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Abstract

As the complexity of web systems grows, there is a need to develop an Architecture Framework to
support and guide an organization for web system planning, design, building, deployment and
maintenance. This paper presents an Architectural Framework to classify architectures taking into
account characteristics of web systems. The framework establishes a two dimension matrix. One
dimension separates the concerns of different participants of the web system into perspectives. The
other dimension classifies each perspective into "structure (what), behaviour (how), location
(where) and pattern". The framework is illustrated by examples from a commercial web application.

Introduction

Developing web systems is a complex endeavour that often requires the coordination of efforts
across organizational and technical boundaries. People from different specializations and
organizational units typically use their own technical languages and have unique values and norms.
It is thus critical for organizations and people involved in a system development effort to
understand the Architecture of the system, defined as "the fundamental organization of a system
embodied in its components, their relationships to each other, and to the environment, and the
principles guiding its design and evolution" (IEEE 2000). An Enterprise Architecture (EA) is often
used to help the understanding of the structure and functioning of the systems, and the roles and
expectations of various stakeholders in a complex endeavour such as developing a large information
system. It provides a map of the enterprise and is a route planner for business and technology
change (Platt 2002). Using an Architecture Framework will speed up and simplify architecture
development, ensure more complete coverage of the designed solution, and make certain that the
architecture selected allows for future growth in response to the needs of the business (The Open
Group 2003).

There are various Architecture Frameworks that establish terms and concepts pertaining to the
content and use of architectural descriptions. Among others, the Zachman framework (Zachman
1987),4+1 view model of architecture (Kruchten 1995) and Model Driven Architecture (MDA)
(Object Management Group 2001) received significant attention. Nevertheless, these Architecture
Frameworks were developed for conventional enterprise information systems that do not have
major web components. As the complexity of web systems grows, there is a need to develop an
Architecture Framework to support and guide an organization for web system planning, design,
bulldlnq, deployment and maintenance.

This paper presents an Architecture Framework for web applications taking into account unique
characteristics of web systems. This framework is established in a two dimensional matrix. Each
row of the matrix contains a set of architectures by separating the concerns of different participants
into perspectives. Each perspective is classified to four categories "structure (what), behaviour
(how), location (where) and pattern".

In the followlnq sections, literature review on Architecture Frameworks is conducted in Section 2.
Section 3 presents a Web Application Architecture Framework. Section 4 discusses the findings and
implications. Finally in Section 5, the conclusions are drawn and future research directions are
discussed.

Existing Architecture Frameworks

Information technology related architectures for enterprise, information and data have evolved over
the past 20 years. Among many Architecture Frameworks, Zachman's framework (Zachman 1987,
Sowa et al. 1992) is Widely acknowledged as the most comprehensive and sophisticated.
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Subsequently, the framework has become the basis for many variations of Architecture
Frameworks. An organization does not have a single architecture, but has a whole range of
architectures representing different perspectives and different stages. Common in the frameworks,
an organization's information system is represented by a range of architectures and stakeholders'
perspectives. The Zachman framework presents two dimensions. The first dimension describes
perspectives of stakeholders of the system, includes ballpark view, owner's view, designer's view,
builder's view, subcontractor's view, functioning system and description model. The second
dimension presents six questions what (data), how (function), where (network), who (people),
when (time) and why (motivation). The two dimensions establish a matrix of 5x6 cells. Each cell
describes a unique model, an architecture or a description. Each row represents a distinct and
unique perspective (Zachman 1987).

Another popular framework is Kruchten's "4+1 view model of architecture" (Kruchten 1995) which
consists of five concurrent views: logical view, development view, process view, physical view and
scenario view. The logical view supports what services the system should provide to its users. The
process view concerns non-functional requirements such as performance and availability. The
development view focuses on the actual software module organization on the software development
environment. The physical view describes the mapping of the software onto the hardware. The
elements in the four views are shown to work together seamlessly by the use of a small set of
important scenarios. System engineers approach this "4+1" view model from the physical view,
then the process view. End-users, customers, data specialists see it from the logical view. Project
managers, software configuration staff use it from the development view. Five views are not fully
independent. Not all the views are needed in software architectures (Kruchten 1995).

