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Abstract

This paper describes the design of a novel sliding
mode controller for tracking of robotic manipulators.
By using a proportional-integral combination of the
sliding function in the boundary layer, control
chattering is eliminated without deterioration of
system robustness. Theoretical developments are
verified by simulation results for the tracking
problem of a 2 DOF robotic manipulator,

1 Introduction

Variable Structure Systems (VSS) with Sliding Mode
Control (SMC) are characterized by control laws that are
discontinuous on a certain manifold in the state space, the
so-called sliding surface [Itkis, 1976; Utkin, 1987]. A VSS
control law is designed such that the representative point’s
trajectories of the closed-loop system are attracted to the
sliding surface and once on the sliding surface they slide
towards the origin. By properly designing the sliding
surface, VSS attain robustness regardless of parametric
uncertainty and external disturbances [Slotine and Li, 1991].
In that context, considerable effort has been made in design
of controllers for tracking of robotic manipulators, and
variable structure control approaches have inspired a large
amount of research work and surveys published in the field
[Slotine and Li, 1991; Slotine and Asada, 1986; Arashima et
al., 1986; Hung et al., 1993; Young et al., 1999].

Typically, VSS suffer from the chattering phenomenon
because of the discontinuous change of control laws across
the sliding surface. In practical engineering systems,
chattering may cause damage to system components, as well
as excite unmodelled and high frequency plant dynamics
[Kwatny and Siu, 1987]. There exist several techniques to
eliminate chattering. The widely-adopted approach to
chattering-free VSS is the so-called boundary layer one,
where the discontinuous VSS control law’s signum function

is approximated using a saturation nonlinearity within a
small vicinity around the sliding surface [Slotine and Li,
1991; Hung et al,, 1993]. Unfortunately, boundary layer
controllers do not guarantee asymptotic stability but rather
uniform ultimate boundedness [Corless and Leitmann, 1981;
Esfandiari and Khalil, 1991]. As a consequence, there exists
a trade-off between the smoothness of control signals and
the control accuracy. Some boundary layer width
modification techniques to improve tracking precision are
discussed in [Slotine and Li, 1991; Arashima et al., 1986;
Yu et al.,, 1994; Chen et al., 2002]. Nevertheless, these
proposed methods in practice lead to a computational
burden when implemented, or are applicable only to linear
systems.

In this paper, a systematic and feasible design of VSS
controllers for robust tracking of robot manipulators is
proposed. Section 2 provides a brief summary of VSS
design for robot tracking. To alleviate chattering in SMC of
nonlinear systems, a proportional-integral combination of
the sliding function is proposed in the boundary layer in
place of the signum function. This continuous controller
can force the system states to reach the sliding surface and
attain high tracking performance. The main result is
presented in Section 3. A rigid two-link manipulator with
planned trajectories is simulated to verify the validity of the
proposed method as given in Section 4. Finally, a
conclusion is reached in Section 5.

2 VSS controller design for tracking of robot
manipulators

2.1 Manipulator Model

The dynamic equations of motion for a robot manipulator
consisting of n-rigid links are described in joint-space as
follows [Spong and Vidyasagar, 1989]:



u=H(q)q+h(q.9),

h(q,9)= C(q.9)9+&(9),
where ueR" is the vector of applied generalized forces,
ge R" is the vector of joint variables, ge R" is the vector of
the gravitational forces, C(g,q)ge R" is the vector of

Coriolis and centrifugal forces, and H=H" >0, He R™" is the
manipulator inertia matrix.

The dynamics (1) can be cast in the space representation
as follows:

M

Gg=a(q,q)+B(qu+d(t), (2)

where a(q,q) = H'(9)h(q.9), Blg)=H \(@), 3)

and d(t)e R" is the vector of unknown external

disturbances.
Note that representing inertia of the robot manipulator,

matrix A and its estimate, H , are positive definite and
invertible.
For the SMC design, the following assumption is made:

Assumption 1
The nonlinear dynamics B(g) and a(q,q) are not exactly

known, but can be estimated as é(q) and da(q,q). The
estimation errors are bounded by known functions:

| @H@)| = |b@57 @) < B@, @
la(g.9) - a(q.9)|| < Ao (@.9)

and the external disturbance is bounded "a’ (t)" <D.

2.2 SMC law

Let ¢gsR" be the desired trajectory and
e=q,—q and é=¢, —¢ be the state tracking errors and

their time derivatives.
We firstly define the sliding surfaces as follows:

S=Ce+e=0 |, (5)

where C =diag(C,,....C,}, C,eR; C,>0; i=1l,.,n

If system states remain on the sliding surfaces chosen,
tracking errors will tend to zero asymptotically V¢ > 0. This
is because each tracking error ¢; is obtained from the

function S; through a first-order low-pass filter with a time

constant CL [Slotine and Li, 1991].

