
Symbolic Analysis of Linear Circuits
with the Determinant Tree Diagram
Roman Dmytryshyn* and Benedykt Rodanski**

Abstract - In this paper we propose a new approach to
solving a problem of th~ large number of arithmetical
operations in generation of formulae for symbolic
analysis of linear circuits. This new approach - called
the Determinant Tree Diagram (DTD) method - is
based on generating permutations and is an alternative
to the well known Determinant Decision Diagram
(DDD) method. DTD can be applied in practice to
generation of the symbolic solution of determinant of a
sparse matrix (e.g, the MNA matrix) in either the
bracket notation or the Reverse Polish Notation.

1 INTRODUCTION

The main goal of symbolic circuit analysis is the
development of methods and algorithms for
generation of formulae, useful in analysis and design
of electronic circuits and systems. It does not matter
what methods or tools are used to achieve this goal
(as long as the time needed to obtain a formula is
acceptable); what matters is the accuracy and
execution speed of the obtained formula on a given
arithmetic processor. The formulae may be obtained
manually or automatically, using commercially
available software or specialised, non-commercial
packages. Each method has its advantages and
disadvantages. Until today there is no single
universal method of formula generation which would
not have some disadvantages.

This paper is concerned with generation of matrix
determinant, where matrix elements are unique
symbols. A very common approach to generating
symbolic transfer functions of electronic circuits is
based on solving circuit equations using Cramer's
rule [1], which requires calculating determinants of
symbolic matrices. The scope of this paper is limited
to generating determinant formulae without
fractions. Such formulae, as opposed to topological
formulae, contain subtraction operations even for
passive circuits. One advantage of our approach is
that, in some cases, generated formulae have smaller
number of arithmetic operations compared to
formulae generated using topological methods [1].
To avoid possible loss of accuracy resulting from
subtractions, accumulation of positive and negative

terms can be done separately and one subtraction
operation is then performed at the end.

The method presented is, from the point of view of
the final result, very similar to the DDD method [2].
We, however, are using completely different
determinant tree, with special properties that allow
generation of symbolic determinants in both classical
(with brackets) and the Reverse Polish Notation
(RPN) forms.

2 PROPERTIES OF THE DETERMINANT
TREE (DT)

Every tree consists of vertices and branches. Let us
characterise the properties of our DT.

DT has four types of vertices: root, A- and B-type
vertex, and leaf. Their graphical representations are
shown in Fig. I. The B-type vertex (B-vertex) differs
from the A-vertex by having several outgoing
branches on its right hand side. Every vertex, except
the root, can be white or black. The root is always
white.

9 ? T ?"~ I
... I 0+I

I

I

root A-vertex B-vertex I leaf
I

Figure I: The typesof DTvertices

The DT of an nrn matrix has three main properties:
• the maximum number of paths from the root to

the leafs is equal to the number of permutations
of n matrix elements where no two elements can
belong to the same row or column,

• there is always an even number of black
elements in a path,

• a leaf is only connected to an A-vertex.

Labelling of DT branches depends on the required
notation of the formula. When generating a RPN
formula, to the left of every branch we put the
corresponding matrix element and to the right,
except a leaf branch, the multiplication symbol (Fig.
2a, b). For branches originating from the right of a
B-vertex we put a plus sign above the multiplication

• Rzesz6wUniversityof Technology,Departmentof ElectricalandComputerEngineering,2 W. PolaStr.. 35-959Rzesz6w,
Poland.E-mail: rdmytr@prz.rzeszow.pl
•• Universityof Technology,Sydney(UTS),Facultyof Engineering,P.O.Box 123,Broadway,NSW 2007,Australia.
E-mail:ben.rodanski@uts.edu.au

SMACD 2004 99

mailto:rdmytr@prz.rzeszow.pl
mailto:ben.rodanski@uts.edu.au

symbol if the bottom vertex is white; a minus sign
otherwise.

