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Abstract

This paper presents a novel application of the moving least square differential quadrature
(MLSDQ) method to the solution of electromagnetic field problems. The MLSDQ is a
new method proposed very recently for solution of nonlinear partial differential
equations and has been successfully applied to the study of the bending behaviour of
plates. In this paper, the applicability and accuracy of the MLSDQ method to
electromagnetic problems will be examined. Two examples of electrostatic field and
eddy current problems are studied and the numerical results are in excellent agreement
with the analytical solutions.

1. INTRODUCTION

The electromagnetic field problems are in general
governed by the Maxwell equations. Analytical
methods can only solve problems with simple or
regular boundary conditions. For practical engineering
problems with complicated boundary conditions,
various numerical methods, such as the finite element
method, finite difference method, boundary element
method etc., have been developed to solve the
Maxwell equations that govern the electromagnetic
field problems. In this paper, a novel numerical
method, the moving least square differential
quadrature method (MLSDQ) [I], is applied to solve
electromagnetic problems.

The differential quadrature (DQ) method, which was
introduced by Bellman et at [2] in 1972 to solve
nonlinear partial differential equations, has gained
popularity recently in the analysis of the mechanical
behaviour of plate structures [3]. More recently, this
method has been applied in the analysis of
electromagnetic field problems [4,5]. The DQ method
is highly efficient in solving a partial differential
equation in a finite domain with a set of predefined
boundary conditions. The DQ method discretizes the
problem domain by a set of regularly distributed grid
points. The derivatives of a function at an arbitrary
point in the domain can be represented by a weighted
linear combination of the function values at all the

discrete points. Although the DQ method is easy to
apply, there are three major disadvantages associated
with this method. It is difficult for the method to solve
problems with material and geometric discontinuities;
the method requires the discrete points to be regularly
distributed; and the method is only applicable to
simple such as rectangular and circular domains.

Liew et at [I] proposed very recently a modified DQ
method, MLSDQ method, in their study of the
bending behaviour of plates. The MLSDQ method
employs the moving least square (MLS) technique to
replace the normal Lagrangian interpolation scheme of
the DQ method in the determination of the weighting
coefficients and hence can overcome the
abovementioned problems associated with the DQ
method.

This paper exams the applicability and accuracy of the
MLSDQ method in the analysis of electromagnetic
problems. The mathematical formulation of the
method is presented. Two examples, electrostatic
potential distribution in a rectangular trough and eddy
currents in a long rectangular copper bar carrying an
ac current, are presented to illustrate the applicability
of the method. The convergence of the MLSDQ
method is illustrated by the numerical results with
different number of grid points and the numerical
results are verified by the analytical solutions for the
two selected examples.
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2. MATHEMATIC FORMULATION

The MLSDQ method [1] is briefly presented in this
section. The differential quadrature representations of
the derivatives of a function are derived based on the
moving least square technique.

Assume that a function u(x) is defined by a partial
differential equation in domain n,where x=x, x=(x,y),
and x=(x,y,z) represent the one-, two- and three-
dimensional problems, respectively. The domain can
be discretized by a set of discrete spatial points
{Xi}i=J.2 .... N, where N is the total number of nodes.
Note that the distribution of the discrete points does
not need to be regular.

In the original DQ method, the derivatives of u(x) at
an arbitrary point x in the domain can be
approximated as a weighted linear sum of the function
values at all the discrete points [2]. The MLSDQ
method, however, employs the moving least square
technique to derive the weighting coefficients of the
DQ representations for derivatives of u(x). The
approximate function value can be expressed as
follows:

m
U h (x) = I p; (x)a; (x) = pT (x)a(x)

i=1

where u\x) is the approximate value of u(x), Pi(X) a
finite set of basis functions of a complete space, ai(x)
the unknown coefficients, pT(X)=[p/(x) pix) ... Pm(x)],
a(x)=[ alex) alex) ... am(x)] and m is the number of
basis functions that form a complete space.

Applying the moving least square technique, we can
determine the unknown coefficients a(x), which is a
function of the spatial coordinates x, by minimizing
the following weighted quadratic form:

IT (a) = ~)i7(X-X; )(u" (x.) _U;)2 = I.liJ;(x)(p1' (x,)a(x)-u;)2
;=1 i=l

where 11 is the number of the discrete points in the
neighbourhood of x, u, the nodal parameter of u(x) at
point Xi, and lU;(x)=lU(x-x;)a positive weight function
which decreases as IIx-xiII increases. The weight
function is equal to unit at the point if Xi=X and
vanishes when Xi is beyond a prescribed influence
domain of x. The size of the domain of influence, or
support size, determines the number of discrete points
11 required in (2).

