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Abstract— The choices of gray-level image feature matching
criteria and window sizes are considered. Features, as pixels
enclosed in windows around interest points, are matched by
operating on statistical measures where a match is declared in
accordance to the result of a decision process. The decision error
should be minimized as well as a small size window used in
order to minimize the computational complexity. In this work,
the maximum discrimination criteria is applied in the decision
for a guaranteed bound on the matching error. The window size
is determined by applying the principle of nonparametric sign-
test, that satisfies the requirement for an adequate representation
of the probability distribution function needed in conducting a
match. The effectiveness of the proposed approach is verified
by matching features in image sequences captured by a mobile
robot, to the features detected and stored in the first frame.

I. INTRODUCTION

Image and video processing techniques have found wide
applications in areas such as medical imaging [1], surveillance
[2], mobile robotics [3] and many others. These techniques,
to name a few, include noise filtering, contrast enhancement,
object segmentation, object recognition and feature match-
ing. Here, an image feature is treated as a collection of
neighbourhood pixels, forming a window, and possessing
salient characteristics. Particularly, image feature matching or
similarity checking is anticipated to play a critical role in
the effectiveness of image processing in the above mentioned
applications.

In practice, the use of image processing methods in mobile
robotics for navigation [4] and localization [5] has been very
attractive. It is also becoming popular with the employment
of cameras as sensors for their low costs, low power con-
sumptions and reduced payloads on mobile platforms. There
are application examples in the context of localizing a mobile
robot while producing a map of its operating environment
[6] [7] and the references therein. The former work makes
use of scale-invariant keypoints [8], characterized by the
corresponding image descriptors, for their improved matching
robustness against viewpoint changes. On the other hand,
the latter work uses the gradients of the features in order
to track them across sequential frames. Essentially, these
methods require the extraction and tracking of salient image

features across the captured image frame sequences so as to
complete a task assigned to the robot. However, irrespective
of the description or representation of the features [9], it is
a mandatory requirement to track features by checking their
similarities with respect to those obtained in previous frames
or templates stored in a database as references.

Image feature matching can be viewed as image retrieval
or registration processes as discussed in the surveys [10]
and [11], where various techniques of feature matching had
been reviewed. They range from area-based approaches by
using correlation and frequency spectrums to that of feature-
based methods using spatial relationships and invariance de-
scriptors. Alternatively, statistical distance measures are also
widely applied in checking feature similarities. In this regard,
measures encompass those from the Bhattacharyya distance
to that of the Euclidean distance [12] are available with a
reducing order of complexity. Furthermore, their performances
have been compared in an empirical study [13] together with
other statistical measures. There are also feature matching
tests particularly targeted at corner features, for example in
[14] their performances were evaluated. In general, these
approaches were developed with the focus on the use of
statistical distances as a measure of image feature matching.
A critical limitation in the distance based tests, however, is
the need for a probability density function in describing the
features. In view of this, a non-parametric test for similarity
was proposed in [15]. Other methodologies adopted in feature
matchings include those of information theoretic approach
[16] which makes use of the entropy of pixels within an
image window. An attempt using the multi-resolution distance
measure was reported in [17] where sub-windows are formed
by reducing the image sizes consecutively. There was also a
similarity check by focusing on the correlation, changes in
contrast and average intensity between features [18] as an
alternative to statistical tests.

It is interesting to note that most approaches cited above re-
quire a specification of a window for a feature, hence, leads to
the need for the choice of a proper window size. However, this
issue has only been considered case-by-case in many reported
applications. Furthermore, most image similarity checks are
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devoted to a comparison against thresholds where it is non-
trivial to determine their optimum values. Consequently, this
results in the lack of an assurance of the test quality, in
particular, the probability of error incurred in declaring a
match of similar images features.