While generating a classical formula, labelling of
branches differs in putting the matrix elements,
multiplication symbols and appropriate signs to the
left of branches (Fig. 2c, d). In addition, we put
brackets around the B-vertices.

a) b) lrplttf*f* +r~. s. t. r.1 s. t. r.~s- t.
u v. u v. u v. u v.

Figure 2: The rules of coding of the DT-branches for
generation of symbolic determinant for:

a,b - Reverse Polish Notation; c, d - brackets notation

In order to obtain a formula we go around the DT
anticlockwise, as shown in Fig. 3, and note all
encountered symbols.

Figure 3: A trip around the DT

b)
c:::::::>

y=

3 GENERA nON OF SYMBOLIC
DETERMINANT

To illustrate the algorithm for generation of a
symbolic determinant we'll use a circuit shown in
Fig. 4a. This circuit contains unistors, so it is
modelled with controlled sources and its node
admittance matrix Y is not symmetrical. We create
matrix M by replacing each nonzero entry of Y by a
unique symbol. The determinant of M is given by:

detM = aeinr-aeioq-aejmr+aejop+aekmq-aeknp-afhnr+
afhoq +aghmr -aghop -bdinr +bdioq +bdjmr -bdjOp -
bdkmq +bdknp +cdhnr -cdhoq 68[-l. 17[±]

where the bold face letters in each term show
symbols new in this term, comparing with the
preceding term.

Using the above terms we can plot the determinant
tree, as shown in Fig. 4d. Each term in the
determinant has a corresponding path from the root
to the leaf, so the number of leafs is equal to the
number of terms. A leaf is black for a negative term
and white for a positive term. The number of
vertices in each path is equal n+1. To the left of each
branch we put the corresponding symbol from M.
We note that in the determinant tree only new
symbols (bold in the formula above) are used.

Since the number of black vertices in each path
must be even, we may need to change the color of
one of the vertices in some paths. Going down from
the root, the first white vertex that does not belong
to the previous path changes color to black.

2 c)
c::::::>

M=

1 2 3 4 53 54
1

2
3
4
5

Y1+Y3+Y5 -v, -v,
-Y3 Y3+y4+Y12 -Y4 -Y12

-Y4 Y1+y2+Y4+Y5 -Y" -v?
-Ys Y5+y6 -Ys
-Y2 -Ys Y2+Y6+Yl1

1
2
3
4
5

o-lO-o-C]......<>-C:::J-O-l::::=I--6s
Yll

o

a b c
d e f a

h i i k
m n 0

10 I a r

Determinant Tree of Mroot -+u'---------...:.......:...-~....::..:.....:.:..------....------------~
c

d)

k

B -vertex n--<-:
number of 1 2

permu~ 3 4 5 6

h k

7 8 9 10 11 12 13 14 15 16 17 18

Figure 4: An example: a- circuit, b- V-matrix, c- M-matrix, d- determinant tree

SMACD 2004 100

a)
Tree for generation of determinant of M-matrix in Reverse Polish Notation (RPN)

("f------------------.::-=---------------+
C •rowl-a •0-----------"""""=---, +

f •row 2 - e()...__ ~o_=_--__....+
row3- i • j • k

b)

b •

()...--~...--------..+
k •

b.

~ = einr*oq*-*jmr*op*-*-kmq*np*-*-*fhnr*oq*-**-Qhmr*op*-**+-bdinr*oq*-*
jmr*op*-*-kmq*np*-*+**-cdhnr*oq*-***+. 35[*], 17[±]

3.1 Generation of flat formulae

Tree for generation of determinant of M-matrix in classical bracket notation

f. + g.

+ c.

