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Abstract. Evapotranspiration (ET) of Amazon forests is a main driver of regional climate patterns and 14	
an important indicator of ecosystem functioning.  Despite its importance, the seasonal variability of ET 15	
over Amazon forests, and its relationship with environmental drivers, is still poorly understood. In this 16	
study, we carry out a water balance approach to analyze seasonal patterns in ET and their relationships 17	
with water and energy drivers over five sub-basins across the Amazon basin. We used in-situ 18	
measurements of river discharge, and remotely sensed estimates of terrestrial water storage, rainfall, and 19	
solar radiation. We show that the characteristics of ET seasonality in all sub-basins differ in timing and 20	
magnitude. The highest mean annual ET was found in the northern Rio Negro basin (~1497 mm year-1) 21	
and the lowest values in the Solimões River basin (~986 mm year-1). For the first time in a basin-scale 22	
study, using observational data, we show that factors limiting ET vary across climatic gradients in the 23	
Amazon, confirming local-scale eddy covariance studies. Both annual mean and seasonality in ET are 24	
driven by a combination of energy and water availability, as neither rainfall nor radiation alone could 25	
explain patterns in ET. In southern basins, despite seasonal rainfall deficits, deep root water uptake allows 26	
increasing rates of ET during the dry season, when radiation is usually higher than in the wet season. We 27	
demonstrate contrasting ET seasonality with satellite greenness across Amazon forests, with strong 28	
asynchronous relationships in ever-wet watersheds, and positive correlations observed in seasonally dry 29	
watersheds. Finally, we compared our results with estimates obtained by two ET models, and we 30	
conclude that neither of the two tested models could provide a consistent representation of ET seasonal 31	
patterns across the Amazon. 32	
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1. Introduction 37	

Evapotranspiration (ET) in the Amazon rainforest exerts large influences on regional and global 38	
climate patterns (Spracklen et al., 2012). Although exact figures vary, it is broadly known that the 39	
Amazon River basin transfers massive volumes of water from the land surface to the atmosphere every 40	
day, thereby having massive influence on the global energy budget (Aragão, 2012; Christoffersen et al., 41	
2014; Hasler and Avissar, 2007; Restrepo-Coupe et al., 2016). ET is also an indicator of ecosystem 42	
functioning, given its intrinsic association with CO2 fluxes during the transpiration process. Hence, any 43	
modification of ET over Amazon tropical forests would likely alter the global carbon cycle and further 44	
feedback to the rate of a changing climate. 45	

Nonetheless, the spatial and temporal characteristics of ET across the Amazon basin, as well as the 46	
relative contribution of the multiple drivers to this process, are still uncertain. This may be attributed to 47	
the lack of high quality validation data over the full range of ecoregions across the basin, and the thus 48	
far unclear influence of climate on vegetation functioning. Recent studies suggested that vegetation 49	
phenology, as indicated by leaf demography (Lopes et al., 2016; Restrepo-Coupe et al., 2013; Wu et 50	
al., 2016), further increases the complexity of quantifying the relative importance of biotic and abiotic 51	
drivers of ecosystem functioning over the Amazon.  These uncertainties are reflected in simulations by 52	
land surface models (LSMs) and global circulation models (GCMs), hindering the delineation of more 53	
reliable climate change scenarios (Karam and Bras, 2008; Restrepo-Coupe et al., 2013, 2016; Werth 54	
and Avissar, 2004). 55	

Comprehensive assessments on ET have recently been carried out at local scales using eddy-covariance 56	
(EC) methods, which substantially contributed to the understanding of ET seasonality and its drivers in 57	
the Amazon (Christoffersen et al., 2014; Fisher et al., 2009; Hasler and Avissar, 2007). EC assessments 58	
are, however, limited to small areas. Due to the diversity of vegetation and climatic conditions across 59	
the Amazon basin, EC measurements cannot provide a broader overview of the spatial characteristics 60	
of ET across the region. The most comprehensive studies carried out so far are based on the data from 61	
five to seven flux towers (Christoffersen et al., 2014; Fisher et al., 2009), which although distributed in 62	
different ecoregions, cannot represent the full complexity of the Amazon basin. For instance, none of 63	
these towers is located in the western Amazon, or in the very wet Rio Negro basin. Furthermore, some 64	
sub-basins are characterized by a complex mosaic of land cover types and ecotones, making it 65	
impossible to describe the total ET based on unevenly distributed measurements.  66	

Although hydrometeorological models have been implemented to provide spatially explicit assessments 67	
of ET in the Amazon, the poor understanding of drivers of ecosystem functioning hinder a more robust 68	
parameterization of models (Han et al., 2010). For instance, the spatio-temporal variation of ET is 69	
strongly linked to how vegetation assimilates available energy and water (Hasler and Avissar, 2007; 70	
Nepstad et al., 1994), a process which just recently started being elucidated (Restrepo-Coupe et al., 71	
2013; Wu et al., 2016). Hence, generally ET models are shown to perform poorly in Amazon forest 72	
ecosystems (Karam and Bras, 2008; Restrepo-Coupe et al., 2016; Werth and Avissar, 2004).  73	

Given these bottlenecks, a better understanding of ET seasonality, as well as its relationship with key 74	
climate forcings, are needed before model results can be reliably evaluated across the entire Amazon 75	
Basin. Water balance approaches are useful in these situations, as they do not necessarily rely on model 76	



assumptions and calibration, and therefore can be applied when there is a lack of in situ ET data or 77	
when the drivers of the ET process are not fully understood.  78	