Similarly, Soni et al (1995) classified software architecture for industrial applications into four
categories: conceptual architecture, module interconnection architecture, execution architecture
and code architecture. Within each category, the structures describe the system from a different
perspective. The conceptual architecture describes the system in terms of major design elements
and the relationship among them. The module interconnection architecture encompasses functional
decomposition and layers. The execution architecture describes the dynamic structure of the
system. The code architecture describes how the source code, binaries and libraries are organized
in the development environment. The four architectures address different though inter-related
engineering concerns.

The Object Management Group's Model Driven Architecture (MDA) (Object Management Group,
2001) defines an approach to create models, refine models and generate code from models.
Participants in a development process might use one of the three types of models: Computation
Independent Models (CIM) that describes the business, Platform Independent Models (PIM) for
architects and designers to describe architecture, Platform Specific Model (PSM) for developers and
testers to generate code. Some aspects of the Zachman framework can be mapped into MDA
(Frankel et al. 2003). In MDA, the choice of viewpoints is a modelling choice.

Some other Architecture Frameworks such as "the Federal Enterprise Architecture
Framework" (FEAF) (Chief Information Officer Council 2001), "Command, Control, Computers,
Communications, Intelligence, Surveillance, and Reconnaissance" (C4ISR) (Department of Defence
1997), and "the Treasury Enterprise Architecture framework" (TEAF) (Chief Information Officer
Council 2000) are developed for government agencies. C4ISR gives comprehensive architectural
gUidance for all of DoD related domains. FEAFpromotes shared development for US federal
processes, interoperability, and shared information among US federal agencies and other
government entities. TEAF provides an Architectural Framework that supports Treasury's business
process in terms of work products (The Open Group 2003).

The nature of web systems is very different from conventional software systems. At technical level,
web systems typically have tighter linkage between business model and technical architecture;
have more pronounced open and modularised architectures; use technologies that change rapidly;
demand effective information design and content management; place more emphasis on user
interface; and place increased importance on quality attributes in mission critical applications that
are directly accessed by external users (Lowe et al. 2001, Lowe et al. 2003a).

The existing Architecture Frameworks do not distinguish these characters. For example, Zachman
Framework matches the concrete entities, processes, locations, people, times, and purposes of the
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real world to the abstract bits in the computer, but is not able to accommodate the later
development of open and modularised architectures of the web. Reusable information, components,
COTS, patterns, more emphasis on user interface, that are characters of web architectures are not
mapped into bUilding metaphor. MDA separates models to CIM, PIM and PSM. Web system contains
element of art. Code of MDA is automatically generated by models in CASEtools. The art element of
web system is ignored. MDA is based on Unified Modeling Language (UML) which has become the
industry standard notation. But UML is insufficient to model user interface and some business
software. UML and MDA are not fully understood by the IT community (Ambler 2004).

We propose a Web Application Architecture Framework to fill in the identified gaps in the existing
Architecture Frameworks. The unique technical characteristics of web system "increased emphasis
on user interface", "significant importance of information and content", and "more pronounced open
modularised architecture" (Lowe et al. 2001) are fused into this framework within user interface
architecture, information architecture and patterns. Testing architecture is modelled to consider the
web characteristics that web is open to external users world-wide and is more susceptible to
security threats.

Web Application Architecture Framework (WAAF)

The Web Application Architecture Framework proposed here separates concerns of a web system
into two dimensions. As shown in Table 1, the horizontal dimension (rows) concerns the different
perspectives of the different participants in the web application development process. The
perspectives are from the viewpoints of business owners, web system users, information architects,
system architects, developers and testers. The vertical dimension (columns) classifies the
architectures into four categories, namely "structure (what), behaviour (how), location (where) and
pattern". Each cell in the framework is a model, a description, or an architecture as appropriate.

The classification in columns of the WAAF Matrix is described in the following abstractions:

Structure: The abstraction of the things comprising the system and their inter-relationship.
Behaviour: The description of the functioning workflow process of the system.
Location: The location map of the things of the system relative to others geometrically.
Pattern: This refers to the reuse of real-world experience harvested from best practices for
successful, rapid and cost-effective system development (Platt 2002). As existing patterns may not
be classified into "structure, behaviour and location", this column will list and describe patterns in
their original way.