In this work, the matching of gray-level image features is
cast as a statistical decision problem. The problem scenario
consists of matching features, e.g., corners, extracted from a
sequence of images to that extracted from the first frame as
references stored in a database. The differences in the gray-
level intensities between two features from different frames are
used as the test statistic. Histograms or probability distribution
functions (pdf)1 are constructed from these samples of image
differences where the number of samples is determined by
the size of the window embedding the feature. By invoking
the Neyman-Pearson criteria with a user specified bound on
the false-alarm rate, a decision of matching is declared. While
proceeding in this manner, the principle of nonparametric sign
test is adopted to determine the number of samples required,
hence the window size, to provide a representative pdf to be
used in the decision process. Image sequences captured from
a monochrome camera mounted on a mobile robot navigating
in an indoor environment are then used to verify the developed
method.

The rest of the paper is organized as follows. In Section
II, image feature matching measures are briefly reviewed and
the motivation for this work is formulated. The matching
procedure and the determination of window size are developed
in Section III. Experimental results are given in Section IV to
verify the proposed approach. Finally, a conclusion is drawn
in Section V.

II. FEATURE MATCHING

The matching of image features or checking for their
similarities has been tackled by a number of methods [10],
[13]. They operate on the gray-level pixels within a pre-
specified window while metrics or distances D are derived
and then compared to some threshold γ in order to declare a
match, i.e. D ≷ γ. These metrics can be broadly classified
into histogram-based and pixel-based measures. Metrics in
the former category require the construction of a histogram
while the latter use the intensities of the pixels directly.
Typical and popular metrics are briefly presented below with
an investigation into their limitations that motivate the present
work.

A. Pixel-based Metrics

Consider two image features X1 and X2, each has an
assumed window size of n × n containing m = n2 pixels
giving X1 = {X1

1 , · · · , Xm
1 }, for example.

1A histogram is the counts of occurrences of a particular gray-level while a
distribution is a normalized histogram such that the area under the distribution
is unity. These terminologies will be used interchangeably unless ambiguities
arise in the context.

1) Mahattan distance: This distance simply measures the
sum of absolute difference between the feature pixels which
is equivalent to the L1 − norm.

D =
m∑

k=1

|Xk
1 − Xk

2 |. (1)

2) Euclidean distance: This is the conventional measure
based on the multi-dimensional geometric distance, alterna-
tively, it is the L2 − norm.

D =

√√√√ m∑
k=1

(Xk
1 − Xk

2 )2. (2)

3) Canberra distance: The summation of the ratio between
the difference and sum of pixel intensities is used as the metric
in this test.

D =
m∑

k=1

{
|Xk

1 − Xk
2 |

|Xk
1 + Xk

2 |

}
. (3)

4) Mahalanobis distance: The concept of normalized sta-
tistical distance between distributions, assumed Gaussian, is
employed in this metric.

D =
√

(X1 − X2)T Σ−1(X1 − X2), (4)

where Σ is the covariance of vectorized features (X1,X2) and
the superscript T denotes a vector transpose.

B. Histogram-based Metrics

Consider an image feature X1, as in the pixel-based ap-
proaches, containing L gray-levels, e.g., L = 256. A histogram
is constructed from counting the occurrence (frequency) of
each gray-level such that H = {H(0), · · · , H(L−1)}, H(i) ∈
[0, m] and i = 0, · · · , L − 1.

1) Histogram difference: This is a simple check against the
absolute differences of the elements in the two histograms,

D =

L∑
i=0

|H1(i) − H2(i)|. (5)

2) Histogram intersection: This metric attempts to award
higher scores to features having similar histograms. That is,

D =

∑L

i=0 min{H1(i) − H2(i)}∑L

i=0 H2(i)
. (6)

3) χ2 test: This metric operates on testing the difference
between the two histograms in the χ2 sense.

D =

L∑
i=0

(H1(i) − H2(i))
2

H1(i) + H2(i)
. (7)

4) Kolmogorov Smironov test: The maximum difference
between the cumulative histograms is used as the test metric,
that is

D = max
i

{|Hc
1(i) − Hc

2(i)|} , (8)

where the superscript c stands for the cumulation of the
histogram elements.
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C. Limitations of Distance Metrics

Metrics making use of pixel intensities and histograms are
justified by their own merits according to the problem domain
and their effectiveness have been verified in many successful
applications. However, there are several critical issues that
need to be considered. First, it is difficult to determine the
proper threshold, γ, which can guarantee a bounded error in
declaring a match. It is also not being addressed, in most cases,
on the choice of an optimal window size, m = n2, which
is to be related to the matching error. In the following, it is
attempted to formulate a proper window size and to propose
a matching method on the basis of satisfying a user-specified
matching error limit.