Minimizing (2) with respect to a(x), one can obtain
the unknown coefficients as follows:

a(x) = A-I (x)B(x)u (3)

where
n

A(x) = IliJ'i(x)p(x;)pT (Xi)
;=1

B(x)=[liJ1(X)p(xl) liJ2(x)P(X2) ... liJn(x)p(xn)] (5)

and
u=[u1 u2 ... ulJ]T (6)

(4)

Substituting (3) into (I), the approximate function
u"cx) can be expressed in terms of the nodal values as

II

uh(x)= I¢;(X)ui
;=1

(7)

where the shape function ¢;(x) is given by

(8)

The first order derivatives of u(x) can be directly
derived from (7) as follows:

(I)
au(x) au h (x) ~ a¢i (x)
-- ""--- = £..J ------'-----i1.

ax ax i=1 ax I

and

au(x) auh(x) In a¢;(x)-- ""--- = ------'-----i1.
ay ay ;=1 ay I

(10)

(9)

a¢;(x) and a¢;(x)where are the weighting
ax ay

coefficients of the first-order derivative of u(x) in x
and y directions at any spatial point x. The weighting
coefficients for the higher derivatives of u(x) can be
derived from (7) in similar manners.

3. EXAMPLES

(2) The MLSDQ method is applied in this section to
calculate two selected electromagnetic field problems.
The weight function used in this study is selected as
follows [1]:

liJj(x)=

eXIi-(llx- xill/ C)2 --exp(-r / C)2)

1- exp(-(r / c)2)

o

where r is the domain of influence and c = r/4. The
finite set of basis functions Pi(X) is set to be a 2-D



complete polynomial of the second degree in the
present study.

3.1 The electrostatic boundary value problem

The first example is an electrostatic boundary-value
problem of an infinitely long trough. Figure I shows
the cross sectional dimensions [6].
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Figure I.Potential V(x,y) due to a conducting
rectangular trough

3.1.1 Analytical solution

This is a two dimensional boundary value problem,
and the electrostatic potential V(x,y) is governed by
the Laplace's equation:

with the given boundary conditions:

V(x=O,O::S;y::S;a)=O

V(x=b,O::S;y::S;a)=O

V (0 s x::S; b, y = 0) = 0

V(O::S;x::S; b, y = a) = Va

The analytical solution of this problem is [6]:

. n1lX . h nlly4V cc Sln--Sln--

V(x,y)=_o L b b
l( . h nna

n=J.3,5 n Sin--
b

3.1.2 Numerical solution

The MLSDQ method is applied to solve this problem.
We assume V,,=100, and a = b = 10. The domain of
influence r = 5 is adopted in the calculation. The
problem domain is divided by uniformly distributed
grid points along the x and y directions. Equations (12)
to (16) can be rewritten as

(18)

nL¢i (xj,Yj)v, =0
i=l

and

(19)

n

L¢i (x K ' YK ) VK = Va
i=l

(20)

where subscripts I, J and K represent the inner grid
points on the left, right, top, and bottom edges,
respectively, and ~, V, and \!K are the nominal
potentials at the grid points. Solving (18) to (20), the
nominal potentials can be obtained. The potential
value V at an arbitrary point in the domain can be
calculated by (7).

Figure 2 shows the convergence of potential V at the
central point of the trough with the increase of number
of grid points from 7 x 7 to 17x 17 . It is observed that
the potential V approaches the analytical solution
monotonically as the number of grid points increases.
Good convergence is achieved as the number of grid
points reaches 17x 17 .

(12)
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Figure 2. Convergence of potential Vat the central
point of the trough

(17)

Table I lists the values of electrical potentials at
several selected points obtained by analytical and
MLSDQ methods. When calculating the potential V
using (17), the number of II is truncated at 101. It is
observed that the MLSDQ results are in excellent
agreement with the analytical solution.

3.2 The steady state eddy current problem

An eddy current steady state problem is used as
another example to illustrate the versatility and



accuracy of the method. Consider a conductor carries
a time varying current i(t) inserted in a rectangular
iron slot. Figure 3 shows the conductor cross sectional
dimensions.

Table I. Analytical and MLSDQ solutions of
electrical potential V in the trough

x (m)
0.125 0.250

y (m) Analytical MLSDQ Analytical MLSDQ

0.125 1.709 1.706 3.148 3.146
0.250 3.698 3.696 6.797 6.794
0.375 6.312 6.310 11.540 11.540
0.500 10.070 10.070 18.200 18.200
0.625 15.940 15.940 28.040 28.030
0.750 26.260 26.260 43.200 43.180
0.875 48.290 48.200 66.900 66.830

x (m)
0.375 0.500

y (m) Analytical MLSDQ Analytical MLSDQ

0.125 4.100 4.097 4.432 4.429
0.250 8.834 8.830 9.541 9.537
0.375 14.930 14.920 16.090 16.090
0.500 23.290 23.280 25.000 24.990
0.625 35.070 35.060 37.320 37.310
0.750 51.580 51.560 54.050 54.030
0.875 73.640 73.620 75.430 75.410
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Figure 3. Cross sectional dimensions of a
recraneular iron slot.