Table 1 WAAF Matrix - Web Application Architecture Framework

Planning
Arch itectu re
(Planner's
Perspective)

Structure
(What?)

List of things
important to the
business

Behaviour
(How?)

List of
processes the
business
performs

Location
(Where?)

List of locations in
which the business
operates

Business
Architecture
(Business
Ownerm
Perspective)

e.g. Business
Entity
Relationship
Model

e.g. Business
Process Model

e.g. Business
Entity Location
Model

Pattern

e.g. Business
Model Patterns
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User Interface e.g. Interface
Arch itectu re e.g. User e.g. User
(Userm Interface Interface Flow e.g. User Site Map Templates,

Structure Model Model Model Navigation
Perspective) Patterns

Information
Arch itectu re e.g. e.g. Information e.g.
(Information e.g. Information Information Node Location Information
Architectm Dictionary Flow Model Model Scheme

Perspective) Patterns

System e.g. System e.g. Workflow e.g. Site MappingArch itectu re Functioning Model of e.g. Design
(System Module/ Sub- Module/ Sub- Model of Module/ Patterns,
Architectm Module/ Server Module/ Server Sub-Module/ Presentation

Perspective) Page Structure Page Server Page styles

Web Object e.g. Physical e.g. COTS,Architecture e.g. Algorithms e.g. Network
(Developers? Object in Source Code Deployment Model Components,

Perspective) Relationship Code Library

Test e.g.
Architecture e.g. Test e.g. Test e.g. Test Templates,
(Testerlll Configuration Procedure Deployment Standards of
Perspective) Test Document

The following subsections will present the framework by rows (perspectives). The framework is
discussed using examples of a commercial web application of an Australian company that
specializes in matching investors to entrepreneurs seeking investment capital. For confidentiality
reasons, we use a fictitious name for the company "XYZ-Match".

Planning Architecture (PA), Planner's Perspective

This perspective concerns with issues important to planning of the web system. Pattern is not
concerned in this perspective.

Cell CPA-Structure) lists the entities important to the business. Business entities can be a person,
a thing or a concept that is part of or interacts with the business process (Proforma 2003). In the
example of "XYZ-Match", the business entities include the followlnq:

• Investors
• Entrepreneurs
• "XYZ-Match" web system

Cell CPA-Behaviour) lists the processes in which the business operates. In the example of "XYZ-
Match", "Investor listing information to Venture Capital Directory" is one of such business
processes.

Cell CPA-Location) lists the locations where the business operates. E.g. the business branches of
XYZ-Match in various locations of the world.

BusinessArchitecture (BA), Business Owner's Perspective

This perspective models the business structure, process and locations, patterns of the web
application system from the viewpoint of business owners.

Cell (BA-Structure) describes the business structure including business entities and their
relationship. Example model of this cell could be a business entity-relationship diagram (ERD) that
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models the business concepts, entities and business rules. In this diagram, the business rule
represents the relationship between the business entities. Figure 1 is an example of a business ERD
of XYZ-Match.

I «Business
<xbustnass provide listing

Entity»
Entity» inform ali on to (* *1 approve loontrol

VentureCapital listing (1,*)
Investors Directory

~
search

investors oonta ct (*,*) «Business, J approve
Entity»

«Business «Business •• membership (1,") :XYZ-Match

Entity» become
Entity»

Entrep reneu rs
merneoer

Members
I apply for membership (*:)

apply for Venture Capital Directory Listing

Figure 1 Business structure model

Cell (BA-Behaviour) models the business workflow of the business entities interacting with the
business. Flowchart, activity diagram, collaboration diagram are common tools for business process
modelling. If object-oriented technology is applied, example of business process model could be a
UML use case diagram and sequence diagrams that realize each business use case. Figure 2 is an
example of a sequence diagram to model a business use case "Investor listing information to
Venture Capital Directory" of XYZ-Match.