III. MATCHING THRESHOLD AND WINDOW SIZE

Matchings of image features are required before some
assigned tasks, e.g., navigating a mobile robot using a vision
sensor, can be accomplished. Accordingly, the declaration of
a match between two image features is cast as a decision
problem. By invoking decision theories [19], it is revealed
that there are two kinds of errors incurred during a decision
process. First, an error occurs when the features are different
but declared as matched, i.e., a false-alarm, α. On the other
hand, a declaration is not made when the features are actu-
ally similar, hence, producing a miss-detection, β, where the
power2 of the test is given by 1 − β.

A. Matching Threshold

Consider the scenario where two features, e.g., corners [14],
are to be checked for their similarity. Assume that a window
size of m = n2 pixels, has been determined and pixels are
extracted into two arrays, I and J . Their absolute differences
are obtained from

Euv = |Iuv − Juv|, (9)

where uv = 1, · · · , m is the pixel index in the window.
The problem now becomes a decision to declare a match if

the differences are small in order to obtain a low false-alarm
rate. Moreover, it is also required to accept a match when the
differences are large for a bounded miss-detection error rate.
In order to achieve these two objectives, a probability density
function (pdf) describing the pixel differences is required to
calculate the false-alarm and miss-detection errors, α and β.

In the ideal case, let the two features be exactly matched
when all the pixel differences are zero. This phenomenon can
be visualized as a histogram, on the pixel differences, which
contains an impulse at the first bin corresponding to the zero
difference, i.e.,

H(0) = m, H(1 ≤ i ≤ L − 1) = 0. (10)

On the other hand, features not matched will have peaks in
the histograms departing from the first bin, e.g.,

H(0) < min
i
{H(i)}, i �= 0. (11)

2Precisely, α is the probability of making a false-alarm while β is
the probability of incurring a miss-detection, and the power indicates the
probability in declaring a match when the features are similar.

As an example, consider the instance when comparing a
database feature in Fig. 1(a) to a candidate feature, Fig. 1(b),
in the current frame where the camera has been displaced.
False-alarms can be treated as being caused by interferences
coming from other features which are indicated by the dotted-
squares in Fig. 1(b).
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Fig. 1. Image features to be matched, matched case. (a) database feature
(solid square), (b) candidate feature to be compared (solid square), interfering
features (dotted square). Test statistics for a matched case. (c) histograms
(solid - from feature to be compared, dotted - from other features), (d)
cumulative histogram (upper - power, lower - significance and differences
- dotted line), (e) ROC curve, ♦ is the decision point.

The pixel differences (between the database and candidate
feature) then form the histogram as plotted in the solid-line
in Fig. 1(c) with a peak at the 19th difference and having the
distribution at 0.09. Another histogram, derived from all the
pixel differences due to the interfering features is shown with
the dotted-line. The power of the test is given by the cumula-
tive sum of the distribution of the candidate pixel difference
(upper curve in Fig. 1(d)) while the significance is illustrated
by the lower curve. At a significance of 0.10, the power is
0.23 at the 12nd pixel difference. The separation between
the power and significance is indicated by the dotted-line in
the figure. This curve is an illustration of the discriminative
capability of the test and a positive discrimination is derived
in this case. An assessment of the test is also available from
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the receiver operating characteristic (ROC) curve as depicted
in Fig. 1(e). The decision point is above the diagonal and
confirms a discriminative test. In this example, it is assured
that the decision for a match is made with a test that bounds a
false-alarm rate within 0.10. The power of the test is obtained
at 0.23 and is larger than the false-alarm rate.