ET assessments using water balance methods have also been undertaken in the Amazon basin, though 79	
generally these studies treated the Amazon basin as a whole (Karam and Bras, 2008; Ramillien et al., 80	
2006; Werth and Avissar, 2004). Given the large scale of previous studies, assessments on the drivers 81	
of ET have in some cases been inconclusive (e.g. Werth and Avissar, 2004) or reached a single solution 82	
for the entire Amazon basin. For instance, Karam and Bras (2009) concluded that Amazonian ET is 83	
primarily limited by energy availability. These results provide important advances in our understanding 84	
of water and energy balance in the Amazon region, but more refined studies are necessary to resolve 85	
regional variations. Consequently, water balance assessments at smaller sub-basin scales are needed to 86	
evaluate ET limiting factors and their seasonality over a larger range of bioclimatic condition.  87	

Given that plant transpiration is associated with CO2 absorption through leaf stomata, ET is closely 88	
linked to ecosystem gross primary production (GPP). For this reason, remotely sensed proxies of 89	
photosynthetic activity, in particular vegetation indices (VIs), have often been incorporated into models 90	
of ET  (e.g. Glenn et al., 2010; Yang et al., 2013). Assessing the relationships between ET and 91	
vegetation greenness measured by VIs can also lead to a better understanding of vegetation phenology 92	
determinants of ET and ecosystem functioning in general, fostering the improvement of model 93	
parameterization. However,  studies have found contrasting results on the relationship between canopy 94	
greenness measured by VIs and GPP patterns in Amazon forests (Huete et al., 2006; Jones et al., 2014; 95	
Maeda et al., 2014). Recent assessments helped clarify this discrepancy, showing that in some parts of 96	
the Amazon GPP is driven by the synchronization of new leaf growth with dry season litterfall, 97	
increasing the proportion of younger and more light-use efficient leaves, highlighting the importance of 98	
leaf phenology (Wu et al., 2016).  99	

The objective of this study was to utilize a water-balance approach to describe seasonal patterns of 100	
watershed scale ET across Amazon forests, and relate seasonal patterns with climatic drivers and 101	
vegetation greenness. The research questions addressed were: (1) How do seasonal patterns of ET vary 102	
across five sub-basins of the Amazon basin? (2) Are the environmental controls of ET similar among 103	
sub-basins and across time? (3) How does ET seasonality relate with greenness seasonality? Finally, 104	
we compare our ET results with those estimated by a LSM and remote sensing based ET retrievals. 105	

 106	

2. Material and methods 107	

 108	



 109	

Figure 1. Amazon River sub-basins assessed in this study. The background map shows the mean 110	
annual rainfall 2001-2014, measured by the Tropical Rainfall Measuring Mission (TRMM). The 111	
extents of five sub-basins analyzed here are indicated on the map with solid black lines and shading. 112	
The solid red line indicates the boundary of the entire Amazon River basin. 113	

 114	

2.1.Evapotranspiration calculation using water-balance approach 115	

This analyses were carried out at the watershed level, considering the drainage area of the five major 116	
rivers inside the Amazon basin: the Negro, Solimões, Purus, Madeira and Tapajós Rivers (Figure 1). 117	
These basins are distributed within different ecoregions inside the Amazon basin. The size and number 118	
of sub-basins were, however, limited by the availability of reliable river discharge data, which is a 119	
critical element for the water balance calculation. The ET in each watershed was calculated using the 120	
following water budget equation: 121	

𝐸𝑇 = 𝑃 − 𝑅 − '(
')

       (1) 122	

where ET is the monthly evapotranspiration, P is the monthly rainfall, R is the river discharge and 123	
dS/dT is the change in terrestrial water storage.  124	

Monthly river discharge measurements were obtained from the Environmental Research Observatory 125	
(ORE) HYBAM (Geodynamical, hydrological and biogeochemical control of erosion/alteration and 126	
material transport in the Amazon basin).  Changes in water storage (dS) were calculated using Total 127	
Water Storage Anomalies (TWSA) estimated from NASA’s Gravity Recovery and Climate Experiment 128	



(GRACE) satellites (Landerer and Swenson, 2012; Tapley et al., 2004) using the following equation 129	
(Swenson and Wahr, 2006): 130	

𝑑𝑆, = 𝑇𝑊𝑆𝐴,/0 − 𝑇𝑊𝑆𝐴,10     (2) 131	

where TWSAn-1 and TWSAn+1 are the TWSA values for the months preceding and succeeding month n, 132	
respectively.  133	

Three monthly GRACE solutions, from different processing centers, were used to compile monthly 134	
TWSA: the GFZ (GeoforschungsZentrum Potsdam), CSR (Center for Space Research at University of 135	
Texas, Austin), and JPL (Jet Propulsion Laboratory) (Landerer and Swenson, 2012). The three 136	
solutions were combined by simple arithmetic mean of the gravity fields, which according to recent 137	
studies is the most effective approach for reducing the noise in the gravity field solutions (Sakumura et 138	
al., 2014). Given that these products provide observations for the middle of each month, with varying 139	
dates, TWSA values were adjusted for the first day of each month using linear interpolation.  140	