H
The control law u is then designed such that the system
state trajectorics driven to the sliding surfaces. The key
problem is to select a Lyapunov function of the form

¥ =0.587.5 >0, and choose a control law such that;

V=5T8<0;5+0,or: (6a)

STS <—als|=-a.57 sgn(8), (6b)

where «is a positive scalar.
The inequality (6) is often called the sliding condition.
The control law u is now chosen as follows:

u=B"[u,, +K.sgn ()], @)
where

ueq =Ce+ ijd - é(qa q) > (8)

sgn(S) = [Sgn(sl )’ Sgn(SZ )’"'s Sgn(sn )]T ’ (93)

K =diag(K,,...K, )}, K;>0; i=l..,n. (9b)
Theorem 1

For system (2), if Assumptions 1 and 2 are satisfied, and the
control law is chosen as given in (7),

with K; 2|8 - 1|{lu,, ||+ Bla+D+Aa,,)

Ugy i=l..,n,

then the tracking errors will asymptotically converge to
Zero.

Proof
Taking the time derivative of (5) gives

S§S=Cé+gy—i.
Using (2), (7) and (8), the above equation becomes

S= Ce+g,—a-d - BB [ueq +K.sgn(S)]

. . (10)
={r-BB")u,, +a-a—-d-BE" K.sgn(S)

where / éR™ is an identity matrix.
Using (10), the sliding condition (6b) becomes
S™{1-BB " Ju,, +a-a-d-BE' K.sgn(s)+asgn(8)}<0
< STBB! {(1}3" - I)ueq +BB(G-a)-BB"'d - K.sgn(S)
+ éB"a.sgn(S)}s 0

(1D
Inequality (11) can be brought into:
5 {88 1)u, + BB (G-a-d +asgn(s)],
-K,.sgn(S;)}<0, i=1l..n (12)

where [V]; denotes the i'™" component of a vector V.
In view of Assumption 1, condition (12) can be
expressed as:



K, 2|B-u, |+ Bla+D+hay, ), i=1..,n (13)

Therefore, the sliding condition (6b) is satisfied with K;
(=1,..,n) chosen as in (13), and the system state trajectories
are driven onto the sliding surfaces in a finite time. When
the system states remain on the sliding surfaces, tracking
errors tend asymptotically to zero.

ueq

3 Proposed SMC

3.1 Continuous control laws to approximate SMC

Define thin boundary layers neighboring the sliding
surfaces:

B =1g,S:(g.1) s @} @, >05i=1,.m, (14)

where @; is the boundary layer thickness, as illustrated in
Figure 3.1 for i=1 in the error phase space.

To remedy the control discontinuity in the boundary
layer, the signum function sgn(S) in (7) is replaced by a
saturation function of the form [Slotine and Sastry, 1983]:

sgn(S,- ), |Si| >,
sat(S;)=4 S; 5| <@ i=l..,n, 15)
(I) ] i i

i

However, the system state applied this control law is
uniform ultimate bounded with respect to a small
neighborhood of the origin [Gao and Liu, 1995].

Let & =C;'®,,i=1,.,n be the boundary layer width.
As shown in [Slotine and Li, 1991], the tracking errors exist
within a guaranteed precision &;. Therefore, the larger the

boundary layers the smaller the control chattering and the
greater the tracking errors.

3.2 Proposed PI sliding control law

€

v

S, =C,e +¢ =0

Figure 3.1 The sliding surface and the boundary
layer

S; .
Let o, =-q)—‘;i =1,...,n, we first introduce the saturated

proportional-integral functions:

i

1 if o;>1
5
pilo;)= ai+K,j}jo;dt if -1<0,<1, 16

-1 zf o, <-1

i=1..,n

where K 5> 0 is an integral gain, and ¢; is the initial time
when the system states enter the boundary layer B;(%) in (14).
If lO',.I 21, the integration term in (16) will be reset to zero

to prepare for the system state entering boundary layer.
The control law u is then chosen as of the form:

uzé_][ueq-i-K.p(O' )], (17)
where
P(O')=[Pl(o'l)apz(o'z)s--wpn (o, )]T: (18)
and u,,, K are chosen as (8), (9) and (13).

Assumption 2
It is assumed that the chosen integration gains K,

(i=1,...,n) are sufficiently large such that:

6;+K,0,>0 forallg, >0
0;+K,0,<0 forallo; <0

(19

Inequalities (19) imply that p; increases for all ¢; > 0,
and p; decreases for all 0; < 0 [Salas and Hill, 1990].

Proposition
For system (2), if Assumptions 1 and 2 are satisfied, and the
control law is given in (17), with K chosen using (9) and

(13), and p(o) selected as in (16) and (18), then the tracking
errors will tend to zero.

Clearly, outside B;(?) (i=1, ..., n), we choose control law
as (7) (because p, (0',»)= sgn(S,-) ), which guarantees that the
boundary layers are attractive, and hence all trajectories
starting outside of B;(t=0) are forced to reach B;(z).