Another example of feature matching is shown in Fig. 2(a)
and 2(b). In this case, the candidate feature is intentionally
selected to be different from the database feature as an
illustrative counter-example. The candidate feature is located
on the lower-right hand corner of the image.
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Fig. 2. Image frames to be matched, no-match case. (a) database feature
(solid square), (b) input features (feature in solid square to be compared,
features in dotted square are interferences). Test statistics for no-match case.
(c) histograms (solid - from feature to be compared, dotted - from other
features), (d) cumulative histogram (upper - power, lower - significance and
differences - dotted line), (e) ROC curve, ♦ is the decision point.

The histogram, Fig. 2(c), illustrates that the pixel differences
at small values are sparse and, consequently, demonstrates a
low similarity between the database and candidate feature. The
power and significance curves are shown in Fig. 2(d). It is
noted that at the 0.10 false-alarm level the power is almost zero
(at 0.03), hence, there is no discrimination and a declaration
for a match cannot be made in this case. Furthermore, the
decision point shown in the ROC curve, Fig. 2(e) is below the
diagonal line and no discrimination is available from the test.

The above development has demonstrated that the matching
decision can be made on the basis of the decision error
probability calculated from the distributions of the candidate
and interfering features. However, it is important to ensure
that the distribution is capable of representing the statistics of
the pixel differences. Intuitively, in order to obtain a properly
represented distribution, a large number of samples (pixel
differences) is required. Specifically, this is related to the size
of the window that embeds the feature to be compared.

B. Window Size

An exact representation of the feature image difference dis-
tribution is deemed impracticable unless an infinitive number
of samples is drawn from the differences. This observation
then leads to the need for determining the number of samples
such that the representation error is bounded.

The strategy adopted here, to determine the window size, is
to minimize the difference between two distributions (one as
a general distribution, see (11), and the other is the available
histogram under test). Sample points are drawn to perform
tests in the sense of goodness-of-fit, while the test samples
required and the window size are related to the significance
of the test of goodness.

Assume that a true distribution T {ε} describing the feature
differences is available, where ε = ε(uv) is an element
in the difference E , see (9). Here, the available distribution
is constructed from the feature differences, while the ideal
distribution is obtained from all-zeros elements (for exact
feature match). Then a set of S sample pairs are drawn
from the true distribution and the available feature differences
distribution simultaneously. That is

X = {ς1, · · · , ςS}, ςi = {Euv, Tuv}, i = 1, · · · , S, (12)

where each ςi contains a feature difference value from the
image and another value from the true distribution.

As sample pairs are sequentially drawn (index i increases),
evidence is being collected to reject the claim that the available
distribution corresponds to the ideal match. After a sufficient
number of samples are drawn, the claim can be rejected with
some specified confidence. By invoking the non-parametric
sign test technique, see Appendix, a positive sign is assigned
to a sample pair if their difference is below some threshold
(e.g., 1 gray-level). The number of samples required can be
derived by relating the number of signs to the significance ε
of the test by

S∑
n=κ+1

(
S
n

) (
1

2

)S

= ε. (13)

The needed number of samples κ is then converted to the
window size as the minimum number m = n2 (for n = 3, · · ·
and odd) such that m > κ.

From tables of cumulative binomial distribution [19], the
error incurred from 8 signs out of 9 samples is 0.002. As a
further illustration, this significance can be reduced to 0.0003
if 15 signs are available from 16 samples. That is, the test
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significance reduces as more samples are used. With a 256
gray-level image, there are 256 bins in the error histogram.
In order to cover the histogram, we choose a window size
of n = 25 giving m = n2 = 625 pixels. In this case, if the
bins are filled correctly by more than half of the error samples
e.g. 342 > 625/2, then the error in determining a proper pdf
representation becomes 1 −

∑625
i=342 B(i, 625, 0.5) = 0.0082

with an error less than 1%.

IV. RESULTS

Tests of feature matching are conducted on a sequence of
images obtained from a camera mounted on-board a mobile
robot, while moving in a anti-clockwise circular trajectory in
an indoor laboratory environment. The mobile robot travels on
a flat terrain such that the images captured are different from
each other in a sequentially shifting manner.