AN = ao(eo(j.(nor-o.q)-j.(m.r-o.p)+k.(m-q-n-p))-f.ho(nor-o.q)+goh*(m*r-o.p»-
-b*d*(j.(n*r-o*q)-j*(m*r-o*p)+k*(m*q-nop »+c*d.h.(nor-o.q). 35[*]. 17[±]

Figure Sa shows a tree for generation of flat
determinant formula in the RPN. Branches are
labeled according to Fig. 2a,b. Traveling around this
tree, according to Fig. 3, and writing down all
encountered symbols results in the RPN formula,
shown below the tree (Ap = einr*oq*...).

If the branches of the DT are labeled according to
Fig. 2c,d, traveling around the tree and writing down
all encountered symbols results in a classical formula
with brackets (AN = a*(e*(i*(n*... in Fig. Sb).

Both flat formulae, RPN and bracketed (the last
one is also called nested), have considerably smaller
number of multiplications than the expanded
formula.

SMACD 2004

'---- A--...--
Figure 5: An example of generation of the formulae of determinant of matrix M

based on DTD

3.2 Generation of sequential (hierarchical)
formulae

A closer inspection of the bracketed formula shows
that several sub-expressions appear more than once
in the formula. A considerable amount of execution
time can be saved if these sub-expressions are
calculated only once and replaced by a unique
symbol, as shown in Fig. Sc. This results in a
hierarchical formula, also called the sequence of
expressions (SoE). The number of arithmetic
operations is further reduced in the SoE form.

101

3.2.1 Coding of the cofactors

Consider again the tree in Fig. 5c with all relevant
sub-trees marked. Those sub-trees represent several
cofactors which may appear many times in both the
numerator and the denominator of a network
function (transmittance). It will therefore be very
advantageous to extract those sub-expressions and
replace them by unique symbols to be used in the
final formula.

To illustrate this procedure, let us draw separately
all marked sub-trees FI - F5 from Fig. 5c. This is
shown in Fig. 5a,d,e,f,g. Each of these sub-trees
represents a certain minor of M (Fig. 6b). In order to
facilitate computer generation of expressions, we'll
code each sub-tree using a variable length array, as
shown in Fig. 6c. The first entry in the array is the
number (k) of last consecutive rows of the
corresponding minor. Next k entries are the column
indices. The last entry shows the sign of the first
permutation, obtained from the Cartesian product
algorithm applied to sets of column indices in table
K (Fig. 4c). (This sign can be calculated each time

a) F1 b) c)code of submatrix

F1 =L274 ,+]
number/ tsign
of rows of first

columns permutation
subformula W1= [n-r-o-q]

F2 = [2, 3, 5, +]

W2 = [rn-r-o-p]

F3 = [2, 3, 4, +]

W3 = [rn-q-n-p]

F4 = [3, 3, 4, 5, +]

W4=
[j.W1 -joW2 -+k.W3]

g) F5

F5 = [3, 2, 4, 5, +]

W5 = [h.W1]

Figure 6: The examples of coding of sub-tree, sub-matrix
and sub-formula

SMACD 2004

the formula is generated, but it is advantageous to
obtain the sign only once; it saves time later, when
the final SoE is generated.) Each array F is used to
obtain a symbolic cofactor W.

3.2.2 Hierarchical determinant tree

Figure 7 shows the hierarchical structure of the DT
for SoE generation. The new tree has less paths and
the paths are of variable length. It is important to
note that the properties of the hierarchical DT (HDT)
are identical with the original DT.

b

Figure 7: The hierarchical structure ofDT

3.2.3 Symbolic determinant in the SoE form

Without loss of generality we can consider the
classical (bracketed) formula only. To obtain the
determinant formula in the sequence of expressions
form we first generate all cofactors (starting from the
deepest level) and then replace all sub-trees in the
original DT by the symbols representing the
corresponding minors. The resulting HDT for our
example is shown in Fig. 8.

