UV detectors, and high-power/
temperature and high-speed electronic devices. In GaN, a

typical CL spectrum exhibits a near edge emission ~NBE!

with a maximum around 3.38 eV at 300 K, broad yellow

~YL! and blue ~BL! defect related bands centred on ;2.15

eV and ;2.9 eV, respectively at 300 K and a donor acceptor

pair ~DAP! emission centered on ;3.28 eV at 77 K ~Orton

and Foxon, 1998!. Although considerable debate surrounds

the exact origin of these defect-induced emissions, there is
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reasonable theoretical and experimental evidence to sup-

port the involvement of the native gallium vacancy- ~VGa
32 !

related defects and their complexes with shallow donors and

hydrogen ~Neugebauer and Van de Walle, 1996!.

The depth distribution of defects throughout a GaN

epilayer can be determined nondestructively by measuring

CL spectra as a function of the electron penetration range.

This type of CL analysis is generally conducted by systemat-

ically varying the electron beam energy ~EO!, while adjust-

ing the beam current ~IB! to maintain a constant beam

power ~EO IB!. In this way, CL spectra can be collected with

the same electron-hole pair injection rate from different

depths within the specimen. These data can then be ana-

lyzed by comparing the depth-resolved CL measurements

with modeled electron energy loss profiles simulated using

Monte Carlo techniques ~Fleischer et al., 1999; Gelhausen

et al., 2001!. However, correct interpretation of experimen-

tal depth-resolved data is only possible when the intensity

dependence of each CL band on the electron-hole pair

injection rate is known. It is the purpose of this work to

investigate ~i! the excitation current dependency of the CL

emission in GaN, and ~ii! the influence of the SEM magni-

fication, scan rate, and the electron beam spot size on CL

emission. The results demonstrate the importance of consid-

ering CL excitation dependences in GaN when assessing

defect concentration and distribution or when comparing

n-type GaN specimens on the basis of CL spectra.

MATERIALS AND METHODS

In this study, 5 3 5-mm squares were carefully snapped

from 50-mm-diameter wafers of ;2-mm-thick Si-doped

~ne 5 ;1018 cm23! and nominally undoped GaN ~ne 5

;1016 cm23! grown in EMCORE reactors on ~0001! sap-

phire substrates by metal organic chemical vapor deposi-

tion. Cathodoluminescence measurements were conducted

at 77 K and 300 K using an Oxford Instruments MonoCL2

installed on a JEOL 35C scanning electron microscope

~SEM! equipped with a liquid nitrogen cold stage. Light was

collected with a semiparabolic mirror containing an elec-

tron beam access hole located directly above its focus point.

All CL spectra were collected with the specimen positioned

at the focal plane of the mirror. The CL signal was dispersed

by a 1200 lines/mm grating blazed at 500 nm and measured

with a Hamamatsu R943-02 Peltier cooled photomultiplier

tube.

CL spectra were collected using a reduced-area raster

scan ~line dwell time 0.54 ms and line scan time 0.26 ms!

with a scan rate of 10 frames per second. The frame area

ranged between ~90 3102! mm2 and ~3 3 3.4! mm2 by SEM

magnification adjustments. The scan area was accurately

measured at each magnification using a calibration mesh.

The electron-hole pair injection dose-rate was varied by

~i ! changing the IB in a focused probe at a fixed EO, and

~ii! changing the electron beam spot size ~dP! at a fixed IB

and EO by defocusing the objective lens. A fresh area of

specimen was used for each CL measurement. The electron

beam current was measured using a Faraday cup suitably

designed to accommodate an electron beam probe with a

dP # 200 mm. To investigate the CL excitation dependence

on the diameter of the focused electron beam, CL spectra

were measured at the same EO IB using two different objec-

tive lens aperture diameters ~300 mm and 600 mm!. The

diameter of the electron probe was determined by measur-

ing the width of a carbon contamination spot deposited

during 100-s spot mode irradiation. The time dependence

of the CL emission on injection dose rate was investigated

using time-resolved CL spectroscopy measurements. CL

spectra were corrected for the wavelength response of the

complete CL collection system and converted to an energy

scale by multiplying ICL~l! by l2.

RESULTS AND DISCUSSION

Typical CL spectra ~20 keV at 77 K!, exhibiting the YL, BL,

DAP, and NBE bands for undoped and silicon-doped GaN

specimens are shown in Figure 1. The intensity of each of

these bands was observed to increase at a different rate as

the beam current was increased from 0.01 nA to 100 nA.