3.2.1 Analytical solution

To simplify the problem, we first assume the
permeability of iron is infinite (f1 ---7 oo ) and thus the
flux lines can be regarded as perpendicular to the
surface of iron. Secondly, assume the electromagnetic
field is one dimensional, i.e. H = H,(y)i, and

E = E:Cy)k. Finally, assume the current to be
sinusoidal.

From the Maxwell equations the phasor H, can be
presented as

H = C . ea y + c2 . e -a y
x I (21 )

where cj and c2 are constants to be determined by

the boundary condition, a = 1+ j and 15 = J 2
tJ toot:0

is the skin depth, and o: is the angular frequency.
Substituting boundary conditions

(22)

-1 ah -onH,I =-=c1e +c~e
"y=b a -

(23)

into (21), we have

-1
CI =-c2 =-x -aha eab_e

(24)

and

-1 ell) -e-ll)' -1 sinhzzv
H =-x =-x--~ (25)

x a eab _e-ah a sinhab

The current density for the one-dimensional case can
be derived as:

J _ = -dH, = al x cosh «v
-: dy a sinhab

(26)

3.2.2 Numerical solution

When using the MLSDQ method to address this
problem, the two-dimensional case is considered. The
governing differential equation for this problem may
be derived as follows.

Define a vector magnetic potential A. From the
Maxwell's equations, the current density can be
derived as

aA. -v aA.J. =-(5-' -uv¢=-(5-'- +J, (27)'at at s

where ¢ is the electrical potential and - (5 aAz is theat
eddy current density induced by time varying



magnetic field. J, = -aV ¢J is the excitation current
generated by the applied electric potential.

As the current varies with time sinusoidally, the above
equation can be expressed by phaser as

(28)

where J is the specified current density and can bes

calculated as

I
J.=-

s ab
(29)

At the boundary between the conductor and the iron,
the flux lines are perpendicular to the boundary
surface. Therefore we have

~=Oan
where n is the normal direction (x). At the boundary y
= b, we have

I aA-
B = 0 = --' or A. = constant

y y~h ay ,

The MLSDQ method is employed to solve the
problem defined by (28) to (3]). The implementation
of the MLSDQ method for this problem is similar to
the problem as given in Section 3.] .2. The dimensions
of the problem domain are a = ]0 mm and b = 50 mm,
and the parameters are the frequency of the excitation
current f = 50 Hz, the rms value of the excitation
current I = 5000A, the conductivity o=2.7x107

, and
the permeability Po=41txlO-7

, respectively.

Grid points are uniformly distributed in the domain
and set to be ] Ix51. The domain of influence in the
MLSDQ method is chosen to be r = 0.005. In order to
compare the numerical results with the ]-D analytical
solution, the constant in (3]) is calculated from (26)
and (27) and the value is given by

A_ = 0.00430]4 + 0.0031324) (Aim) (32)

Table 2 presents the current density values along the y
axis obtained by the I-D analytical and the 2-D
MLSDQ methods, respectively. It can be seen that the
MLSDQ results are in close agreement with the
analytical solution. This confirms the applicability and
accuracy of the MLSDQ method in solving the steady
state eddy current problem.

Table 2. Current density along the central line of the
conductor calculated by the analytical and
MLSDQ methods

(30)

J: (Azrnrrr')
y (mm) Analytical MLSDQ

0 2.684 2.684
3 2.686 2.686
6 2.7]7 2.717
9 2.846 2.846
12 3.170 3.170
15 3.769 I 3.769
]8 4.683 4.683
21 5.928 5.928
24 7.522 7.52]
25 8.136 8.136
26 8.796 8.796
29 11.074 ] 1.074
32 ]3.872 ]3.872
35 17.315 17.3]5
38 2].566 21.566
4] 26.834 26.833
44 33.377 33.376
47 41.5]9 41.517
50 5].658 51.658

(3]) 4. CONCLUSION

This paper studies the applicability and accuracy of
the MLSDQ method in solving electromagnetic field
problems. Compared with other numerical methods
for solving partial differential equations, the MLSDQ
method features in simple formulation and fast speed.
Two examples of electrostatic and eddy current
problems are employed to verify the effectiveness of
the MLSDQ method for electromagnetic problems.
The numerical results obtained by the MLSDQ
method are in excellent agreement with the
corresponding analytical solutions for the two selected
examples. The application of the MLSDQ method on
electromagnetic problems with material discontinuity
and irregular domains will be studied in the future.
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