Rainfall data were obtained from the TRMM 3B43 V7 product. The 3B43 V7 product consists of 141	
monthly average precipitation rate (mm hr-1), at 0.25o x 0.25o spatial resolution, which combines the 142	
estimates generated by sensors on board of the TRMM, geostationary satellites and ground data 143	
(Huffman et al., 2007). The ground data were obtained from NOAA’s Climate Anomaly Monitoring 144	
System (CAMS), and the global rain gauge product produced by the Global Precipitation Climatology 145	
Center (GPCC) (Huffman et al., 2007).  146	

To facilitate the visualization of ET seasonal patterns, ET for each month was calculated using a three-147	
month sliding window. Hence, the changes in water storage for a certain month were assessed by 148	
evaluating the changes in TWSA between the previous and following month (equation 2). The rainfall 149	
and river discharge were then calculated accordingly, providing the average volumes inside the 150	
averaged window period. 151	

 152	

2.2. Climate drivers of ET 153	

We evaluate the influence of energy and water input on ET seasonal patterns across all sub-basins. 154	
Monthly incident shortwave radiation flux data were obtained from CERES SYN1deg product, version 155	
3A (Kato et al., 2011). Shortwave radiation refers to radiant energy with wavelengths in the visible, 156	
near-ultraviolet, and near-infrared spectra. The SYN1deg product provides radiation variables 157	
calculated for all-sky, clear-sky, pristine (clear-sky without aerosols), and all-sky without aerosol 158	
conditions. In this study, we used the product made for all-sky. The incident radiation flux from 159	
SYN1deg product was shown to have a good relationship with photosynthetically active radiation 160	
(PAR) measured at flux towers in central Amazon (Maeda et al., 2014). Monthly rainfall values were 161	
obtained from the TRMM 3B43 product, as described in the previous section. 162	

The influence of climate forcings on ET seasonal patterns was assessed using a modified Budyko 163	
analysis (Chen et al., 2013; Du et al., 2016). The original Budyko framework (Budyko, 1958) was 164	
created to describe the links between climate and catchment hydrological components, resulting in 165	
what is known as the “Budyko curve”. In this framework, ET is limited by the supply of either water or 166	



energy. The type and degree of limitation is determined by the dryness index, which is the ratio of 167	
potential ET (PET) to rainfall (P). The PET provides a proxy of the available energy, and represents the 168	
maximum possible value of evapotranspiration under given conditions. Hence, dryness indices lower 169	
than 1 represent energy-limited environments, while values higher than 1, water-limited (Budyko, 170	
1958; Donohue et al., 2007). Monthly PET estimates were obtained from the MODIS MOD16A2 171	
(collection 5) product (Mu et al., 2007). In MOD16 product, PET is calculated using the Penman-172	
Monteith equation driven by surface and remote sensing derived input (Cleugh et al., 2007; Mu et al., 173	
2007). 174	

The other component of the Budyko framework is the evaporative index (ET/P), which describes the 175	
partitioning of P into ET and R. In this case, R is proportional to the distance between the curve and a 176	
water limit line (i.e. evaporative index=1) and sensible heat is proportional to the distance between the 177	
curve and an energy limit line (i.e. when evaporative index=dryness index) (Budyko, 1958; Donohue et 178	
al., 2007). 179	

However, these approximations can only be used at steady-state conditions, assuming dS~0. Hence, the 180	
original Budyko framework is usually recommended for annual or longer time-scales. For shorter time-181	
scales, studies have shown that inter-annual water storage change should be considered to properly 182	
represent the ratio between ET and R (Wang et al., 2009; Zhang et al., 2008). The difference between 183	
rainfall and storage change was shown to be a good approach for representing effective precipitation in 184	
seasonal models (Chen et al., 2013; Du et al., 2016). Here, we follow this modified Budyko framework, 185	
in which the effective precipitation is represented by P-dS, so that the evaporative index is ET/(P-dS) 186	
and the dryness index is PET/(P-dS). 187	

 188	

2.3. Vegetation greenness proxy 189	

Seasonal patterns of vegetation greenness were assessed using the enhanced vegetation index (EVI) 190	
obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) (Huete et al., 2002). For 191	
this study we used the MODIS MAIAC product, which is processed using MODIS Collection 6 Level 192	
1B (calibrated and geometrically corrected) observations. MAIAC uses an adaptive time series analysis 193	
and processing of groups of pixels for advanced cloud detection, aerosol retrievals and atmospheric 194	
correction (Lyapustin et al., 2012). This dataset provides geometrically-normalized spectral 195	
reflectances (BRFn), which were used in this study. EVI was calculated considering a fixed sun-sensor 196	
geometry, with sun zenith angle of 45 degrees and nadir view angle. We used observations from the 197	
Terra and Aqua satellites collected between 2001 and 2012, and data were obtained from the 198	
Atmosphere Archive and Distribution System (LAADS Web: ftp://ladsweb.nascom.nasa.gov/MAIAC). 199	

 200	

2.4.Comparison with modelled ET 201	

We compare our ET estimates with two model-based estimates. The first modelled ET dataset was 202	
obtained from the NOAH 2.7.1 Land Surface Model (LSM) in the Global Land Data Assimilation 203	
System (GLDAS) (Rodell et al., 2004). The data have a 0.25 o spatial resolution and the temporal 204	
resolution is monthly. The NOAH LSM comprises three components of latent heat: bare soil 205	



evaporation, transpiration, and wet surface evaporation (Chen et al., 1996). These components are then 206	
summed after constraints on PET have been computed (Mahrt and Ek, 1984). PET in the NOAH model 207	
is estimated using a modified version of Penman (1948) (Mahrt and Ek, 1984). 208	

The second modeled ET dataset was obtained from the MODIS MOD16A2 product (Mu et al., 2007). 209	
The MOD16 ET is calculated by a modified Penman–Monteith ET method, which uses ground-based 210	
meteorological observations and remote sensing data from MODIS to provide global estimates of ET. 211	
For both modeled ET datasets, NOAH and MOD16, data were obtained from January 2001 to 212	
December 2014. 213	

 214	

3. Results 215	
 216	

3.1.Spatial and seasonal variations in ET across five Amazon sub-basins 217	

A summary of the components used for the water balance equation (eq 1), for the period between 2001 218	
and 2014, are presented in Table 1. The largest river discharge and rainfall volumes were observed in 219	
the Rio Negro basin, with an annual mean of 1692 mm year-1 and 3285 mm year-1, respectively. The 220	
lowest values were observed in the Madeira River, where mean discharge was 584 mm year-1 and mean 221	
rainfall 1716 mm year-1 (Table 1). Seasonal variations in total water storage are larger in the Tapajós 222	
River basin, where the mean maximum was 132 mm month-1 (i.e. increasing water storage) and mean 223	
minimum was  -123 mm month-1 (i.e. decreasing water storage) (Table 1).  224	

 225	

Table 1. Summary of the river discharge, rainfall and dS/dT in the five sub-basins analyzed in this 226	
study. For each variable, the monthly average maximum and minimum, as well as the annual mean, are 227	
presented. All values are averages for the period between 2001 and 2014. Long-term annual averages 228	
of dS/dT are generally close to zero, and therefore not presented. 229	

 Mean values (2001-2014) Negro Solimões Purus Madeira Tapajós 
Discharge (R) Monthly Max [mm month-1] 213 138 123 84 117 

Monthly Min [mm month-1] 96 63 15 12 24 
Mean annual [mm year-1] 1692 1241 767 584 767 

Rainfall (P) Monthly Max [mm month-1] 360 234 294 252 327 
Monthly Min [mm month-1] 213 123 45 39 21 
Mean annual [mm year-1] 3285 2227 2154 1716 2154 

dS/dT Monthly Max [mm month-1] 48 54 99 87 132 
Monthly Min [mm month-1] -45 -72 -96 -75 -123 

ET Monthly Max [mm month-1] 132 105 138 114 123 
Monthly Min [mm month-1] 108 63 90 78 99 
Mean annual [mm year-1] 1497 986 1351 1132 1314 

 230	

Annual mean ET values varied among five sub-basins (Table 1; Figure 2). The largest mean annual ET 231	
was observed in the Rio Negro basin (~1497 mm year-1), while the lowest value was observed in the 232	



Solimões River basin (~986 mm year-1) (Table 1; Figure 2). The relative magnitude of mean ET among 233	
the Negro, Purus, Madeira and Tapajós basins are consistent with rainfall variation within these 234	
regions, i.e., the highest mean annual ET corresponds to the highest mean annual rainfall, and vice 235	
versa (Figure 2). The Solimões basin, however, is an exception. Despite having annual average rainfall 236	
similar to what was observed in Purus, its mean ET rates were significantly smaller (Figure 2). This 237	
may be explained by the lower average solar radiation inside the Solimões basin, with an annual 238	
average of 197 W m-2, while the average in the Purus basin was 204 W m-2 (Figure 2). Furthermore, 239	
portions of the Solimões basin are located in the Andes region, which is characterized by higher 240	
altitudes, lower rainfall and sparse vegetation (Figure 1). 241	

 242	

Figure 2. Boxplots with mean annual evapotranspiration, solar radiation, rainfall and EVI for the five 243	
sub-basins analyzed in the study for the period 2001 – 2014 inclusive. 244	

 245	

The seasonal patterns of rainfall, radiation and ET are presented in Figure 3. Seasonal variation of ET 246	
is clearly observed in Solimões, Purus, Madeira and Tapajós, but less evident in the Rio Negro basin. 247	
In the Solimões basin, ET was highest in September and October, while the lowest values were 248	



observed in December and January (Fig. 3). In the Purus, Madeira and Tapajós basins, ET peaks 249	
around November, February and November, respectively (Fig. 3). 250	

In terms of long-term average values, ET did not exceed rainfall in any season of the year, in the Negro 251	
and Solimões basin sites. This indicates that, under average conditions, ET is not limited by water 252	
availability, even in the driest season. In the Purus, Madeira and Tapajós sites, rainfall deficit (i.e. 253	
ET>rainfall) was  observed between June and August. Water availability is, therefore, a limitation for 254	
ET during the dry season. In fact, in these three basins, the smallest rate of  ET  was observed in May-255	
June, period in which rainfall volumes are in steady decline.  256	

 257	



 258	

Figure 3. Seasonal variations of rainfall, radiation and evapotranspiration inside each sub-basin. Gray 259	
lines represent the values for each year from 2002-2014, and solid dark lines represent the average 260	
values for each month. Months are represented from 1 (January) to 12 (December). The dashed blue 261	
line in the first column shows the mean seasonal variation of GRACE terrestrial water storage 262	
anomalies (TWSA), and the dashed red line is the mean seasonal variation of water-balance ET, for 263	
each sub-basin. 264	

 265	

3.2.Climatic drivers of Amazon ET seasonality 266	



The modified Budyko analysis of monthly ET values are presented in Figure 4. The dryness index in 267	
the Negro basin was consistently below the water limit threshold (<1). For this sub-basin, the water 268	
balance analyses show the basin to consistently follow the energy limited line (red dashed line), 269	
indicating some degree of energy limitation. However, our results show small seasonal variation of ET 270	
in the Negro basin, despite clear intra-annual variation in solar radiation (mean annual amplitude of 30 271	
W.m-2) and rainfall (mean annual amplitude of 140 mm.month-1). These contrasting results are likely 272	
explained by the very high ET rates at the Negro basin (Table 1), which could represent an upper limit 273	
in forest water use capacity. 274	

In the three southern basins, Purus, Madeira and Tapajós, water limitation was consistently observed 275	
during July, August and September (Figure 4). This is consistent with the observation of seasonal 276	
rainfall deficits in these regions, but it contrasts with the ET seasonal patterns in these basins (Figure 277	
3). In all southern basins, ET reached the lowest values before the period of minimum rainfall. These 278	
results suggest that in the southern Amazon ecotone, deep root water intake plays a key role in 279	
maintaining ecosystem productivity during the dry season. In the Purus and Tapajós basins, the Budyko 280	
curves are particularly close to the energy limit threshold during January, February and March. This 281	
shows that ET in these regions can experience some degree of energy limitation during the wet season.  282	

The Solimões basin is shown to be located in a transition region, where water limitation can occur in 283	
drier years. The energy constraint in the Solimões basin was also lower than that observed in the Negro 284	
basin. Given these characteristics, the Solimöes basin is the only site where ET was shown to maximize 285	
the use of both solar radiation and water. In other words, ET reaches its peak when the ratio between 286	
radiation and rainfall is maximum (Figure 5). 287	

 288	

 289	



 290	

Figure 4. Modified Budyko analysis for monthly water balance values. The red dashed line represents 291	
the energy limitation threshold, above which ET is limited by solar radiation. The blue dashed line 292	
represents the water limitation threshold. 293	

 294	

Figure 6 shows a scatterplot of monthly radiation versus rainfall, with data points labeled by their 295	
corresponding monthly average ET values. This figure reveals a general pattern on the relationships 296	
among monthly rainfall, radiation and ET. As expected, lower monthly ET values are consistently 297	
observed when both radiation and rainfall are low. Interestingly, the highest ET values are not observed 298	
when radiation was highest, providing more evidence that water availability is also a limiting factor of 299	
ET, in combination with radiation. 300	



 301	

Figure 5. Monthly values of the ratio between solar radiation [W m-2] and rainfall [mm month-1] 302	
(Radiation/Rain) (solid black and gray lines), and mean seasonal variation in evapotranspiration (ET) 303	
(dashed red line) at the Solimões river basin. 304	

 305	

 306	

Figure 6. Scatterplot of monthly radiation and rainfall for the five sub-basins. Colour gradient indicates 307	
the monthly ET value, from high (blue) to low (red). 308	

 309	

 310	



3.3. Relationship between ET and canopy greenness 311	

The relationship between ET and vegetation greenness varied across the Amazon basin (Figure 7 and 312	
Table 2). In the Negro basin, no significant relationship was found between EVI and ET. In this region, 313	
vegetation greening was observed between September and December, followed by a steady decline in 314	
EVI until the following August (Figure 8).  315	

Significant positive correlations (p < 0.05) between EVI and ET were observed in the Purus, Madeira 316	
and Tapajós basins (Figure 7 and Table 2). In these regions, a clear pattern was observed, in which 317	
higher ET takes place when vegetation is greener and when rainfall is higher. In the Solimões basin, 318	
despite higher EVI values observed during the wet season (Figure 7), an opposite pattern between ET 319	
and EVI was observed, i.e. higher ET takes place when EVI is lower.  In Solimões, vegetation greening 320	
also occurs between September and December, with declining from January until August (Figure 8).  321	

 322	

323	
Figure 7. Relationship between monthly evapotranspiration (ET) and MODIS enhanced vegetation 324	
index (EVI) at each Amazon sub-basin using the data from 2001 to 2014. Colour gradient indicates the 325	
monthly rainfall value, from high (blue) to low (red). 326	

  327	

 328	

 329	

Table 2. Coefficients of the linear regression between evapotranspiration (ET) and MODIS enhanced 330	
vegetation index (EVI) for each of the five sub-basins (* p<0.05). 331	



 Intercept Slope R2 
Negro 6.0 -4.06 0.006 

Solimões 14.9 -27.0 0.463* 
Purus -5.3 17.5 0.259* 

Madeira -0.4 7.9 0.383* 
Tapajós 2.2 3.1 0.035* 

 332	

 333	

Figure 8. Seasonal patterns of MODIS EVI in the five Amazon sub-basins. The black lines show the 334	
monthly average values from 2001 to 2014, while gray lines show individual monthly values for each 335	
year. The mean seasonal variations in ET for each sub-basin are represented as red dashed lines. 336	

 337	

3.4.Comparison with ET estimated by models 338	

We further assessed the ability of two ET models, NOAH-LSM and MOD16 P-M, to replicate the 339	
seasonality of ET as derived from observation-based water balance calculation. Our results showed that 340	
neither of these two models was able to reproduce the timing and magnitude of seasonal ET patterns as 341	
calculated from the water-balance approach (Figure 9). In the Negro basin, NOAH-LSM estimates 342	
were consistently below the water balance and MOD16 P-M values, with an annual average of 1241 343	
mm year-1. In this region, both NOAH-LSM and MOD16 P-M show a decreasing ET trend from 344	
January to May, followed by an increasing trend (Figure 9). NOAH-LSM ET reached its maximum in 345	
September, while MOD16 P-M ET maximum was observed in October (Figure 9). 346	

In the Solimões basin, NOAH-LSM and MOD16 P-M ET showed similar seasonal patterns, but 347	
MOD16 P-M ET values were on average 25 mm month-1 larger than the NOAH-LSM estimates 348	
throughout the year (Figure 9). Nonetheless, both models showed ET seasonal patterns largely 349	



discrepant with the water balance calculation. Both models indicate highest ET in December/January, 350	
when the water balance showed the lowest seasonal values (Figure 9). 351	

The MOD16 P-M ET showed almost no seasonality in the Purus basin, while NOAH-LSM and water 352	
balance ET indicate a decrease in ET during May (Figure 9). However, the NOAH-LSM 353	
underestimated the ET recovery in the following months, in particular between August and November 354	
(Figure 9). The same pattern was observed in the Madeira and Tapajós basins, where both models show 355	
significantly lower ET values in August, September and October (Figure 9). 356	

 357	

 358	

Figure 9. Seasonal ET patterns obtained using the water balance method (black line), NOAH land 359	
surface model (red) and MODIS MOD16 P-M model (blue). Vertical bars indicate the ±1 standard 360	
deviation of monthly observations from 2001 to 2014. 361	

 362	

 363	
4. Discussion 364	

Previous estimates of ET in the Amazon basin vary considerably in terms of magnitude and seasonal 365	
patterns. Water balance assessments undertaken at larger scales (e.g. the entire Amazon basin) found 366	
mean annual ET estimates varying from 767 mm year-1 to 1642 mm year-1 (Callede et al., 2002; Karam 367	
and Bras, 2008; Ramillien et al., 2006; Rao et al., 1996; Werth and Avissar, 2004).  The ET values we 368	
describe for Amazon sub-basins are within this range. We show that in some wet regions, such as the 369	
Rio Negro basin, mean annual ET can be above 1400 mm year-1, while in southern basins it vary from 370	
1130 mm year-1 to 1350 mm year-1. Hence, we find that the lower range of 767 mm year-1 described in 371	
previous studies (Karam and Bras, 2008) is likely to underestimate the average ET for the entire 372	
Amazon basin. 373	



Our results show that the seasonal patterns of ET of five sub-basins across the Amazon vary in timing 374	
and magnitude. This spatial heterogeneity in ET seasonality is in agreement with previous studies 375	
carried out at local scale using EC method (Christoffersen et al., 2014; Fisher et al., 2009). 376	
Christoffersen et al. (2014) reported either a flat seasonal cycle or a slight dry season decrease of ET at 377	
transitional southern forests, while equatorial forest ET showed ET peaking with net radiation during 378	
the dry season. Despite agreeing on the main climatic forcing of ET process across these different 379	
ecoregions, our results unveil some differences on the timing of seasonal increases in ET and peak in 380	
relation to climatic variables. These differences are discussed in detail bellow. 381	

4.1. Climatic drivers of Amazon ET seasonality 382	

Discussions on the drivers of ecosystem function seasonality in the Amazon have often resulted in 383	
conflicting results. Our results revealed that in most cases ET seasonality is driven by a balance 384	
between radiation, rainfall and vegetation regulations, rather than being exclusively limited by any one 385	
of these factors. For instance, the peak timing of ET at five sub-basins did not correspond to the peak 386	
timing of either rainfall or radiation, demonstrating that the arbitrary partition of the Amazon basin into 387	
either energy-limited or water-limited is unrealistic and would result in large uncertainty in predicted 388	
ET patterns, as we showed in this study.   	389	

We further demonstrated the degree of radiation and rainfall limitation, as well as their interactive 390	
effects on ET based on a modified Budyko analysis (Fig. 4-6). Our results show that the evaporative 391	
index (ET / (P - ds)) exhibited a positive, nonlinear-type, dependency on climatic dryness index (PET / 392	
(P - ds)), which falls well within the modified Budyko framework. The modification of the classic 393	
Budyko model is the consideration of temporal changes in water-storage, in which total water-394	
availability for evaporation should be quantified as the sum of monthly precipitation and water-storage 395	
change, termed as effective precipitation. Our results thus revealed the importance of considering plant 396	
controls in water-balance accounting over Amazon basin forests, as these evergreen trees, with their 397	
lengthy root-systems, have the ability to tap deep soil-/ground-water to meet atmospheric water 398	
demand.  399	

ET in the Solimões basin does not necessarily peak with solar radiation, but reaches a maximum when 400	
the ratio between radiation and rainfall is highest (Figure 5). In this case, where ET is normally not 401	
limited by water or energy input, plants do not need to regulate water loss, and seasonality of 402	
productivity can be regulated to reach an optimization that maximize the use of both available water 403	
and energy resources. In the Purus, Tapajós and Madeira basins, which encompass regions often 404	
considered to be water limited (Guan et al., 2015; Jones et al., 2014; Xu et al., 2015), ET does not 405	
necessarily reach the lowest values during the driest periods (Figure 3). Instead, we found increased ET 406	
before the end of the dry season, and ET rates can increase even in rainfall deficit conditions (Figure 4). 407	
This pattern can be explained by plants access to deep soil water (Nepstad et al., 1994). This argument 408	
is reinforced by the seasonal patterns of TWS demonstrated in Figure 3, which show that in southern 409	
basins TWS lags rainfall by approximately three months. Hence, during the meteorological dry season 410	
(i.e. when rainfall is low), soil water storage still remains relatively high. When the soils reach their 411	
lower storage volumes, 3 months after the peak of dry season, the rainy season has already started, 412	
providing water supply to be used by plants. 413	



These results concur with previous findings showing a weak relationship between rainfall anomalies 414	
and EVI anomalies (Maeda et al., 2015), indicating a lower sensitivity of ecosystem functioning to 415	
rainfall extremes at transition forests in the southern Amazon. Furthermore, we show that besides 416	
dealing with seasonal rainfall deficit, southern basins remain limited by radiation energy availability 417	
during a certain period of the year (Figure 4), which explains the ET recovery before the driest period, 418	
i.e. when radiation starts to increase (Figure 3). 419	

However, it is important to highlight the fact that, although these analyses are based on sub-basins 420	
across the Amazon, they still enclose relatively large areas with substantial heterogeneities. In 421	
particular, the Madeira and Tapajós basins are characterized by a large latitudinal gradient and, 422	
consequently, different ecosystems are present within these sub-basins. Hence, it is likely that, although 423	
on average the Tapajós and Madeira basins are limited by water availability during the dry season, 424	
water limitation may not occur in northern (wetter) parts of these basins. 425	

 426	

4.2. Relationship between ET and canopy greenness 427	

The biophysical causes of EVI seasonality in Amazon evergreen forests have been intensively 428	
discussed in recent years (Bi et al., 2015; Hilker et al., 2015; Maeda et al., 2014; Morton et al., 2014; 429	
Myneni et al., 2007). Recent studies indicate that in wet equatorial forests, EVI is driven by a net 430	
increase in leaf production (Lopes et al., 2016). The seasonal variation in EVI was shown to be more 431	
evident in the dry season, when most plants release old leaves while simultaneously producing new 432	
leaves and, therefore, increase EVI. 433	

Furthermore, studies have shown that southern and Equatorial forests have different cues for leaf 434	
flushing, i.e. plant growing season is initiated by different climatic factors (Wagner et al., 2016). 435	
Hence, our results indicate a decoupling between ET fluxes and seasonal cycles of canopy foliage. In 436	
general, relationships were better in southern basins where rainfall deficits were observed, in particular 437	
Purus and Madeira. In these cases, the climatic triggers for leaf flushing/litter and productivity drivers 438	
are likely to be in phase. In the southern Amazon, leaf growth was shown to be initiated by water input 439	
(Wagner et al., 2016), which means that peak greening should be observed some months after the 440	
beginning of the wet season. In these regions, ET was found to decline as rainfall decreased between 441	
March and May. Nonetheless, ET trends recovered before the peak of the dry season, increasing with 442	
higher solar radiation – suggesting that soil water was available to the trees even during the peak of the 443	
dry season. 444	

In the Negro basin, ET was not significantly correlated with EVI, while in the Solimões Basin, ET and 445	
EVI were inversely related. In these cases, different mechanisms are likely to drive ET and canopy 446	
greenness patterns. In the wet equatorial forests, leaf flushing was shown to be initiated by the increase 447	
in solar radiation (Lopes et al., 2016; Wagner et al., 2016). The subsequent decrease in greening, 448	
however, follows a different pattern, where a slow decrease in EVI might be associated with leaves 449	
aging, epiphylls, herbivores, and leaf fall. 450	

Lags between forest functioning and canopy greening have been previously reported from local scale 451	
experiments. Wu et al (2016) suggested that these discrepancies could be explained by leaf 452	



demography, given a higher photosynthetic capacity of mature leaves. In other words, while LAI 453	
increases during the dry season due to new leaves flushing, young leaves have lower photosynthetic 454	
capacity, which gradually increases as leaves become mature – but then declines as leaves senesce (Wu 455	
et al., 2016). They, hence conclude that phenology of photosynthetic capacity, and not climate 456	
variability, is the main driver of ecosystem productivity (Wu et al., 2016). Our results confirm this 457	
decoupling of vegetation functioning and leaf production in wet evergreen forests. Nonetheless, we 458	
demonstrate that vegetation function seasonality, as described by sub-basin scale ET, is not 459	
independent from climate intra-annual variability. In fact, in some regions, such as the Solimões basin, 460	
vegetation seems to maximize ET (hence productivity) by balance the use of available light and water 461	
resources across time. 462	

 463	
4.3. Uncertainties of the water-balance approach and comparison with model estimates 464	