Inside B;(t) (i=1, ..., n ), as from Assumption 2, after a
finite time we have with the value K, chosen,

ai+1<,ij"aidt21 for §,>0
’ (20)
ai+K,,-J“0',.dts—1 for 8§;<0



Thus,
eForS;>0:

From (20 ) and with K; is chosen in (13), one can obtain:

K,p,(0,)2 [B.B"1)u,, + BB (4-a-d+asgn(s))|

i

@
eForS§;<0:
Similarly, one can also have:
K,p,(0,)<|B.B"1)u,, + BB (4-a-d +asen(®)],
22)

Inequalities (21) and (22) imply that sliding condition
(12) is satisfied, and tracking errors tend to zero as seen in
the proof of Theorem 1.

4 Simulation of a two-link manipulator

Consider a two-link planar arm with two revolute rigid links
as shown in Figure 4.1. The control system is designed such
that the manipulator’s end-effector moves unknown loads
along the desired trajectories g(t)=q,(t) from an initial
position (xy, yy ) to a final position (x¢, yc ) within a finite
time f. The manipulator payload is varying subject to

m, =0+myp S, =0+, -
The dynamics of the manipulator can be obtained as [Spong
and Vidyasagar, 1989]:

o 1__1 _[ hy _hlz:’ 763 +2T 6,6, +[gl}
6,] Dy —hy Ay —-T8} 2
h _
+[ 2 hu}[“n}}’
—hy by |
where

hyy =yl my (12412, + 200, cos, )
+ Ty +J, +m 12 +12 4211, cos6, )
hiy =y = m {12y + 115 0SB, )+ T +J, + m, i
hyy =malay+J, +J, +ml}
T = ~{myhl,; +m,,1, )sin 6,
gy =mgly cosb + ng(lI cosd; +1,, cos(6, +6, ))
+ m,g(l1 cos8, +1, cos(6, + o, )
g, =mygl,, cos(8, +6,)+m,gl, cos(6, +6,)
Dy =hy by —h122 ’
with the following data: m,=0,3936kg, m,=0,0946kg,

1=0,203m, [=0,1524m, [,=0,1554m, 1,~0,0818m,
J;=0,00114kgm?, J, = 0,0003kgm?, Mymge = 0,294Kg, Jomax =

0,001kgm?, x4 = 0m, y, = 0,3m, xc = 0,3554m, yc = Om, and
tr=13s.

The nonlinear dynamics estimates E(q) and a(q,q) are

determined with respect to the case that m,=0, J,=0.

The bounds in Assumption 1 can be calculated when m,
= Mimaw, J; = Jmax and disturbances d,(t)= d,(2)=0.5 sin(20f).

The entire system is simulated with an arbitrary payload
m, = 0.147kg, J,= 0.0005kgm?.

Fig. 4.2 shows the desired time histories of the position
of the two links with a cubic polynomial time law.
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Figure 4.1 : Two-link planar arm
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Figure 4.2. The desired time histories of position of two links

Fig. 4.3 shows the tracking errors and control inputs of
the two links when the control system uses the conventional
VSS controller presented in Section 2.  Although the
tracking errors tend to zero, the control inputs suffer
chattering when the state trajectories are on the sliding
surfaces.

In this VSS controller, if the signum functions are
replaced by saturation functions as in the well-adopted
boundary layer method, system tracking errors and control
inputs are displayed in Figure 4.4.

It can be observed from Fig. 4.4 that the control inputs
are now smooth but the tracking errors increase.

As shown in Figure 4.5 when the signum functions are
replaced by the proposed saturated proportional-integral
functions (16), withK; =K,, =75, perfect tracking

performance can still be obtained while chattering of the
control input is eliminated completely.
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Fig 4.3: The tracking errors and control inputs of the two links
under SMC with parameters oo = 0.1, and C; = C; =5 . Note the
errors as €;=0.00003rad and e,=0.00048rad at =25
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Fig 4.4: The tracing errors and control inputs of 2 links when using
conventional SMC with the saturated functions in the boundary
layers and a = 0.1, C, =C, =5, and ¢,=9,=0.5. Note the errors
as €,=0.00833rad and e,=0.0222rad at t=2.2s
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Fig 4.5: The tracking errors and control inputs of the two links
when using SMC with the proposed saturated proportional-
integral functions in the boundary layers and o = 0.1; C, = C,
=5, ®=0,=05, and K; =K, =75. Note the errors as

€;=0.000098rad and ,=0.00029rad at t=2s

5 Conclusion

In this paper, a systematic and feasible technique is
proposed for the design of VSS controllers for robust
tracking of robot manipulators. An improvement of the
boundary layer method is achieved by using a proportional-
integral combination of the sliding functions.  The
simulation results show that when the payload of the robot
manipulator changes and its disturbances vary within a
defined range, the propose control system can maintain its
stability and attenuate well the tracking errors while
eliminate completely the chattering of the control forces.
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