I anEntrepreneur II :XYZ-~at:ch I :ventureca~itaIDirectOry II anln~estor I
1 register() I 1 I
I :>1 I I
~ aggrovalO I I 1
F== I search investorO )' I
1 I 1 I< display+search_resultO :

:: contact irrvestor(~:
k contact entre~reneur() :

Figure 2 Business process model

Cell (BA-Location) models the locations of business entities. Figure 3 shows the business location
model of the entrepreneurs of XYZ-Match .

.AJJ str alial
New Zealand

Figure 3 Business entity location model

Cell (BA-Pattern) describes business patterns for the web system. Pattern can be described as "a
three-part rule, which expresses a relation between a certain context, a problem, and a
solution" (Alexander, 1979). Business patterns generalize solutions to solve problems that are
common to different business situations. They can be reused repeatedly and can be combined and
adapted in many different ways (Eriksson, et al. 2000). Example business pattern can be an
interface metaphor such as the concept of a shopping cart in real shops been used to a shopping
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cart solution in an online-shopping web site.

User Interface Architecture (UIA), User's Perspective

This row describes the components of the system, their roles and relationships that are perceived
by users of the system.

Cell (UIA-Structure) describes the structure and contents of user interfaces such as HTML pages,
user received emails and reports that users will see. The composition of web pages and their
relationship are defined here. Example models include web page class diagram, user interface
prototype, and web page fragments.

Figure 4 is an example of fragments of a web page "vc Firm Listing" in VCDirectory of XYZ-Match.

I Logo II Page Title?Venture Capital Firms I
Navigation Introduction Of VCFirms Advertisement

VC Firm Listing (Business Plan
Name ofVC Brief Location Templates)
Firm Description

?It;<Prev 101ll?Page scroller? Next 10»

I Disclaimer I
Footer

Figure 4 Web page fragment

Cell(UIA-Behaviour) models how external and internal users access and operate the web
applications system. An overview of user behavioural path is presented in a user interface flow
diagram. Tools like UML state chart diagram, UML activity diagram, flowchart, white site prototypes,
user stories, and storyboard can be used here to describe user interface behaviour.

In many cases, utilising prototypes rather than using formal diagrams, such as white site
prototypes, storyboard, paper prototypes are common in practice to present the paths of user
behaviours. Figure 5 is an example of User Interface Flow Diagram in VCDirectory module of XYZ-
Match.
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~
VCdirectory ~

~--==----r-------..;,..-J Incorporate_Bus iness_Online ImageO
VCFirm UnkO

vcdirectory imageO
~

Home page

Log In Buttor()

I
Venture Capilal

Firms

VC D~ctOry
Registration Form

page 2 - Categpry 1

Review Butto r()

~VC Directory
Registration Form

page 2- Categpry2

Review ButtonO

J

~
VC Firm Profile

~
Form Review

Bus iness ~e c utives
Recerved Email

Content
Form Process

Info rmatio n

I
Incorporate

Bus iness Online

I
Busmess Exec utrves

Log lin

I
RegJ orm ButtonO

~
Approva~ VC Directory

Form page 1
Inco~rate

Business Online
Form

~
Approva} VC Directory

Form page 2

Approve ButtonO

'"IilVCfirm Recieved Email

Figure 5 User interface flow diagram

Cell (UIA-Location) describes the location of web pages in users' view. Site map is an example to
organize pages taxonomically without showlnq details of each page. Figure 6 is part of the site map
of XYZ-Match web site.

Home

* Member
* VC Firms Registration

VC Directory * Brokerage Firms * VC Directory
* VC Funds * Capital
* Investment Banks Forms Solicitation

* Sponsorship
* Technology
Transfer

* Advanced Materials
* Automated Manufacturing

Industrial FAQ

Technology * Environmental
Technology Services
* Semiconductors &

Investment Circuits Forums
Opportunities

* Electronic Commerce

Information * Internet-related Services
* Internet-related Products

Technology * Software: Finance &
Business
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Figure 6 Site map of XYZ-Match

Cell (UIA-Pattern) collects user interface patterns. SAP INFO glossary describes User Interface
Pattern as "proven software components that can be used for recurring tasks on the part of the
user. In line with the Pattern concept, a User Interface Pattern is defined at various levels on a non-
technical basis, and then programmed as a cross-application Pattern" (SAP 2004). For web
applications, example UI patterns could be UI presentation templates reused from other projects or
other modules and navigation patterns.