Assessing uncertainties of ET estimates in Amazon forests is challenging, given the lack of reference 465	
datasets. Previous studies indicate that ET estimates based on GRACE water balance approach may 466	
have higher uncertainties than LSM estimates (Long, 2014). This assessment was, however, carried out 467	
in a region with good data quality for model parameterization, and where the drivers of ecosystem 468	
functioning are better understood. In the Amazon, where parameterization of models are usually more 469	
challenging due to low data quality and unknown biophysical parameters, water balance methods are 470	
still considered an adequate alternative.  471	

Assessing ET at local scales, using eddy covariance methods, Christoffersen et al. (2014) concluded 472	
that most models are not able to represent ET seasonality at different locations across the Amazon. 473	
They argue that models are unable to properly represent canopy dynamics mediated by leaf phenology, 474	
which is believed to play a significant role in regulating ET seasonality. Assessing spatially averaged 475	
ET for the Amazon basin, Karam and Bras (2008) reported that mean annual values calculated using 476	
water balance methods (including Callede et al., 2002; Ramillien et al., 2006) show significantly lower 477	
estimates when compared with output from LSMs. Although the models compared in this study are not 478	
the same, our results diverge from these claims. At the Negro, Purus, Madeira and Tapajós basins, 479	
mean annual ET values calculated with the water balance method were higher than NOAH and 480	
MOD16 estimates. Only at the Solimões basin, annual mean ET from MOD16 was higher than the 481	
other methods. 482	

ET estimates from NOAH-LSM and MOD16 P-M could not provide a consistent representation of ET 483	
seasonality between each other in all sub-basins (Figure 9). Although a full comparison with ET 484	
models is beyond the scope of this study, our results confirm that models still disagree with each other 485	
in estimating Amazon ET seasonality, indicating uncertainties associated with either input datasets or 486	
model assumptions. Both models seem to overestimate water stress in the southern basins, i.e. while 487	
models predict a decline in ET after the driest period, the water balance estimate shows an early 488	
recovery from the dry season, followed by a steady increase until the end of wet season (Figure 9).  489	

One potential source of uncertainty in the NOAH-LSM estimates is the fractional total vegetation cover 490	
(fc), which contributes for defining both transpiration and wet surface evaporation. In NOAH, fc 491	
seasonal variation is estimated from Normalized Difference Vegetation Index (NDVI) climatology 492	
obtained by the Advanced Very High Resolution Radiometer (AVHRR) (Gutman and Ignatov, 1998; 493	



Marshall et al., 2013). Nonetheless, studies have shown that, due to saturation over dense tropical 494	
forests, as well as illumination artefacts, NDVI may not correctly describe seasonal changes in 495	
vegetation structure over the Amazon forests (Huete et al., 2002; Maeda et al., 2016). 496	

The PET estimates used for the modified Budyko analysis (Figure 4) is also based on models, and 497	
therefor is likely to carry some level of uncertainty. Given that PET is a physical measure of 498	
atmospheric water demand, and do not depend on vegetation interactions, the reliability of estimates for 499	
the Amazon basin are likely to be the same as for other regions. Having said that, uncertainties in PET 500	
and ET have noticeable effects on the derived Budyko curves. For instance, underestimated PET values 501	
may lead to dryness index values higher than evaporative index, leading to plotted values that exceed 502	
the energy limit line. Previous studies, however, reported that monthly-average evaporation may 503	
exceed potential estimates by about 10 % during wet months (Shuttleworth, 1988). On the other hand, 504	
overestimated PET can lead to misleading conclusions of higher water limitation in Figure 4. This is 505	
likely to be the case in the Solimões basin, as the seasonal patterns presented in Figure 3, which are 506	
based only on observational data, indicate that in the Solimões basin average rainfall is always higher 507	
than average ET. Water limitation conditions in this region are still likely, given inter-annual variability 508	
in rainfall and ET, but it should not be a condition that is repeated consistently every year. 509	

 510	

Conclusions 511	

Our results demonstrate strong spatial heterogeneity in ET across five ecoregions within the Amazon 512	
basin. Seasonal cycles of ET are shown to vary in timing and magnitude, driven by intra-annual climate 513	
variability across sub-basins. Based on a modified Budyko analysis, we show the interactive effects of 514	
rainfall, solar radiation and soil water storage on ET fluxes. Nonetheless, our results indicate that 515	
neither energy or water input alone is sufficient to explain ET seasonality across five sub-basins, 516	
regardless of the average degree of dryness, demonstrating a dynamic shift in the degree of energy-517	
/water-limitation across space and time. Although eddy covariance studies have shown that ET in the 518	
Amazon can be limited by different climatic factors, this fact had not yet been verified at basin scales 519	
using observational data. 520	

We demonstrate a decoupling between ET and vegetation greenness seasonal patterns in wet 521	
Amazonian forests. In the Solimões basin, ET is inversely correlated with EVI, indicating higher ET 522	
when canopy foliage density is lower. This finding indicates that ecosystem models based on remotely 523	
sensed vegetation indices, including remote sensing based ET models, need to be further assessed to 524	
better represent ecosystem function seasonality in wet tropical forests. 525	

A comparison with two ET models, NOAH-LSM and MOD16 P-M, showed that models are still 526	
unable to consistently represent ET seasonal patterns in the Amazon forest. In the Solimões and Negro 527	
basins, both models presented a different seasonal pattern when compared with our water balance 528	
approach. In southern basins, where rainfall is lower, models seem to overestimate water limitation 529	
during the dry season, and therefore underestimate ET.  530	
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