
1

A Hybrid Evolutionary Approach for
Heterogeneous Multiprocessor scheduling

K. C. Tan, C. K. Goh, E. J. Teoh and D. K. Liu

Abstract— This paper considers the assignment of tasks with
interdependencies in a heterogeneous multiprocessor environ-
ment where task execution time varies with task as well as the
processing element processing it. The solution to this heteroge-
neous multiprocessor scheduling problem involves the optimiza-
tion of complete task assignments and processing order within
the assigned processors with minimum makespan, subject to the
precedence constraint. To solve such a NP-hard combinatorial
optimization problem, this paper presents a hybrid evolutionary
algorithm that incorporates two local search heuristics that ex-
ploits the intrinsic structure of the solution as well as specialized
genetic operators to encourage exploration of the search space.
The effectiveness and contribution of the proposed features are
validated on a set of benchmark problems characterized by
different degrees of communication times, task and processor
heterogeneities. Simulation results demonstrate the algorithm is
capable of finding useful schedules on the set of new benchmark
problems.

Index Terms—Multiprocessor scheduling, heterogeneous, hy-
brid evolutionary algorithm, local search, precedence

I. INTRODUCTION

THE emergence of computer programs with increasingly
higher computational requirements and algorithmic com-

plexity has necessitated the need for parallel processing el-
ements in a multi-computer environment, which in turn has
seen the increasing need for task allocation to be optimally
distributed in a suitable manner to these individual processing
units. The multiprocessor scheduling problem is a class of NP-
hard combinatorial optimization problems [13], [17], [21], [26]
and it can be categorized into different classes based on the
characteristics of the program, the tasks to be scheduled, the
multiprocessor system, as well as the availability of informa-
tion [19], [20], [9]. Typically the processing elements con-
stituting the multi-computer environment can be of the same
capability or of a different capability. This paper is focused on
the latter. The problem becomes even more challenging when
communication delays are accounted for.

In a nutshell, the goal of a scheduler is to assign partitioned
tasks to available processors in such a manner that not only
are the requirements of precedence between these tasks are
met, but also in addition to the objective in obtaining as
minimal as possible a makespan [29]. Presently, there are
numerous methods and approaches which have been developed
and subsequently applied to the multiprocessor scheduling
problem, typically using a deterministic approach. El-Rewini

K. C. Tan, C. K. Goh and E. J. Teoh are with the Department of Electrical
and Computer Engineering, National University of Singapore, 4, Engineering
Drive 3, Singapore 117576 (e-mail: {ckgoh,eletankc}@nus.edu.sg). D. K.
Liu is with the ARC Centre of Excellence for Autonomous Systems (CAS),
Faculty of Engineering, University of Technology, Sydney, PO Box 123,
Broadway, NSW 2007, Australia

et al [9] provides a fairly comprehensive taxonomy of how
scheduling problems can be categorized, and highlights the key
differences that distinguishes one class from the next. Further
to this, in [19], [20], Kwok and Ahmad present a wide-ranging
overview and classification of scheduling algorithms, particu-
larly focusing on deterministic and static scheduling problems.
Most of the present techniques are based on heuristics [18],
[22] that are not only greedy in nature but also capable of
solving certain instances of the scheduling problem efficiently.

Evolutionary algorithm (EA) is a class of stochastic global
optimization technique has been applied to solve the het-
erogenous multi-processor scheduling (HMPS) optimization
problem. EAs are excellent global search algorithms but they
can take a relatively long time to locate the local optimum
in the region of convergence [25]. On the other hand, local
search heuristics are capable of locating the optimum quickly
but are prone to local optimal traps. Therefore, researcher
often hybridized EAs with local search heuristics to maintain
a balance between exploration and exploitation to improve the
optimization processes [6], [12], [16], [23], [24].

This paper presents a new hybrid evolutionary algorithm
(HEA) for the HMPS optimization problem. The proposed
algorithm incorporates two local search operators, based on
list scheduling and task duplication, to exploit the intrinsic
structure of the scheduling problem. Unlike existing evo-
lutionary approaches to the HMPS problem, the proposed
HEA also implements a variable length chromosome which
preserves the precedence relations, a PE schedule crossover
which facilitates the exchange of good schedules assigned
to the individual processors as well as specialized mutation
operators to improve the diversity of the evolving population.