Information Architecture (IA), Information Architect's Perspective

Information architecture is "the result of the integrated approach to information design". It is the
"blueprint for maximizing software usability via the integrated design of labels, messages, online
support elements, and printed support elements" (Henry 1998).

Information node is a representation of an element of architecture to create, process or consume
information. Information node includes information source and information destination. Information
node could be a system, an organization and other external entities.

Information architects can be analogous to the librarians of web development. The concerns of the
information architects are to classify and construct the structure, relationship, flow and location of
information that are needed in the User Interface perspective to connect the external and internal
users to access and operate the contents and the functionality of the web application. This
perspective is independent from the implementation of the system.

Cell (lA-Structure) structures, organizes and labels the information and their relationship.
Information is "the interpretation of data within a context set by a priori knowledge and the current
environment" (Lowe et al. 1999). Web information dictionary is an example in this cell. Information
could be organized alphabetically, chronologically, geographically, or by topics, tasks, users,
metaphor or by hybrid categories. Examples of information labels include contextual links,
headings, navigation label, index terms and iconic labels (Rosenfeld et al. 2002). Figure 7 is an
example of the information structure of "Information of Venture Capital Directory".

Information of Venture Capital Directory

Information of Firm Profile Information of Investment

-Name offirm
-Type of firm
- Location of firm
- Description of service
- Numbe r of employees

-Total fund under manag ement
-Minimum investment amount for a single project
- Numb er of projects invested
- Examples of successful investment
-Fee forVC seekers

Figure 7 Example of information structure and labels

Cell (lA-Behaviour) In this cell, the information creation, exchange, process and consumption
flow between the system, the organization and external entities, and the triggering events are
modelled. This information flow is derived from the user interface flow modelled in the User
Interface perspective. Example models are Information Exchange Matrix (Chief Information Officer
Council 2000) and information flow diagram such as WebML+ (Lowe et al. 2003b). We use an
information flow diagram with a modified data flow diagram and activity diagram as an example in
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Figure 8. In this diagram, the information flow is partitioned to swim lanes by information nodes.
Each lane holds the information process activities, information and information repository that
belong to that information node. The information flow starts from a start point node and ends with
an end point node. The labels of the exchanged information are defined in Cell(IA-structure).

:USeI"

I
I
I

Provide I
"User Payment" ~ I

Information «I nfo rmatio n:>:>I-'

U", '",moot ~

:XYZ-WebSystem ;"'---'1
WebSystem

Database
""' ...1V"

:WebP ayService

«Information:>:>
Processed User

PavmentI
\
I
I
I
I
I
I
I
I
I
I
I
I
I
I
\
I
I
I
I

Receive I I
"Invoice Email' ~-------r--I--------_....J

Infrmation I

\
I

\'----./
I

Process
"Payment Resul5" I I

and ~---------'!'--"T------_--l
"C us:torme r D elails" I

I
I
I
I
I
I
I
I
I
I
I
I
I
I

Process
"User

Pavment"
Information

«I nform ation:>:>
C uslo rme r Details

Process
"Pro cess ed-

User-Pavment
Info rmatio rI'

«I nfo rmatio n> :>
Payment Results

I

Cell (lA-Location) Information could be stored in Information Nodes such as database, XML files,
file folders, or other repository of external information entities. Information Node represents both
information source and destination. In this cell, the location and the relationship of the Information
Nodes are modelled. As this perspective is free from the implementation of detailed information
repository, the information location model is only at the context level. Figure 9 uses a deployment
diagram to describe a location model.