The well proven Harris detector is used to extract the fea-
tures which represent corners of the furniture in the laboratory.
In order to verify the proposed method, features in subsequent
frames are matched to those obtained in the first frame. Notice
that in this test scenario, features disappear from the camera
field-of-view after about 20 frames (due to the characteristic
of the camera lens) and re-appears when the robot returns to a
similar spot where the feature was last seen. This arrangement
specifically tests for the ability to match features at different
viewpoints.

The sequence captured from the on-board camera are
200 × 150 (width×height) 256-level black-and-white images.
Snapshots of the image sequence are shown in Fig. 3. A total
of 500 frames are stored and the matching is performed off-
line on the MATLAB� platform. Examples are shown for the
early stage: frames 2 to 5, the mid-travel phase: frames 200
to 212 and late-stage: frames 413 to 423.

In the figures, the first reference frame is depicted on the
bottom-right in each sub-figure shown. When point features
are matched, lines from the top-left plots are drawn to their
corresponding points at the bottom-right (first frame) plots. In
the early stage (Fig. 3(a), 3(b)), images are captured while
the mobile is at similar distances to the features as stored
in the first frame. Matchings are satisfactory while the robot
is turned slightly in the anti-clockwise rotation. In the mid-
travel stage (Fig. 3(c), 3(d)), the robot is displaced at a longer
distance from its location when the first image was taken. This
is evident as the chairs appear on the right hand side that were
not previously seen. Here, notwithstanding the interference
from the newly observed features, matching to the original
features are not degraded. At the late travel stage (Fig. 3(e),
3(f)), the robot returns to a location approximately the same
as the mid-travel phase. Satisfactory matching results are still
maintained as illustrated. In summary, the proposed image
feature matching approach is robust to plane rotation and
longitudinal translation of the camera.

V. CONCLUSION

Matching of image features are studied in this paper.
Difficulties and limitations in determining threshold-based

matching methods, including pixel-based and histogram-based
matrices, are revealed. This paper proposed a hypothetical
testing approach that is able to relax the need to find such
thresholds while the matching performance is related to a
guaranteed decision error bound. Furthermore, the choice of
window size that contains the feature is discussed. Matching
examples are given with satisfactory performances using the
proposed methodology and its effectiveness is further verified
by matching features from a sequence of images captured by
a mobile robot.
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APPENDIX

The sign test [19] is a hypothesis testing method that
operates independently of the test statistic distribution. The
basic principle is developed from testing the median of a
distribution. The test problem may be described by

m1 : P{zs > 0|m1} = 1/2

m2 : P{zs > 0|m2} = p > 1/2,
(14)

where zs is the sample drawn, and (m1, m2) are the messages
transmitted from the corresponding hypothesis.

Since the test makes use only the sign of the difference
between the hypothesis, then a change of variable gives

wi = u(zi) =

{
1, zi > 0
0, zi ≤ 0

. (15)

The problem statement can be re-written as

P{wi|m1} =

{
1/2, wi = 0
1/2, wi = 1

(16)

and

P{wi|m2} =

{
1 − p, wi = 0
p, wi = 1

. (17)

In terms of wi, a likelihood ratio can be written as

∧(w) =
p

P
S

i=1
wi(1 − p)S−

P
S

i=1
wi

( 1
2 )S

. (18)

Putting S∗ =
∑S

i=1 wi as the number of positive observa-
tions, the likelihood ratio test becomes

∧(w) = [2(1 − p)]S
(

p

1 − p

)s∗

≷ κ∗, (19)

and taking logarithm to base p/(1 − p), then

S∗
≷ κ∗ − S log p

1−p

[2(1 − p)] = κ. (20)

The threshold is determined by setting the false-alarm
probability below, ε, for instance. Since S∗ is the sum of S
Bernoulli random variables, it obeys the binomial distribution.
If message m1 is true, the binomial distribution has parameters
S and 1/2, so that

P{S∗ = n|m1} =

(
S
n

)(
1

2

)n (
1

2

)S−n

=

(
S
n

)(
1

2

)S

.

(21)

The false-alarm is

P{S∗ > κ|m1} =

S∑
n=κ+1

(
S
n

) (
1

2

)S

= ε. (22)

Hence, for a given number of samples S, the smallest value
of κ is sought such that the decision error is bounded by the
specified ε.
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