This behavior is illustrated in Figure 2a for the Si-doped

GaN specimen, which shows the intensity of the NBE and

YL versus IB at 300 K and Figure 2b at 77 K. The ICL

excitation density dependence on IB has been analyzed for

each specimen at 77 K and 300 K using a simple power-law

model where the CL intensity ~ICL! and excitation power JB

are related by ~ICL @ J m!. Power-law fits, shown in Figure 2

by straight lines, reveal that the intensities of the YL and

DAP emission bands display a strongly sublinear depen-

dence on IB, with ICL
YL @ IB

0.28 and ICL
DAP @ IB

0.46 at 77 K. The

intensity of the BL defect-related band in the undoped

GaN, however, exhibits a linear power-law relationship

~ICL
BL @ IB

1.08 ! with the excitation level at 300 K. The NBE
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bands show linear ~ICL
NBE @ IB

1.0 ! and superlinear ~ICL
NBE @

IB
1.2 ! dependencies on IB for GaN:Si and undoped GaN,

respectively. It is worth noting that a superlinear ~ICL
NBE @

IB
1.16 ! dependence on IB was observed in Si-doped GaN

when the measurements were collected from the same re-

gion of the specimen, indicating beam-induced CL enhance-

ment. All power-law exponents measured in this work are

summarized in Table 1, and these values were found to vary

within experimental error for measurements at both 20 keV

~see Table 1! and 10 keV.

The measured power-law exponents for the NBE emis-

sion in both the silicon and undoped GaN specimens are

consistent with CL emission associated with excitonic recom-

bination processes ~Pankove, 1975!. In undoped GaN, the

superlinear dependence of the NBE on excitation level is

characteristic of recombination channels related to free and

bound excitons, while the linear NBE power-law relation-

ship exhibited in the Si-doped GaN is typically observed

with an intrinsic ~i.e., band-to-band transition! recombina-

tion process ~Mullhauser et al., 1996!. The sublinear depen-

Figure 1. Typical CL spectra from ~a! silicon-doped and ~b! un-

doped GaN at 77 K exhibiting the YL, BL, DAP, and NBE emission

bands ~EO 5 20 kV, IB 5 1 nA, CL bandpass 5 2.5 nm, and scan

size 5 90 3 102 mm2!.

Figure 2. Intensities of the NBE and YL measured from a silicon-

doped GaN specimen at ~a! 300 K and ~b! 77 K as a function of IB

with a finely focused electron beam ~EO 5 20 kV, CL bandpass 5

2.5 nm, and scan size 5 90 3 102 mm2!.
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dencies of the YL and DAP on IB can be qualitatively

explained by saturation of a finite number of radiative

recombination centers. Simple rate equation models that

allow for saturation of luminescence centers predict power-

law exponents of 0.5, 1.0, and 1.5, depending on the defect

concentration and excitation power. The measured square

root dependence of the DAP band on IB is in agreement

with these models and photoluminescence excitation den-

sity measurements which report a square root dependence

~Singh et al., 1994; Grieshaber et al., 1996; Reshchikov and

Korokov, 2001!. However, the CL intensity of the YL band

exhibits a cube root dependence on IB. This discrepancy

between the measured CL and PL power-law exponents can

be attributed to either ~i! the orders-of-magnitude greater

electron-hole pair density and generation rate for electron

excitation, compared with typical values for optical excita-

tion, or ~ii! variation in the YL emission intensity with

increasing IB due to electron beam induced effects.