«I nform ation:>:>
Imroice

Create
"I mro ice-

Email.ll
Information ' 4

«I nform ation:>:>
Imroice·Email

Figure 8 Information flow diagram
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:XYZ- WebSystem
{Locati on=ABC- Hostin gService} :Web Payment

Service
{Location =XYZ-

Webpay}

«Server»

:User
{Location =lNWW}

:XYZ-WebSystem
Database

{Locati on=XYZ-
Web System }

:XYZ-WebSystem
FileFolder

{Location=XYZ-
WebSystem}

Figure 9 Location model of information source and destination

Cell (lA-Pattern) describes patterns of constructing information structure and information flow.
For example, information structure pattern can be constructed from a layered classification scheme
for key web characteristics (Lowe et al. 2001).

System Architecture (SA), System Architect's Perspective

System architects look into the web application system in this perspective for system design. For
example, a web system could be designed into layers. Major functioning modules are grouped at
top layer. Each module is decomposed into a number of sub-modules at middle layer. Sub-modules
comprise a set of server pages or server files on lower layer to fulfil the functionalities.

Architectures of "structure, behaviour, location and pattern" of these design elements are described
below.

Cell (SA-Structure) specifies the structure, the responsibilities and the relationships of the design
elements of a web system. Take XYZ-Match as an example, there are three layers: module layer,
sub-module layer and server page layer. Within sub-modules, the input from the pervious user
interface, server file or other component, the responsibilities, and the output to the next user
interface, server file or component are specified for each serve page.

If object orientated design is adopted, class diagrams of modules, sub-modules and server pages
can be used to specify the structure in this cell.

Figure 10 demonstrates the three layer structure of XYZ-Match. The major modules are grouped on
the top layer.



A Web Application Architecture Framework Page 11 of 18

Module 1
VC Directory

Module 2
Investment

Opportunities

/1
/i ....................•-,
Module .eyer i

.__.........•......_.....J
"" !....j

«Server Page»
VC Directory

Search Result Page
vCJ ea rchresu It.etm

«Se rver Page»
VCDirectory

Content Page:
vc_content.etm

«Serve r P ag e»
VCDirectory
Search Page

vc_search.dm

«Server Page»
VCDiredory
Listing Page:
vc_listing.dm

«Server Page»
VCDirectory

Catego ry Page:
vc_cat.etm

./1
/sJ:6Mooo:e"-i
~" L:3fer i• U:Y' •'. r····· ..·············

" :......j
.I:
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.........J
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VCDiredory
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&.Ib- tvbdul e 1.2:

VC Firms
Registrati on :and

Edit Forms

&.Ib- Mc:dul e 1.3:

Business
EKeartives
Approval

Figure 10 Three layers of system architecture of XYZ-Match

Each module is decomposed into a set of sub-modules at middle layer. Figure 10 presents an
example of the structure of the sub-module "Sub-Module 1.1: ve Directory Listing" of XYZ-Match.

Within each sub-module, the structure of a set of server pages to fulfil the functionalities of each
sub-module is described. Example of the server page structure of "Sub-Module 1.1: ve Directory
Listing" can be seen in the bottom layer of Figure 10. Five major server pages are listed in this
structure. In this example, the responsibilities of each server page are described on the top of the
server page as comment lines. Source code for server pages should not be included in this
perspective.

Cell (SA-Behaviour) specifies workflow or business logic within the modules and sub-modules.
Figure 11 demonstrates the workflow within sub-module "ve Directory" using a server page flow
diagram.
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~~ServerPage»
VCDirectory Content~~User Interface» .....---.:.,....+.-----l Page:

\lc_\lcfirmcontent.htm \lc_content.cfm

~~ServerPage»
VCDirectory Search

Page
\lC_search. cfm

~~ServerPage»
VCDirectory

Search Result Page
\lc_searchresult. crm

Figure 11 Server page flow diagram

Cell (SA-Location) maps design elements such as module, sub-module and server page to the
physical locations. For example, modules may be located in parallel directories. Sub-modules can be
under the sub-directory of their parent modules. Server pages or server files may be under their
sub-module directories. Reuseable server pages can be grouped into a directory. For large web
applications, if the rule of separation of business logic and presentation is applied, server pages to
deal with business logic, user interface view and customized workflow process can be located in
different directories. Figur.e 12 is an example of directory mapping.
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~ insert_ vcdirectory.cfm
I update_ vcdirectory.ctm
I delete_ vcdirectory.cfm
I fist vcdireclory.cfm
I inserl_ vcform_cata.cfm
~ insert_ vcform_cat_b.cfm
~ update_ vcform_cata.cfm
~ update_ vcform_cat_b.cfm
~ delele_ vcform.cfm
I list vcform.cfm