This paper is organized as follows: Section II gives an
overview of existing works as well as the problem formula-
tion of the HMPS. Section III presents the various features
of the proposed HEA including the local search heuristics
and specialized genetic operators as well as the algorithmic
flow. Section IV presents the extensive simulation results and
analysis of the proposed algorithm. Conclusions are drawn in
Section V.

II. HETEROGENOUS MULTI-PROCESSOR SCHEDULING

PROBLEM

A. Problem Formulation

The multiprocessor scheduling problem can be simply stated
as follows:

Assuming there are n tasks that have to be executed
on m processors - where and when should each task

The Eighth International Conference on Intelligent Technologies (InTech’07)
Sydney, Australia, 12-14 December 2007

261

be executed, such that some performance measure(s)
is (are) optimized?

The task of the scheduling algorithm is to ultimately min-
imize a given cost function of time. The objective function
used in this paper is defined as:

F (x) = arg min{arg max
p

ζf (p)} (1)

where ζf (p) denotes the time for processor p to finish the last
task. The starting time ζs(ti) , of each task, ti, at processor
pk is determined by the finish time of its predecessors and the
time required to transfer the required data. This starting time
is given by the following:

ζs(ti) = arg max
ti

ζf (tj) + ζc(ti, tj) (2)

where ζc(ti, tj) is calculated as

ζc(ti, tj) = cijdij (3)

The goal of task assignment is to determine an assignment
of tasks to processors and an order in which tasks are ex-
ecuted to optimize some performance measures. Often, the
assignment process should aim to minimize the makespan.
An optimal assignment determines both the allocation and the
schedule (execution order) of each task.

A task in turn, is a collection of instructions, procedures
or subroutines, possibly together with some data. Each task is
assumed to be immutable. While distributing the tasks to paral-
lel PEs is not difficult, introducing dependencies between the
tasks causes degradation of the overall system performance.
There are dependencies between some pairs of tasks since a
procedure in one task may need to transfer control to another
procedure in a different task or access data contained/produced
in a different task. Further these tasks incur an communication
delay when they are assigned to different PEs.

This paper considers deterministic scheduling, i.e. the dura-
tion of each task is known as well as precedence relations
among tasks. In addition, if dependent tasks are executed
on different processors, communication delays that are given
in advance are also considered. These latencies also include
memory access and synchronization delays. In addition, we
also consider a heterogeneous system, that is a multiprocessor
environment consisting of processors with different capabil-
ities. Moreover, we only consider a non-preemptive system,
that is, each PE will complete the processing of each task
that is assigned to it. Essentially, this means that PEs will not
suspend its processing to take on another task.

B. Problem Generator

In order to verify the efficacy of our proposed approach, a
benchmark generator is constructed to generate a set of test
problems for the experimental study. In constructing these
problems artificially, and in a random manner, the input
variables essentially controls not only the size, but also the
complexity of the generated problem set. Specifically, these
variables are:

1) the number of nodes/tasks,
2) the number of processors available,

3) the degree of network connectivity,
4) the communication-to-computation ratio,
5) the mean processing time,
6) the variance of processing time,
7) the degree of heterogeneity,
8) the degree of precedence relationship.

Having said that, the generator produces different problem
sets for a given set of input parameters. For similar set
of parameter, different task problems are generated due to
randomness. The input parameters to the generator are shown
in Table I, together with the associated range of values. Using
these inputs for the benchmark problem generator, sets of
random DAGs were constructed to be used as the test bed
problems in our experimental study. For our simulation study,
10 problem sets were generated using various combination of
the above input parameters, and are listed in Table II.

While the standard multiprocessor scheduling problem is
itself an NP-hard problem, additional factors such as com-
munication delays and heterogeneity increases the complexity
of the problem. Hence, due to the sheer number of potential
solutions in the search space, scheduling becomes a complex
task without the use of an effective search algorithm. These
sets are classified in terms of the possible difficulties. Each test
sets consists of different test problems with different degrees
of heterogeneity and dependencies. Here, we consider a total
of 10 test sets generated in this study, which differs in terms
of degree of heterogeneity, density and CCR. A higher CCR
value penalizes dependencies which require transmission or
passing of messages from one processor to the next, making
it less optimal for inter-processor communication to occur. The
variance of processing time and degree of heterogeneity affects
the individual processing capabilities of each processor, thus
making ‘slower’ processors less likely to be assigned tasks,
and biasing the utility of ‘faster’ processors. Lastly, the degree
of dependency affects the total latency of the makespan in that
each processor would have to ‘wait’ for its dependent tasks to
finish execution.