Time-resolved CL spectroscopy measurements con-

ducted under low ~1 nA! and high ~100 nA! excitation at

77 K and 300 K for both silicon and undoped GaN are

shown in Figure 3. Time-dependent irradiation-induced

effects on the CL and PL intensity have been attributed to

diffusion of ON
1 and H1 ~Toth et al., 1999!, carbon contam-

ination ~Toth et al., 1999!, repulsive space charge at struc-

tural dislocations ~Kim et al., 1999!, and surface annealing

~Herrera Zaldivar et al., 1998!. However, in the context of

the present work, knowledge of the exact nature of the

mechanisms involved in these processes is not necessary,

and it is sufficient to know merely the excitation conditions

under which the CL intensity is stable during electron

irradiation. The CL intensity of the NBE peak and YL band

in both Si doped and undoped GaN is constant with time

under all current injection levels at 300 K ~Fig. 3a! except

for high IB in undoped GaN, where both the YL and BL

bands increase slowly with irradiation time ~Fig. 3c!. At

77 K, the intensity of the YL band and NBE peak in the

Si-doped GaN sample are stable with time at all IB values,

and the DAP intensity rises very slowly only under high

current injection ~Fig. 3b!. The temporal behavior of YL

and BL bands in the undoped GaN samples, however, is

strongly dependent on IB, particularly at 77 K, as shown in

Figure 3d. At this temperature, under high injection cur-

rents, an extremely rapid decrease in the BL intensity is

observed with time, whereas the YL quickly increases, then

decreases, over the same time interval. A complete summary

of the CL kinetics results is presented in Table 1. These CL

kinetics studies clearly demonstrate that the electron-beam

Table 1. Power Law Exponents, m, for the ICL @ IB
m Excitation Density Dependence on IB and the Observed Time-Dependent Behavior

of the CL Peaks in n-Type GaN

Si-doped GaN ~20 kV!

NBE YL DAP

RT ~same region! 1.16 6 0.01 0.34 6 0.01

RT ~fresh region! 1.01 6 0.01 0.35 6 0.02

LN ~fresh region! 1.05 6 0.03 0.27 6 0.01 0.46 6 0.02

Kinetics RT ~1 nA! none none

Kinetics RT ~100 nA! none slight increase

Kinetics LN ~1 nA! none none none

Kinetics LN ~100 nA! none slight increase linear increase

Undoped GaN ~20 kV!

NBE YL BL

RT ~fresh region! 1.20 6 0.03 0.35 6 0.01 1.08 6 0.03

LN ~fresh region! 1.08 6 0.02 unstable unstable

RT Kinetics ~1 nA! none none none

RT Kinetics ~100 nA! none large slow increase large slow increase

LN Kinetics ~1 nA! none slow increase slow decrease

LN Kinetics ~100 nA! none rapid increase then decrease very rapid decrease
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induced, time-dependent behavior of the CL emission in

silicon and undoped GaN cannot account for the cube root

dependence on IB for the YL band at 300 K.

The dependence of the intensity of the YL and NBE on

electron beam spot size, dB, ~i.e., power density! in silicon-

doped GaN is shown in Figure 4. This behavior of the YL

band can be attributed to its highly nonlinear dependence

on excitation density. The results may also suggest that, as

the YL emission centers saturate with increasing IB, excess

carriers are then free to recombine via excitonic pathways,

leading to an increase in the NBE emission and an anticor-

relation with the YL dependence on dB, as observed. How-

ever, this interpretation cannot be correct, since the NBE

band exhibits a linear power-law relationship with the exci-

tation level. A more plausible explanation for the NBE

intensity dependence on dB involves competitive recombina-

tion with nonradiative surface states, which exhibit a non-

linear dependence on power density. This is not surprising,

as the NBE emission is only detected very close ~nanometer

scale! to the surface as a result of very efficient self-

absorption in GaN, whereas the YL signal originates from

much greater depths ~micron scale! within the specimen

~Fleischer et al., 1999!.

The very strong dependence of the YL and NBE bands

on dB means that the SEM parameters that determine dB,

such as the excitation level of the condenser lens, the

Figure 3. Time dependence of the NBE, YL, DAP, and BL bands in ~a! silicon-doped GaN at 300 K, ~b! silicon-doped

GaN at 77 K, ~c! undoped at GaN 300 K, and ~d! undoped GaN at 77 K ~EO 5 20 kV, CL bandpass 5 2.5 nm, and scan

size 5 90 3 102 mm2!.
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diameter of the objective lens aperture, and proper correc-

tion for astigmatism ~Goldstein et al., 1992! will signifi-

cantly affect YL and NBE intensity. For example, it is seen in

Figure 5 that the YL intensity increases when the objective

lens aperture size is increased from 300 mm to 600 mm,

even though the excitation power ~20 keV, 1 nA! is constant.

This behavior can be ascribed to broadening of dB due to an

increased spatial contribution from spherical and chromatic

aberrations, which both increase with aperture size. Simi-

larly, dB is at a minimum when it is optimally corrected for

astigmatism using the SEM stigmator controls. However, if

the stigmator control is deliberately misaligned, a larger dB

results, leading to an increase in the YL intensity, as shown

in Figure 6. Furthermore, it is significant to note that the

beam current is not constant as the objective lens is under-

and overfocused due to the change in the electron beam

crossover position with respect to the objective lens aper-

ture. This effect is demonstrated in Figure 7, which shows IB

as a function of objective lens current for objective lens

aperture diameters of 120 mm, 300 mm, and 600 mm.