Figure 12 Directory mapping

Cell(SA-Pattern) lists system design patterns, presentation styles. J2EE Blueprints (Sun
Microsystems Inc. 2001), Apache Struts (Apache Software Foundation 2003) and Coldfusion
Fusebox (Peters et al. 2002) provide design patterns. For presentation patterns, styles could be
defined for each module or sub-module style sheets or templates. The architectures of such style
sheets or templates can be described in this cell.

Web Object Architecture (WOA), Developer's Perspective

System design is implemented into source code and other web objects. This row describes the
architecture of source code and other web objects from developer's perspective. Web objects are
objects implemented in a web site. Examples of web objects include ActiveX components, COTS
components, objects like shopping carts, multimedia files such as video, plug-ins, data tables,
server page files (source code), Applets, agents, guards, graphics files, and scripts, etc. (Reifer
2000).

Cell (WOA-Structure) defines input/output data or information for each source code. Web objects
relationships used in the source code are specified. Database tables are web objects. Database
scheme is defined and implemented.

Web pages are self-documented. Examples of such input/output data definitions are on the top of
each server page. Web object dependency graph is an example to present the relationship of web
objects used for the entire web application. The change of one web object will cause the change in
its dependent objects shown in the graph. Figure 13 is part of a web object dependent graph of
XYZ-Match.

~~server page file~~

<tnctude»

:folder21
vc_add1irm .cfm

~/ncllJde~

«<server page file~~ ~/nclude~

: folder11
vc _co nte nt .cfm

~/ncllJde~

:folder31
include_adv _amazon .cfm

~/ncllJde~

Figure 13 Web object dependency graph
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Cell (WOA-Behaviour) describes the algorithms of source code. Detailed algorithms of code flow
are self-documented in source code.

Cell (WOA-Location) physically allocates the web objects in the web network. Deployment
diagram is an example tool to model network location.

Cell (WOA-Pattern) Web systems are commonly built by open source code and components.
Source code could be reusable from one project to other projects and from one programmer to
other programmers. This cell utilizes the reusability of programmer's work. Examples are COTS
(commercial-off-the-shelf) components, internal components, open source code, code library,
custom tags and code snippets.

Test Architecture (TA), Tester's Perspective

Web is open to external users world-wide and is more susceptible to security threats. Testing web
application includes verification and validation of artefacts produced in the rows above this
perspective, and seeks the weak points of the artefacts produced from ROW "Web Object
Architecture". Testers look at the web product in both web project participants' perspective and
hackers' perspective. Tests of business architecture, user interface architecture, information
architecture, system design architecture can be static test such as review or walkthrough. Tests of
web object architecture can be dynamic test by execution of web product. Types of such web
product tests can be categorized to unit test, integration test which includes module integration test
and sub-module integration test, load test or stress test, system test which includes alpha test in
developer's environment and beta test in client's environment. Tester's perspective in this row
includes the structure of test documents, test procedure, location model and patterns in different
types of tests. A test can be a black-box test from a users' view or a white-box test from viewpoints
of internal participants or external hackers.

Cell (TA-Structure) defines and organizes test documents. Example test documents include test
plan, items under test, test design, test case, test data, test procedure, test log, test item
transmittal report, test incident report and test summary report (IEEE, 1999). Relationship of the
test documents in a test can be described in a test configuration file or diagram. Test item
interfaces to other web objects, sub-modules, modules or stubs are also defined here. Stubs are
dummy items with interfaces only. An example of test documents relationship diagram is shown in
Figure 14. Test Harness Graph can be used to define the interfaces and relations of test system.