III. HYBRID EVOLUTIONARY ALGORITHM

This section presents the hybrid evolutionary algorithm
(HEA) specifically designed to solve the HMPSP by means of
specialized genetic and local search operators. The procedure
for generating the initial population is presented in Section III-
A while Section III-B describes the structure of the variable-
length chromosome used to encode the task schedule in
the HEA. Sections III-C and III-D describe the specialized
crossover and mutation operators used to explore the search
space respectively. Two local search heuristics that exploit
the intrinsic structures of a HMPSP solution are presented
in Section III-E. Finally, the algorithmic flow of the HEA is
presented in Section III-F.

A. Initialization

The initial population is built using a random list schedul-
ing heuristic which ensures that the precedence relationships
among the tasks are preserved. The initialization process starts
with the assignment of priority to each task to be scheduled.

262

TABLE I

DESCRIPTION OF INPUTS TO TASK GENERATOR

Parameter Description Values
CCR Communication-to-computation ratio {0.5,1,1.5,2}

meanproc Mean processing time {10}
hpe Variance of processing time {0.25,0.5,0.75}
ht Degree of heterogeneity {0.25,0.5,0.75}
dpe Width of DAG {0.5}
dt Degree of dependency {0.25,0.5,0.75}
n Number of processors {15}
m Number of tasks {100}

TABLE II

GENERATED PROBLEM SETS

Problem Set CCR mean proc hpe ht dpe dt n m
1 0.5 10 0.25 0.25 0.5 0.5 15 100
2 1 10 0.25 0.25 0.5 0.5 15 100
3 1.5 10 0.25 0.25 0.5 0.5 15 100
4 2 10 0.25 0.25 0.5 0.5 15 100
5 1 10 0.25 0.25 0.5 0.25 15 100
6 1 10 0.25 0.25 0.5 0.75 15 100
7 1 10 0.5 0.25 0.5 0.5 15 100
8 1 10 0.75 0.25 0.5 0.5 15 100
9 1 10 0.25 0.5 0.5 0.5 15 100
10 1 10 0.25 0.75 0.5 0.5 15 100

In this paper, the priority of the i-th task is simply the sum of
the number of its parent tasks and its’ priority as given below

PrTi = | �Pi| +
∑

j∈| �Pi|
PrTj (4)

where �Pi is the set of parent tasks of the i-th task.
The list of task is then sorted in the order of increasing

priority. This prority list is also used during the genetic
processes to maintain the precedence requirements. Instead
of assigning the tasks to the earliest available PE, the lowest
priority task is assigned to the PEs randomly. The rationale is
to provide the initial population with a wider range of diversity
to start with.

B. Variable PE Chromosome

EAs operates on a set of encoded parameters to explore the
solution space, providing researchers with the flexibility to
design an appropriate representation that fulfills some criteria
such as ease of implementation or exploitation of the problem
structure. For simplicity, the chromosome is often represented
as a fixed-structure and the embedded variables are usually
assumed to be independent and context insensitive. As men-
tioned before, the precedence relations among the tasks must
be satisfied in the HMPSP. In [5], [27], the chromosome is a n-
dimensional array denoting the n tasks to be allocated and the
encoded variable in each element represents the PE scheduled
to execute the associated task. While such an encoding scheme
is simple to implement, it does not consider the order in which
the various tasks are processed and the evolved schedules will
not satisfy the precedence constraints. On the other hand, Wu
et al [29] considered a representation which encodes task-
processor pairs and the order in which the pairs appear in the
chromosome determines the order in which the tasks will be
performed on each processor.

In this paper, a variable length chromosome which encodes
the complete schedule including the task allocation and the
order of execution is implemented. Similar to [15], [30],
the proposed representation encodes several computational
task schedules, where each schedule represents the list and
order of the task to be executed on the associated PE. Each
computational task schedule will henceforth be denoted as PE
schedule. In contrast to the mentioned works, the proposed
variable length chromosome does not enforce a fixed number
of schedules, i.e. the length of the chromosome varies with
the actual number of PE utilized as shown in Fig. 1. As
noted by Hou et al [15], this form of representation has two
distinct advantages: 1) it maintains the precedence relations
for the tasks executed in a PE and 2) considerations of
precedence are confined to each PE schedule. Additionally,
such a representation is efficient and facilitates the design of
problem-specific genetic operators.

C. PE Schedule Crossover

The crossover operation applied by most EAs to solve
HMPSP generally involve the swapping of random segments
of tasks or processes between chromosomes which do not
preserve the quality of the different PE schedules. It should
be noted that the makespan of the multiprocessor schedule
is dependent on the fitness of the constituent PE schedules.
Therefore, in contrast to existing works, this paper adopts a
crossover which allows good PE schedules to be shared with
other chromosomes in the evolving population.

The operation of the crossover is illustrated in Fig. 2. In
the PE schedule crossover, a random PE schedule from each
parent is selected for crossover. In the case where one of
the selected chromosomes has only one PE schedule, only a
schedule associated with a different PE is selected and inserted
from the other parent. The selected PE schedule of one parent
will either be inserted into the other chromosome as a new

263

1

2

3

4

5

6

7

8

9

10 14

11

12

PE1 PE3 PE4 PE6

13

15

PE Schedule

Tasks to be executed by
the associated PE

PEs used in the encoded solution

PE1

PE2

PE3

PE4

PE5

PE6

Job 1

1 2 3 4

5 6 7 8 9

14 15

10 11 12 13

Job 2 Job 3 Job 4 Job 5

(a) (b)

Fig. 1. Illustration of (a) the variable length chromosome and (b) the associated schedule.

7

8

10

15

2

6

9

11

13

1

3

4

PE1 PE5 PE6

5

Parent 2

14

12

1

3

5

7

2

4

10

11

15

6 12

8

9

PE1 PE3 PE4 PE6

13

14

Parent 1

7

8

10

15

PE1

Child 2

1

3

5

7

2

4

10

11

15

6

8

9

PE1 PE3 PE4

13

Child 1

12

PE6

14

2

6

9

11

13

PE5

14

12

PE6

14

2

6

9

11

13

PE5

14

(a) (b)

1

5

7

8

PE1

Child 2

1

3

5

7

4

10

15

8

PE1 PE3 PE4

Child 1

12

PE6

2

6

9

11

13

PE5

14

3

PE6

4

2

6

9

11

13

PE5

14

12

14

10

15

(c)

Fig. 2. Illustration of the PE schedule crossover for the various steps (a) Selection of random PE schedule, (b) Swapping of selected PE schedules, and (c)
Deletion of duplicates and random insertion of missing tasks to form child chromosome

264

schedule or replaces the original schedule of that particular PE,
if it is present. Duplicated tasks are deleted while missing tasks
are randomly inserted to the other original PE schedules. The
new PE schedule will remain intact. To ensure the feasibility
of chromosomes after the crossover, the priority list computed
at the beginning of the evolutionary process is used to sort
the task assigned to each PE in ascending order to preserve
feasibility.

D. Specialized Mutation

This paper applies three different specialized mutation op-
erators to improve the diversity of evolving population.

• Partial Exchange: The partial exchange operation in-
volves a number of partial schedule exchanges. For each
exchange, two PE schedules are randomly chosen and
a segment of the selected schedules is then randomly
selected and exchanged. In addition, a mechanism is in
place such that no PE schedules will not be selected twice
in a particular partial exchange operation.

• Schedule Merge: This operation concatenates the two
PE schedules with the least number of tasks in the
chromosome. Intuitively, this operation is not applicable
to solutions with only one PE schedule.

• Schedule Split: This operation first search for the PE
schedules with the most number of tasks, and breaks
the schedule into two at a random point. After which,
the upper segment of the divided schedule is assigned
randomly to either an idle PE or inserted into the PE
schedule with the least number of tasks.

For every chromosome undergoing the mutation process, only
one particular mutation operator is applied each time. Similar
to the PE Schedule crossover, each PE schedule is sorted based
on the priority list at the end of the mutation operation.

E. Local Search

1) Partial list scheduling: The optimality of the multipro-
cessor schedule is only as good as the last completion time
of the task. The idea of partial list scheduling (PLS) is to
split up the workload among the PEs with the best and worst
completion times to improve the makespan. The first step in
this heuristic is to select the appropriate PEs from which all
tasks are extracted and placed in a list. These PEs are selected
based on two criteria, either the PE has a completion time
that is greater than the upper quartile or its completion time
is lower than the lower quartile of the PE completion times.
In the next step, the extracted tasks are sorted based on their
priorities determined at the start of the evolutionary process.
The tasks, in the order of their priorities, are then assigned
to the best possible processor, i.e, the one which allows the
earliest start time considering ITC. The new solution will be
compared against the original and the better of the two will
be retained.

2) Duplication scheduling: In multiprocessor scheduling
with task interdependencies, some PEs will be idle during
various time slots because some task require data from its
parent tasks which are assigned to other processors. The idea

Duplication S cheduling L ocal Search
FOR All PE Schedules

FOR All Task in PE Schedule
Compute Tidle before task execution
Determine parents of task
Sort parents in descending order of completion time
FOR Parents

Determine Texe required if d uplicated
IF Execution time< Tidle

Duplicate parent
Update Tidle: Tidle = Tidle - Texe

ELSE
Break

END
END

END
END
Sort task based on priority
Evaluate new solution
IF new solution is better than old solution

Replace old solution
END

Fig. 3. Pseudocode of the Duplication Scheduling Local Search

of duplicating tasks in these idle time slots is to reduce the
waiting and ITC delays incurred to reduce the makespan. The
pseudocode of the duplication scheduling (DS) heuristic is
shown in Fig. 3.

The task duplication procedure is conducted iteratively
every task in the order of its execution for each PE. The
heuristic first determines the idle time which is the difference
between the actual and earliest possible start time of the task.
It then attempts to duplicate the parent tasks, in the order of
their contribution to the delay, until the idle time is used up.
The new solution will be compared against the original and
the better of the two will be retained.

F. Algorithmic Flow

The algorithmic flow of the HEA is shown in Fig. 4.
The optimization process begins with the initialization of the
population based on the procedure described in Section III-
A. After the initial evolving population is formed, all the
chromosomes are evaluated and ranked according to their
final execution time in the population. Following the ranking
process, an archive population is updated. In this paper, an
archive is applied to store all the best solutions found during
the search. The archive maintains a fixed number of solutions
and the updating process consists of a few steps. The evolving
population and the archived solutions are first combined and
all duplicate solutions are deleted. The remaining solutions in
the combined population are then inserted into the archive in
the order of increasing rank until the archive is filled.

The binary tournament selection scheme is then performed
on the archive. Random pairs of individuals from the evolving
archive are selected and from each pair, the chromosome with
the lower rank is selected for reproduction. This procedure
is performed until the mating pool is filled to preserve the
original population size. The genetic operators consist of
the PE schedule crossover and the three mutation operators

265

Start

Build Initial
Population

Stopping Criteria
met?

Evaluate and
Rank Solutions

Update Archive

Tournament
Selection

Mutation

Local Search
Criteria met?

Perform Local
Search

Evaluate and
Rank Solutions

Update Archive

Return
Solution

YES

No

Yes

No

PE Schedule
Crossover

Fig. 4. Flowchart of HEA

presented in Section III-D and III-E respectively. The PLS
and DLS are applied to the archive populations at a fixed
interval, TLS , for better local exploitation in the evolutionary
search. Different schemes for incorporating the two local
search methods will be explored in Section IV. The evolution
process is repeated until the stopping criterion is satisfied.

IV. SIMULATION RESULTS AND ANALYSIS

This section presents the extensive simulation results and
analysis of the proposed HEA. The simulations are imple-
mented using Matlab on an Intel Pentium 4 2.8 GHz computer
and the results shown are based on the final makespan value
of the best archived solution. Thirty independent runs are
performed for each of the test functions in order to obtain
the statistical information, such as consistency and robustness
of the algorithms. The various parameter settings for the
algorithm are listed in Table III. Section IV-A demonstrates
the effectiveness of the proposed local search operators, as
well as analyzes how the various settings of the local search
heuristics will affect algorithmic performances. Section IV-B
investigates the impact of different problem characteristics on
HEA performances and how it compares against conventional
heuristics.

A. Effects of Local Search

The HEA incorporates the local search heuristics in order
to exploit local schedules in parallel with global evolutionary
optimization. In this section, the dynamics and parameter
settings of PLS and DS are examined. Note that T1 and T4 are

TABLE III

PARAMETER SETTING FOR HEA

Parameter Settings

Populations Population size 20;
Archive size 20.

Chromosome Variable length chromosome;
Selection Binary tournament selection
Crossover rate 0.9
Mutation rate 0.3
Evaluations 600
Local search frequency, TLS 5

used in the study here since it has been observed in previous
works that ITC will have severe impact on schedule optimality.

Six settings of HEA with various implementations of the
local search operators are investigated as shown in Table IV.
No local search is applied in setup 1 while only one heuristic
is applied for each solution undergoing local search for setups
2-6. In setup 2, either PLS or DS is randomly applied. In
the third and fourth setup, only one heuristic is applied. The
asterisk (∗) in setup 5 and setup 6 denotes which local search
is activated first as they are alternately executed.

The evolutionary trends of the makespan averaged over 30
runs for T1 and T4 are plotted in Fig. 5(a)-(b). From the
plots, it can be observed that the application of local search
results in significant dips in the convergence trace, particularly
in instances where DLS is applied. Fig. 5(a)-(b) distinctively
demonstrate the effectiveness of local exploitation in the HEA
as the five setups which incorporates local search performed

266

0 40 80 120 160
250

260

270

280

290

300

310

320

330

340

350

Evaluation

M
ak

es
pa

n
Setup1
Setup2
Setup3
Setup4
Setup5
Setup6

0 40 80 120 160
440

460

480

500

520

540

560

Evaluation

M
ak

es
pa

n

Setup1
Setup2
Setup3
Setup4
Setup5
Setup6

(a) (b)

Fig. 5. Evolutionary trend of the six setups for (a) T1 and (b) T4

TABLE IV

DIFFERENT CASE SETUPS TO EXAMINE CONTRIBUTION OF THE LOCAL

SEARCH HEURISTICS.

1 2 3 4 5 6

PLS - Random Yes - Alternate∗ Alternate
DLS - Random - yes Alternate Alternate∗

better as compared to setup 1. The performances of setup 2,
setup 3, setup 5, and setup 6 are comparable, although the
combination of DLS being activated first and PLS in setup
6 seems to have a slight edge for both problems. On the
other hand, setup 5 which activates PLS first has a slower
convergence rate for both T1 and T4.

The effectiveness of duplicating tasks in reducing overall
completion time is also evident since the four settings of setup
2, setup 3, setup 5 and setup 6, are able to find solutions
with makespans that are significantly lower than those found
without local search and by PLS only. Interestingly, the
application of DLS seems to have more impact on T1 with
an average of 10% improvement as compared to 5% for T4
which has a more severe CCR restriction. Setup 6 will be used
as the default setup for all subsequent experiments.

B. Investigation of Other Test Problems

In order to examine the effectiveness of HEA, a comparative
study with conventional LSH and DSH is carried out based
upon the 10 benchmark problems described earlier. As before,
30 simulation runs are conducted for all test problems and
the results are summarized in Table V. LSH and DSH are
deterministic heuristics and only one solution is produced for
each problem.

As noted before in Section IV-A, the effectiveness of task
duplication is evident by comparing the performances between
LSH and DSH. The difference between the two conventional
heuristics becomes even more apparent as the CCR or degree
of heterogeneity increases. On the other hand, the HEA
outperforms both heuristics for all test problems. With the
exception of T1, it can be observed from Table V that the
third quartile makespan value attained by HEA is much lower

as compared to LSH and DSH for the benchmark problems.
This also implies that the HEA is capable of evolving good
schedules consistently.

V. CONCLUSION

In this paper, we proposed a hybrid evolutionary algorithm
(HEA) specifically designed to solve the HMPSP by means of
a variable-length chromosome, as well as specialized genetic
and local search operators. The starting population is initial-
ized using a random list scheduling heuristic to preserve the
precedence relationships between the tasks. The evolutionary
process is driven two primary variation operator – a schedule
crossover and three variants of the mutation operator – partial
exchange, schedule merge, and schedule split; the local search
operators on the other hand consists of a partial list scheduling
and duplication scheduling approach. Our results showed that
the proposed genetic operators, when coupled with the local
search operators performed better than in the case where any
one of the operators were omitted. For future work, we would
like to examine, in more detail, the performance of these
scheduling algorithms for larger-sized problems, and if given
the opportunity, implement them on actual multiprocessor
systems.