The dependence of the YL and NBE intensity on SEM

magnification is shown in Figure 8. The behavior of YL and

NBE bands is, in general terms, a direct consequence of

their dependence on dB as described above. It is seen in

Figure 9 that, as the SEM magnification ~M ! increases, the

area scanned ~A! on the specimen decreases as A ~mm2! 5

1.45 3 109 M22. However, it is important to point out that,

Figure 4. The dependence of the NBE and YL CL intensity in

Si:GaN on electron beam diameter, dB, which was varied by under-

and overfocusing the objective lens in frame scan mode. The

behavior of the YL band is attributed to its highly nonlinear

dependence on excitation level, whereas the NBE response is

tentatively ascribed to competitive recombination with nonradia-

tive surface states, which exhibit a nonlinear dependence on the

excitation level ~EO 5 20 kV, IB 5 1 nA, CL bandpass 5 2.5 nm,

and scan size 5 90 3 102 mm2!.

Figure 5. Dependence of YL CL intensity in Si:GaN on dB. CL

spectra were measured at the same beam power ~EO IB! with a

larger dB as the objective lens aperture is increased from 300 mm to

600 mm ~EO 5 20 kV, IB 5 1 nA, CL bandpass 5 2.5 nm, and scan

size 5 90 3 102 mm2!.

Figure 6. Dependence of YL CL intensity in Si:GaN on dB. CL

spectra were measured with the same beam power ~EOIB! with a

large dB as the r, u stigmator was deliberately misaligned by u 5 908

from the astigmatism-corrected u setting ~EO 5 20 kV, IB 5 1 nA,

CL bandpass 5 2.5 nm, and scan size 5 90 3 102 mm2!.

Cathodoluminescence Efficiency and Excitation Density in n-Type GaN 149



in a SEM, the specimen is not continuously irradiated by

the electron beam because of the raster beam-scan mecha-

nism. For a single frame scan, the exposure time ~tEX! per

micron increases with slower line and frame scan speeds,

increasing magnification ~i.e., decreasing the scan length!

and increasing dB ~although in this case there is an associ-

ated decrease in the power density of the electron beam!. In

addition, as each of these factors increase, the time between

exposures ~tBE! following each frame scan decreases, rang-

ing from the frame time to virtually constant irradiation.

The magnitude of tEX and tBE can have a significant effect on

the saturation rate of recombination centers, depending on

the carrier capture rate and recombination lifetimes. How-

ever, determination of tEX and tBE is, in general, not a trivial

exercise because of the complex electron beam scan meth-

ods often used to minimize hysteresis effects in the scan

coils. In most SEMs, the beam dwells for a fixed time at the

left-hand edge of the frame to allow the scan coils to

stabilize before commencing each linescan, producing a

highly nonlinear exposure time across the scan. Accurate

determination of tEX at each position over the frame scan

area therefore requires careful modeling. This work has

been completed for the dB, magnification range, and raster

scan conditions used in this study, and the results will be

presented elsewhere.

CONCLUSION

This work shows that the CL intensity of the YL, BL, and

DAP bands and the NBE peak in n-type GaN is strongly

Figure 7. Change in IB as a function of objective lens excitation. IB

increases significantly as the objective lens is taken from under-

and overfocus due to the change in the electron beam crossover

position with respect to the objective lens aperture.

Figure 8. The dependence of YL and NBE CL intensity in Si:GaN

on SEM magnification. The behavior of the YL band is attributed

to its highly nonlinear dependence on the excitation level, whereas

the NBE response is tentatively ascribed to competitive recombina-

tion with nonradiative surface states, which exhibit a nonlinear

dependence on the excitation level ~EO 5 20 kV, IB 5 1 nA, CL

bandpass 5 2.5 nm!.

Figure 9. The dependence of scan area ~in microns! on SEM

magnification. The scan area was measured using a calibration

mesh.
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dependent on the excitation density, that is, the carrier

generation rate per unit volume. Clearly, because of this

highly nonlinear relationship between ICL and IB, the inten-

sity ratios between defect-related bands and the NBE in

n-type GaN cannot be used to assess the quality of the

material or determine the defect concentration. In addition,

comparison of different n-type GaN specimens based on

CL spectroscopy data can only be reliably undertaken when

the spectra are collected under identical SEM operating

conditions ~IB, dB, EO, magnification, and raster scan!. The

intensity of the DAP and BL was found to exhibit a square

root dependence on excitation density in agreement with

theoretical predictions and consistent with experimental PL

measurements. However, a cube root dependence on IB was

found for the YL band, which was attributed to the large

difference in carrier density and generation rates for elec-

tron and optical excitations.
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