Figure 14 Test documents relationship diagram

Cell (TA-Behaviour) models the test execution process using test procedures that configures a set
of test data and test cases. Test Flow Graph and UML interaction diagrams are common tools to
model the flow of test cases and test data in each test execution. User Interface Flow Diagram
defined in UI architecture could be used as a Test Flow Graph in a black-box test to validate the
behaviour of user interface flow. In each test case, sequence, alternatives, loops and defaults of
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stimuli to and observations from the test items are specified to test steps. Test step flow inside
each test case could be similar to algorithm in a server page file.

Cell (TA-Location) maps test execution to network. To test web products, the test configuration
for a test described in test structure is deployed into network. The deployment of test execution of
a test on certain nodes in a test environment such as in development server or in network of
client's production server is described in this cell.

Cell (TA-Pattern) describes test patterns. Some of the test documents could be reused across
projects and organizations. For example, test documents for a particular test can be tailored from
standards or templates. Test cases and test data can be reused by other test designs. Templates or
standards of test documents, reusable test data, test cases, and test configurations can be test
patterns described in this cell.

Discussion

This section discusses key attributes of the proposed framework.

Each column has a unique model. Each row presents a unique perspective.
The classifications of structure, behaviour, location and pattern are unique and should be
independent from other columns in the WAAF Matrix. For example, the structure model is unique to
Column (Structure). It is not repeated in Column (Location). Similarly, each participant looks at the
system from a unique viewpoint. For example, system architects deal with "things" as logical design
entities. "Things" mean physical web objects for developers.

The web application system architecture is represented by the integration of the rows and the
columns. The framework reduces the system cornplexltv by decomposition of the system
architectures to level of cells that are orthogonally allocated by column and row.

The framework does not imply the order of the perspective.
The order of the perspectives presented above does not imply a sequence for the development
process. It does not define a development process. Developers could apply iterative process to fit
their projects. For small and medium web projects, some experienced developers could jump to
Web Object Architecture ignoring other perspectives as they may use mental architectures and
document other perspectives later (Kong et al. 2003). Each perspective could be applied to both
development of new web systems and maintenance of existing systems.

Allowing existing development paradigms.
This framework is not affixed to any of the existing development paradigms (e.g. object-oriented vs
structured design) and thus allows the adoption of any paradigm. Illustration of examples used in
each cell does not imply using one method in entire framework. For example, in Cell(structure) of
each perspective, if object-oriented paradigm is used, sample architecture could be modelled by
UML class diagrams. If another paradigm is adopted, models and notations of the paradigm could
be used.

It is not necessary to document for all cells.
This framework classifies the architectural constructs according to different perspectives. It does
not require heavyweight documentation. Not all cells, columns or rows are needed for a web
project. Organization can tailor the framework to fit the needs of their systems. For example,
information architecture and system architecture in this framework could be merged into one
perspective (Lowe et al. 2003c). For small and medium web applications, experienced developers
could work with business owners to merge cells in this framework to fit the project need. Critical
Feature Matrix (Kong et al. 2003) is an example to integrate cells of this framework into a
lightweight matrix.

Conclusion and Future Direction

This paper presents an Architecture Framework for web application. This framework is based on the
separation of concerns and takes into account the unique characteristics of web systems. The
framework has two dimensions in a matrix structure. One dimension concerns "structure (what),
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behaviour (how), location (where) and pattern" of the web system. Another orthogonal dimension
concerns the perspectives of various participants of the system.

This framework can serve as a strategic guide to the development of the web systems. It can also
be used as a tool for analysis and re-engineering of existing web systems.

Web systems have other characteristics at organizational level. Such as web systems typically face
high level of client uncertainty of their needs and also in understanding whether a design will satisfy
their needs; have high levels of requirement, project scope and focus change due to the evolution
of business model, have shorter delivery time; demand fine-grained evolution and maintenance
with an ongoing process of content updating, editorial changes and interface tuning (Lowe et al.
2001).

Authors are currently working on "why (motivation model), who (role model), when (scheduling
model), how much (cost model)" for each perspective to focus on the organizational characteristics
of web application systems. This framework assumes the target is the web application at this stage.
Future research direction could be establishing an architecture framework for web services in the
similar perspectives and classification focus on the unique characteristics of web services.
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