Figure 8: The hierarchical DT (HOT) for bracketed
symbolic determinant

Note that the number of paths in the HDT in Fig. 7 is
3.7 times smaller than the number of paths in the
original DT from Fig. 4d. Traveling around the HDT
and writing down all encountered symbols we obtain
the final formula in the SoE form:

102

Wl=n*r-o*qi W2=m*r-O*pi W3=m*q-n*pi
W4=i*Wl-j*W2+k*W3i WS=h*Wli
W=a*(e*W4-f*WS+q*h*W2)-b*d*W4+c*d*WS

[*]=19, [±]=9.

Counting the number of arithmetic operations in
the SoE shows a considerable improvement over the
flat formulae (both expanded and nested): the
number of multiplications decreased 68/19 = 3.6 and
35/19 = 1.8 times, the number of additions/
subtractions decreased 17/9 = 1.9 times.

4 CONCLUSIONS

A new method for generation of symbolic
determinant formulae has been presented. The
method is especially effective for determnants of
sparse matrices. It can generate both flat and
hierarchical formule in either classical bracketed
(nested) or the RPN forms. Since all network
functions can be expressed as ratios of certain
determinants (of usually very sparse matrices), our
technique has immediate applications in symbolic
circuit analysis.

From the point of view of computer algebra,
generation of symbolic determinant formulae in
bracketed (nested) form is a well known problem of
formula factorization. An attempt to address this
problem has been made in commercial packages as
MAPLE or MATHEMATICA. Unfortunately,
factorization belongs to the so called NP-hard
combinatorial problems, and the solution obtained
from commercial packages are not always
satisfactory. The DID algorithm, presented in this
paper, may be used to improve the efficiency of the
factorization procedures, and is not limited to
symbolic circuit analysis.

The DTD has excellent educational values, based
on practical application of important elements of
graph theory and combinatorics. In comparison with
symbolic LU-decomposition, as in SCAPP [6], or
symbolic Gaussian elimination, as in STAINS [7],

SMACD 2004

the DTD evaluation is division-free. Early
experimental results indicate that DTD performs at
least as good as the DDD method [2, 3]. The DTD
method is conceptually simpler and useful for both
the education process ("Discrete Mathematics" [5],
"Circuit Theory," etc.) and implementation in CAD
of electronic circuits and systems.

References

[1] P.-M. Lin, Symbolic Network Analysis,
Amsterdam: Elsevier, 1991.

[2] c.-J. Shi, X. Tan, "Canonical Symbolic Analysis
of Large Analog Circuits with Determinant
Decision Diagrams," IEEE Trans. on CAD of
Integrated Circuits and Systems, vol. 19, no. 1,
2000, pp. 1-18.

[3] W. Verhaegen, G. Gielen, "Symbolic Determinant
Decision Diagrams and Their Use for Symbolic
Modeling of Linear Analog Integrated Circuits,"
Analog Integrated Citcuits and Signal Processing,
31, Kluwer Academic Publishers, 2002, pp. 119-
130.

[4] R. Dmytryshyn, A. Kubaszek, "Multimethodical
Approach and Sequence of Expressions Generation
for Acceleration of Repetitive Analysis of Analog
Circuits," Analog Integrated Circuits and Signal
Processing, 31, Kluwer Academic Publishers,
2002, pp. 147-159.

[5] R. Dmytryszyn, G. Drams, Discrete Mathematics
(algorithms, exercises, project), Rzesz6w
University of Technology Publishing, Rzeszow,
Poland, 2003. p.125 (in Polish).

[6] M.M. Hassoun, P.-M. Lin, "A hierarchical network
approach to symbolic analysis of large-scale
networks," IEEE Trans. on Circuits and Systems -
I: Fundamental Theory and Applications, vol. 42,
no. 4, pp. 201-211, April 1995.

[7] M. Pierzchala, B. Rodanski, "Generation of
sequential symbolic network functions for large-
scale networks by circuit reduction to a two-port,"
IEEE Trans. on Circuits and Systems - I:
Fundamental Theory and Applications, vol. 48, no.
7, pp. 906-909, July 2001.

103

