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Abstract - In this paper we present a brief description
of a new method for simplification of symbolic network
functions. Our approach is based on utilising the large-
change sensitivities, both single- and multi-parameter,
in order to select elements to be excluded from the
formula. Our technique belongs to the simplification
before generation (SBG) group of methods. The main
advantage of the described methodology is the small
number of network function recalculations and
continuous monitoring of network function behaviour
during the simplification process. Basic theoretical
principles of the method and an illustrative example
are presented.

1 INTRODUCTION

In recent years symbolic analysis of electronic
circuits has been experiencing a revival mainly due
to increased sophistication of algorithms and a
dramatic increase in computing power available to
researchers and circuit designers. Several important
developments have been reported in symbolic
analysis of large-scale circuits. One of the more
important issues is the problem of simplification of
usually extremely complex expressions generated for
such circuits. This complexity makes interpretation
of the final formula impossible (even for medium-
size circuits) and slows down the numerical
calculation process.

To address this problem a number of approaches
have been proposed to simplify the final formula,
while maintaining the numerical accuracy above a
predetermined level. Those approaches can be
classified into three groups:

a) simplification before generation (SBG),
b) simplification during generation (SDG),
c) simplification after generation (SAG).

Various simplification methods have been described
in [1,2] with references to the relevant original
works.

A common feature of all currently published
simplification (sometimes incorrectly named
'approximation') techniques is that the candidates for
elimination are chosen either by a trial-and-error
process or differential sensitivities are used to rank

the candidate components. Differential sensitivities
do not give an easy indication of the network
function variations in case of removal of circuit
components, when relative parameter changes vary
from -100% to infinity.

Here we describe a simplification method using the
large-change sensitivities to decide which
components are to be removed and in what order.
The method used to calculate the large-change
sensitivities has been described in [3,4]. First, we
calculate the single-parameter large-change
sensitivities to parameter changes that make the
admittance or impedance zero (component removal
by either open- or short-circuiting) and sort the
components in ascending order of these sensitivities.
(We will use the term extreme-change sensitivities
to describe this special type of sensitivities.) