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Abstract: The birefringence of an optical fiber resulting from an asymmetry of the index 
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change is lower than 5x10-4. However, the birefringence can reach 5x10-6 for large values 
of index change. The numerical method presented could be applied to the modeling of 
other asymmetric index profiles. 
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I. INTRODUCTION 

 

Penalties associated to polarization mode dispersion (PMD) become increasingly 

important at high bit rate, for example, systems transmitting at 40 GBit/s can typically 

tolerate PMD of only a few ps. In this context, it is important to minimize the 

contribution of optical fiber components to the total PMD of the fiber link. The 

differential group delay (DGD) of photo-induced gratings is related to the fiber 

birefringence. In the case of chirped gratings used for dispersion compensation, a fiber 

birefringence as low as 10-6 can result in an average DGD of several ps [1-2]. In these 

gratings, it is also likely that polarization dependent loss (PDL) will be coupled to the 

PMD at some wavelengths because the birefringence will cause the different polarization 

modes to interact with different parts or the grating. In other applications, the fiber 

birefringence can be beneficial, for example, to allow the operation of fiber laser devices 

in a single polarization or to generate a beat signal from the two orthogonal polarized 

modes [3-5]. In all cases, a photo-induced component can be added to the initial 

birefringence of the pristine fiber during the grating writing process. In the early days of 

the development of fiber Bragg gratings, the anisotropy of the photo-induced index 

change was studied in the context of the realization of polarization rocking filters [6-7]. 

More recently, the origin of the photo-induced birefringence was investigated in order to 

improve the performance of components developed for telecommunication applications 

[8-9]. 

 Previous studies have identified two contributions to the photo-induced birefringence 

of gratings: the orientation of the writing beam polarization and the asymmetry of the 
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index change in the transverse plane [8-9]. The former contribution is attributed to 

preferential bleaching of defects having their dipole moments aligned with the 

polarization of the writing UV beam. This anisotropy of the photo-induced index change 

is observed, for example, during the writing of rocking filters with visible light 

propagating in the core of a birefringent fiber [7]. In the case of external UV writing, 

Erdogan and Mizrahi showed that the photo-induced birefringence is reduced by 

orienting the UV polarization in the incidence plane, almost along the optical fiber axis 

(p-polarization). Depending on the optical fiber type and exposure conditions, the 

birefringence was then reduced by factors of 3 to 10 in comparison to s-polarization 

writing [8].  To explain the remaining birefringence, the transverse asymmetry of the 

index profile, as well as a small contribution from the UV light still polarized in the 

transverse plane, must be considered. The contribution from the transverse asymmetry 

was investigated and reduced by Vengsarkar et al using double exposure of the fiber [9]. 

After a first exposure, the optical fiber was rotated by 180 and exposed on the other side 

to obtain a more uniform index change over the fiber core cross-section. A reduction of 

the birefringence by more than 75 % was observed with the double exposure technique 

under both p- and s-polarization writing condition. This result indicated that the 

transverse asymmetry of the index profile could have a major impact on the photo-

induced birefringence.  

 In the study of Vengsarkar et al., the ratio of the photo-induced birefringence was 

only reduced by a factor of two when changing the polarization of the writing beam from 

s- to p-polarization. Erdogan and Mizrahi showed a reduction by a factor of 6 for a 

similar hydrogen-loaded standard communication fiber under similar exposure 
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conditions. The importance of the photo-induced birefringence caused by the asymmetry 

of the transverse profile index thus seemed very sensitive to exposure conditions. 

Erdogan and Mizrahi also observed that the amount of remaining birefringence varied 

with the optical fiber type, with no direct correlation to the photosensitivity or the 

Germania content.  

 In this study, we numerically investigate the contribution of the transverse 

asymmetry of the index change profile to the photo-induced birefringence. To describe 

the transverse asymmetry of the index profile, we use a simple model that is presented in 

Section 2. It is based on an exponential variation of the index change across the fiber 

core. Saturation of the index change near the illuminated side is also considered. To 

compute the photo-induced birefringence, a numerical method based on a finite-element 

analysis is used to determine the fiber modes and their propagation constants for different 

asymmetric index profiles. The numerical method based on a full vectorial formulation is 

introduced in Section 3. Section 4 presents the numerical results and investigates the 

asymmetry profiles that lead to the largest birefringence. Discussions of the results and 

conclusion follow in the next sections.          

 

II. MODELING OF THE TRANSVERSE PROFILE 

 

To precisely model the transverse profile of the index change, the exact phenomena at the 

origin of the photosensitive response would need to be known in detail. For example, a 

model based on the bleaching of defects by one-photon absorption was investigated to 

describe the growth of fiber Bragg gratings [10]. However, rather than measuring an 
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exponential growth of the index change, it was found that the modification of the index 

change was better described by a power law ∆n=Ctb with b≅0.3 and a proportionality 

factor, C, function of the writing intensity [10]. The saturated index change also depends 

on intensity and, at a given time, this index change can be described by a similar power 

law ∆n=DIf with, in this case, f≅0.5 and a  proportionality factor, D, that varies with time. 

The discrepancy between the one-photon absorption model and the actual growth of the 

index change is not surprising considering that other mechanisms, such as stress relief 

and densification, can contribute to the resulting index change. An expression describing 

the growth of the index change as a function of time and intensity is therefore not 

available at this time. Furthermore, to determine the intensity across the fiber core, the 

model would also have to include the local bleaching of the absorption band as a function 

of time and intensity. The focalisation of the incident UV gaussian beam by the air-

cladding interface would also have to be considered to establish the distribution of 

intensity incident on the core. In the absence of a complete model, we have therefore 

chosen to investigate the impact of an asymmetric transverse profile using a simple 

function to describe the variation of the index change across the core. 

The index change is assumed to follow a decreasing exponential function across 

the fiber core with possible saturation of the index change over a region of length δ on 

the illuminated side. We choose here a coordinate system where the Z-axis coincides with 

the longitudinal axis of the fiber, the X-Y plane with the transverse section of the fiber 

and the origin of the system with the center of the fiber core. The transverse index change 

profile across the core is then 
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where the parameter α determines the asymmetry of the index profile and the product Aα 

is the maximum photo-induced index change at the fiber core boundary. The function 

)y,x( represents the distance of a given point from the illuminated side of the core, e.g. 

22 yx)y,x( −ρ+= for illumination along the x-axis, with 222 yx ρ≤+ and ρ is the 

fiber core radius.  Without saturation of the index change and neglecting bleaching of the 

absorption band, equation (1) would represent an index change proportional to the 

absorbed intensity where A would be related to the photosensitive response characteristic 

of the material.  In germanium doped silica fiber, the absorption coefficient of the 240 nm 

band is typically of several hundreds dB/mm and even higher in hydrogen loaded fiber 

[11]. For example, absorption of 200 dB/mm corresponds to an absorption coefficient of 

0.046 µm-1. Although the parameter α may be closely related to the absorption 

coefficient, for the above mentioned considerations related to the complexity of the 

modeling of the photosensitive response, we prefer to refer to the parameter α as the 

asymmetry coefficient.  

Vengsarkar et al. measured the transverse refractive index profile of a fiber 

exposed to UV radiation [9]. The index profile was measured along the x-axis of the fiber 

core after exposure to UV radiation. To fit the proposed expression to the profile 

presented in [9], the index profile of the pristine fiber would have to be known and it 

should be subtracted from the index profile to obtain the index change. We do not know 

the precise shape of the index profile, but the author specify that the fiber was a hydrogen 
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loaded standard telecom fiber with ∆=0.3%. Therefore, after subtracting a uniform step 

index profile from the data presented in [9], a fit of (1) to the transverse profile of the 

index change gives an asymmetry coefficient α=0.2 µm-1, a maximum index change at 

the core-cladding interface of Aα=0.0067 and a saturation length of 0.5 µm. Figure 1 

shows an example of a transverse index profile at y=0 for Aα=0.005 and α=0.2 µm-1 with 

and without saturation.   

 

III. NUMERICAL METHOD AND MODAL ANALYSIS 

 

Different numerical methods could be used to solve Maxwell’s equations in the 

frequency domain for analyzing the modal properties of waves propagating in optical 

waveguides. Among them, the finite-element method (FEM) is one of the most powerful 

and flexible numerical tools because it enables one to analyze any arbitrarily shaped 

waveguide, including asymmetrical shape as discussed previously. For investigating 

correctly polarization effects like birefringence and PMD, a full vectorial approach is 

preferable over conventional scalar approaches in which polarization effects are included 

as a perturbation. Various full-vectorial formulations of the FEM exist including the 

vectorial E


- and H


-field formulations [12] and the mixed (Ez,Hz) formulation [13]. 

Although the last one has been proved to be successful for evaluating precisely PMD and 

modal chromatic dispersion in highly birefringent fibers, the advantage of using the 

vectorial field formulations is that it reduces the Maxwell’s equation to a generalized 

eigenvalue problem. In this paper, a vectorial field formulation is used. 
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A. Vectorial Field Formulation 

 

Depending whether the E


- or H


-field formulation is used, solving the Maxwell’s 

equation is equivalent to solving the vectorial partial differential equation 

 

( ) 0qkp 2
0 =ϕ−ϕ×∇×∇

 ,     (2) 

 

where 1p =  and q=n2(x,y,z) when ϕ  is the electric field E


 while p=1/n2(x,y,z) and 

1q = when ϕ  is the magnetic field H


. Here thermal stress and absorption effects are 

disregarded so it is assumed that the optical waveguide materials are  isotropic and non-

absorbent with a real scalar refractive index distribution n(x,y,z). As usual, 

k0=2π/λ0  represents the wave number where 0λ  is the wavelength in the vacuum. To 

simplify the discussion text, we assume the electric field formulation for the remaining of 

this paper. Similar results are obtained by using the H


-field formulation. 

 

B. Variational formulation 

 

In this paper, because of the assumptions on the dielectric material, we can assume that 

the field components Ex, Ey, Ez of each propagating mode  
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 take real value only [14, Chap 3, section 30-4] and, consequently, complex valued 

computation can be avoided. Taking this type of z-dependence into account by 
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substituting (3) into equation (2), one is lead to the following partial differential equations 

spectral problem 
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When a FEM is used to solve a partial differential equation, this one must be 

rewritten in an equivalent variational formulation before being discretized. We will 

derive the variational problem (weak problem) from (4) in a straightforward manner. For 
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and transforming the result by integration by parts, one is lead to 
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where Ω∂  is the boundary of Ω , Ω  being the transverse section of the fiber. The vectors 
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denote respectively the normal outward vector to Ω∂   and an unitary tangential vector to 

Ω∂ . 

Assuming electric wall boundary condition 0=×
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If β, (Et, Ez) is a solution to problem (8), the fact that the field product of (Et, Ez) with 

each test function has to be zero, implies that the E


 field residual of problem (4) is also 

zero. However the residual relative to (4) of the solution to the discretized problem (10) 

below is only zero in some average sense since the test functions are restricted to the 

finite dimensional space generated by the basis functions. 

 

C. Discretization 
 

The discretization of the surface integrals (8) in the transverse plane of the fiber is 

performed by using a vector edge finite element [15]. The transverse component of the 

field is approximated by a linear edge element 1P  (polynomial of order one) while the 

longitudinal component is approximated by a quadratic nodal element 2P  (polynomial of 

order 2). Edge elements are appropriate because, unlike the standard nodal finite element, 
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they do not produce spurious solutions and the boundary conditions at material interfaces 

are well enforced.  

The transverse and the axial components in each element e is expanded as 
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where T stands for matrix transpose, { }etE  is the edge variable for the transverse 

component, { }ezE the axial nodal values, { }U , { }V  contain the P1 polynomial expression 

for the edge vector basis and { }N  describes the P2 polynomial coefficients for the basis of 

the nodal elements. More details on the shape function polynomial coefficients and the 

finite element basis can be found in [15]. 

Application of Galerkin procedure to (8) leads to the quadratic eigenvalue 

problem 
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which is written in matrix form 
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xVVx ∂∂= /}{}{  and yVVy ∂∂= /}{}{ . The summation ∑
e

is carried over all the 

different finite element triangles eΩ . The substitution zz ÊE β−=  gives the following 

generalized eigenvalue problem  
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It's interesting to point out that problem (12) has the same size as (11) and involves only 

sparse matrices. We use the ARPACK library [16] to compute numerically the 

eigenmodes. A shift-and-invert method has been introduced to compute precisely the 

effective index 0/ kβ  of the modes polarized along the fast and slow axis of the fiber.  

Figures 2A and 2B show typical meshes realized with the software Mefisto [17]. 

There are 11473 nodes and 5712 elements in Figure 2A as compared to 2089 nodes and 
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1032 elements in Figure 2B. Numerical simulations show that the high density of 

triangles around the interface between the core and the cladding of the fiber, as shown in 

Fig. 2B, is required to ensure the polarization effects are well taken into account. 

Simulations also reveal that the use of a number of elements greater than 5712 does not 

improve significantly the accuracy of the results. So all the numerical results presented in 

the next section have been realized with the mesh illustrated in Fig. 2A. Note also that the 

radius of the computational window  is eight times larger than the one of the core.  In this 

case, the electric wall condition can be imposed on the solution at the exterior boundary, 

without producing non-physical reflections since the field decreases exponentially 

through the boundary.  

 
IV. RESULTS AND DISCUSSION 

 
We investigate numerically the birefringence properties of a single mode optical fiber 

with a silica cladding (ncladding=1.444, ncore=1.4493 and ρ=4.15 µm). The calculations 

were performed at the wavelength of 1.53 µm. The effective index of the modes 

polarized along the fast and the slow axis were calculated, using the method described in 

Section 3, as a function of the asymmetry coefficient α and of the maximum index 

change Aα.  The contour plots presented Fig.3 show the contribution of these two 

parameters to the change in the effective index for the fast axis corresponding to the 

mode polarized along the y-axis. Similar plots could be obtained for the mode polarized 

along the slow axis. As expected, a larger asymmetry, α, results in a smaller modification 

of the effective index for the same maximum index change, Aα, at the core-cladding 

interface. Figure 4 shows the graphs of the effective index for the mode polarized along 
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the fast axis as a function of the maximum index change for two values of the asymmetry 

coefficient, α=0.2 µm−1 and α=0.4 µm−1. Once again, similar curves were obtained for 

the mode polarized along the slow axis. It can be seen that the effective index, for both 

polarizations, has a strong linear dependence on the maximum index change with a small 

quadratic contribution. For example, for α=0.2 µm−1, the change in effective index is 

approximately given by Aα/2.  

 The birefringence resulting from the transverse asymmetry was calculated from 

the effective indices of the two modes and is displayed in Figure 5 as a function of Aα 

and α. For a given maximum index change at the core cladding interface, Aα, there is a 

value of the asymmetric coefficient that will maximize the photo-induced birefringence 

typically near α=0.3 µm−1 to α=0.4 µm−1. Figure 6 shows the birefringence as a function 

of the maximum index change for α=0.2 µm−1 and α=0.4 µm−1. Τhe results clearly show 

that the birefringence resulting from the asymmetry in the transverse profile has a 

nonlinear and mostly quadratic dependence on the maximum index change. The effect of 

the saturation of the index change on the birefringence is displayed in Figure 7. It can be 

seen that saturation of the index change over a length of 1.5 µm will increase the 

birefringence by 30%.  

 For the asymmetry of the index profile measured in [9] (α=0.2 µm-1 and 

Aα=0.007), our calculations give a birefringence that would be 3x10-6 to 4x10-6, 

depending on the length over which the index change saturates. This value is in 

reasonable agreement with the range of the photo-induced birefringence measured by 

Erdogan and Mizrahi after exposure to UV light with p-polarization, typically 4x10-6 to 

5x10-6 [8]. However, Vengsarkar et al. measured a birefringence reaching 1x10-5 under 
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similar exposure conditions. It is not clear why the birefringence measured in the latter 

case was so much larger than in the former experiment, reaching half the value of the 

birefringence measured under exposure to s-polarized light. At this point, our calculations 

do not seem to lead to such a large value of birefringence caused by the transverse profile 

alone. However, before a definitive conclusion can be drawn, the exact transverse profile 

of the photo-induced index change would have to be determined, not an easy task as 

modifications of stress components could also contribute to the observed index change 

and to the birefringence. 

 The calculations show that, while the change in the effective index grows linearly 

with the index change at the core-cladding interface, Aα, the dependence of the 

birefringence resulting from the transverse asymmetry is quadratic. In their paper, 

Erdogan and Mizrahi suggest that the growth of the birefringence is proportional to the 

growth of the total index change. Although this statement may be correct when 

considering the component of the photo-induced birefringence resulting from the 

polarization of the UV writing beam, our calculation predict that the contribution to the 

birefringence caused by transverse asymmetry of the index profile, should grow 

quadratically with the index change. As a consequence, the birefringence resulting from 

asymmetry in the index profile becomes important (>10-7) only for very strong effective 

index change (>10-3).  
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V. CONCLUSION 

 
In previous experimental studies, side illumination of optical fibers to UV irradiation has 

been shown to result in photo-induced birefringence. An asymmetry of the index change 

in the optical fiber transverse plane was proposed as a possible cause to this increased 

birefringence. In this study, the birefringence resulting from a transverse asymmetry of 

the core refractive index profile was investigated numerically. The transverse asymmetry 

was represented by a simple model based on an exponential decay of the photo-induced 

index change across the core of a standard step index fiber. This model is characterized 

by two parameters namely the amplitude of the photo-induced index change at the core-

cladding interface and the coefficient of the exponential term characterizing the 

asymmetry of the profile. To evaluate the order of magnitude of the resulting 

birefringence, the propagation constants of the two orthogonally polarized fundamental 

modes were found using a full-vectorial finite element method. To achieve the required 

accuracy in the calculations, a large number of elements were needed, particularly at the 

core-cladding interface, to precisely evaluate the polarization effects. The main advantage 

of the finite element method presented here is that it could be easily adapted to the study 

of other asymmetric index profiles including anisotropy due thermal stress effects.  

 The numerical results show that the linear dependence of the effective index on 

the photo-induced index change is almost the same for the two modes polarized along the 

fast and slow axis. Also, the resulting birefringence displays a quadratic dependence on 

the amplitude of the photo-induced index change. An asymmetry coefficient near 0.4 µm-

1 was found to maximize the photo-induced birefringence. Saturation of the index change 

across a small portion of the core can also lead to an increase in the calculated 
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birefringence. Although the exact variation of the index change in the transverse plane of 

a UV exposed fiber can differ from the simulated profile, it is believed that the results 

give an order of magnitude estimate of the resulting birefringence. More specifically, the 

calculations indicate that the birefringence from the asymmetry of the transverse profile 

will be negligible, i.e. smaller than 10-7, when the effective index change is lower than 

5x10-4. For high effective index change, for example 5x10-3, the birefringence can reach 

5x10-6 or slightly higher. 

 The impact of this photo-induced birefringence on the performance of fiber 

grating components remains to be determined. To adequately calculate the polarization 

properties of fiber gratings, mode coupling taking place at the boundary between the 

unexposed and the exposed fiber segments will have to be considered. In most cases, the 

photo-induced birefringence and the birefringence of the pristine fiber are expected to be 

of the same order of magnitude. The orientation of the initial birefringent axis of the 

optical fiber during UV exposure will therefore have an impact on the resulting 

polarization properties of the gratings.     
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FIGURE CAPTIONS 
 
Figure 1. Graph of the index change profile. A) Two dimensional index change profile 
with α= 0.2 µm-1 and Aα =0.005. B) The index change along the x-axis for Aα=0.005 
and α=0.2 µm-1 without saturation (solid line) and with saturation over a length δ=0.5 µm 
(dashed line). 
 
Figure 2. Finite element discretization of the fiber cross-sections with A) 5712 triangles 
and 11473 nodes and B) 1032 triangles and 2089 nodes. 
 
Figure 3. Effective index of the modes polarized along the fast axis as function of the 
parameters α and Aα.  
 
Figure 4. Effective index of the modes polarized along the fast axis as function of Aα for 
α=0.2 µm-1 (solid line) and 0.4 µm-1 (dashed curve). 
 
Figure 5. Contour plots of the photo-induced birefringence as a function of the 
parameters Aα and α,  A) for α smaller than 0.2 µm-1 and B) for α up to 1 µm-1.  
 
Figure 6. Birefringence as a function of the photosensitive response Aα for α=0.2 µm-1 
(solid line) and 0.4 µm-1 (dashed curve). 
 
Figure 7. Effect of the saturation of the index change on the birefringence calculated for 
Aα=0.005 and  α=0.2 µm-1. 
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FIG 1B 
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Figure supprimée pour réduire la taille du fichier 
 

 
FIG 2A 
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Figure supprimée pour réduire la taille du fichier 
 

 
 

FIG 2B 
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FIG 5A 
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FIG 5B 
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