REFERENCES

[1] I. Ahmad and Y. K. Kwok, “Optimal and near-optimal allocation of
precedence-constrained tasks to parallel processors: Defying the high
complexity using effective search techniques,” in Proceedings of 1998
International Conference on Parallel Processing , pp. 423-431, 1998.

[2] I. Ahmad and Y. K. Kwok,“On Exploiting Task Duplication in Parallel
Program Scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no. 9, pp.872-892, 1998.

[3] S. Baskiyar and C. Dickinson, “Scheduling directed a-cyclic task graphs
on a bounded set of heterogeneous processors using task duplication,”
Journal of Parallel and Distributed Computing , vol. 65, no. 8, pp. 911-
921, 2005.

[4] T. Blickle, J. Teich and L. Thiele, “System Level Synthesis Using
Evolutionary Algorithms,” TIK-Report, Nr. 16, 1996.

[5] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran,
A. I. Reuther, J. P. Robertson, M. D. Theys, B. Yao, D. Hensgen and
R. F. Freund, “A comparison of eleven static heuristics for mapping
a class of independent tasks onto heterogeneous distributed computing
systems,” Journal of Parallel and Distributed Computing , vol. 61, no.
6, pp. 810837, 2001.

267

TABLE V

SIMULATION RESULTS OF LSH, DSH AND HEA FOR THE VARIOUS BENCHMARK PROBLEMS.

LSH DSH HEA
1st quartile Median 3rd quartile

T1 241.2088 238.4844 236.5115 236.5379 238.6333
T2 339.3681 333.3969 313.3463 315.4760 317.0450
T3 438.3704 400.8312 368.8242 371.2755 372.9756
T4 496.6009 473.6011 440.6800 442.7701 443.913
T5 301.7023 299.9843 293.0909 295.1409 297.8713
T6 342.1177 340.6002 319.5344 321.5004 323.6641
T7 350.9543 307.5352 295.8357 298.9078 304.0759
T8 322.0563 316.2526 275.6143 281.5325 284.9465
T9 388.6536 371.4102 337.1911 342.0356 344.8998
T10 454.2243 415.2846 391.3507 395.1606 397.0869

[6] E. K. Burke, P. Cowling and P. De Causmaecker, “A memetic approach
to the nurse rostering problem,”Applied Intelligence, vol. 15, no. 3, pp.
199-214, 2001.

[7] P. E. Coll, C. C. Ribeiro, and C. C. de Sousa, “Test instances
for scheduling unrelated processors under precedence constraints, ”
http://www-di.inf.pucrio.br/celso/grupo/readme.ps, 2002.

[8] R. C. Correa, A. Ferreira and P. Rebreyend, “Scheduling Multiprocessor
Tasks with Genetic Algorithms,” IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 8, pp. 825-837, 1999.

[9] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task Scheduling in Parallel
and Distributed Systems Prentice Hall, 1994.

[10] T. Davidovic and T. G. Crainic, “New benchmarks for static task
scheduling on homogenous multiprocessor systems with communication
delays, ” Publication CRT, 2003-04, Centre de Recherche sur les
Transports, Universite de Montreal, pages 123-136, 2003.

[11] M.K. Dhodi, EH. Hielscher, R.H. Storer and J. Bhasker,“Datapath Syn-
thesis Using aProblem Space Genetic Algorithm,” IEEE Transactions
on CAD, vol. 14, no. 8, 1995.

[12] P. M Franca, A. Mendes and P. Moscato, “A memetic algorithm for the
total tardiness single machine scheduling problem,”European Journal
Of Operational Research, vol. 132, no. 1, pp. 224-242, 2001.

[13] M.R. Garey and D.S. Johnson, Computers and Intractability, A Guide
to the Theory of NP-Completeness. W.H. Freeman and Co., 1979.

[14] N. G. Hall and M. E. Posner, “Generating experimental data for com-
putational testing with machine scheduling applications,” Operations
Research, vol. 49, pp. 854-865, 2001.

[15] E. S. Hou, N. Ansari and H. Ren, “A Genetic Algorithm for Multi-
processor Scheduling,” IEEE Transactions on Parallel and Distributed
Systems, vol. 5, no. 2, pp. 113-120, 1994.

[16] H. Ishibuchi, T. Yoshida and T. Murata, “Balance between genetic
search and local search in memetic algorithms for multiobjective
permutation flowshop scheduling,”IEEE Transactions on Evolutionary
Computation, vol. 7 no. 2, pp. 204-223, 2003

[17] H. Kasahara and S. Narita, “Practical Multiprocessor Scheduling Algo-
rithms for Efficient Parallel Processing,” IEEE Transactions on Com-
puters, vol. 33, no. 11, pp. 1,023-1,029, 1984.

[18] B. Kruatrachue and T.G. Lewis, “Duplication Scheduling Heuristic, a
New Precedence Task Scheduler for Parallel Systems,” Technical Report
87-60-3, Oregon State University, 1987.

[19] Y. Kwok and I. Ahmad, “Efficient Scheduling of Arbitrary Task Graphs
to Multiprocessors Using a Parallel Genetic Algorithm,” Journal of
Parallel and Distributed Computing , vol. 47, no. 1, pp. 58-77, 1997.

[20] Y. Kwok and I. Ahmad, “Static Scheduling Algorithms for Allocating
Directed Task Graphs to Multiprocessors,” ACM Computing Surveys,
vol. 31, no. 4, pp. 406-471, 1999.

[21] T.G. Lewis and H. El-Rewini, Introduction to Parallel Computing. New
York: Prentice Hall, 1992.

[22] B.S. Macey and A.Y. Zomaya, “A Performance Evaluation of CP List
Scheduling Heuristics for Communication Intensive Task Graphs,” in
Proceedings of the Joint 12th International Parallel Processing Sympo-
sium and Ninth Symposium on Parallel and Distributed Programming ,
pp. 538-541, 1998.

[23] P. Merz and B. Freisleben, “Fitness landscape analysis and memetic
algorithms for the quadratic assignment problem,” IEEE Transactions
on Evolutionary Computation , vol. 4, no. 4, pp. 337-352, 2000.

[24] Y. S. Ong and A. J. Keane, “Meta-Lamarckian learning in memetic

algorithms,” IEEE Transactions on Evolutionary Computation , vol. 8,
no. 2, pp. 99-110, 2004

[25] Y. S. Ong, M. H. Lim, N. Zhu, and K. W. Wong, “Classification of
Adaptive Memetic Algorithms: A Comparative Study,” IEEE Transac-
tions On Systems, Man and Cybernetics - Part B , vol. 36, no. 1, pp.
141-152, 2006.

[26] C. Papadimitriou and M. Yannakakis, “Toward an Architecture Indepen-
dent Analysis of Parallel Algorithms,” SIAM J. Computing, vol. 19, pp.
322-328, 1990.

[27] G. Ritchie and J. Levine,”A hybrid ant algorithm for scheduling
independent jobs in heterogeneous computing environments,” in Pro-
ceedings of the 23rd Workshop of the UK Planning and Scheduling
Special Interest Group, 2004.

[28] T. Tsuchiya, T. Osada, and T. Kikuno, “Genetic-Based Multiprocessor
Scheduling Using Task Duplication,” Microprocessors and Microsys-
tems, vol. 22, pp. 197-207, 1998.

[29] A. S. Wu, H. Yu, S. Jin, K. C. Lin and G. Schiavone, “An incremental
genetic algorithm approach to multiprocessor scheduling,” IEEE Trans-
actions on Parallel and Distributed Systems , vol. 15, no. 9, pp. 824-834,
2004.

[30] Y. W. Zhong, J. G. Yang, H. N. Qi, “A Hybrid Genetic Algorithm for
Task Scheduling in Heterogeneous Computing Systems,” in Proceed-
ings of the Third International Conference on Machine Learning and
Cybernetics, pp. 2463-2468, 2004.

[31] A. Y. Zomaya, C. Ward and B. Macey, “Genetic Scheduling for Parallel
Processor Systems: Comparative Studies and Performance Issues,”
IEEE Transactions on Parallel and Distributed Systems , vol. 10, no.
8, pp. 795-812, 1999.

268

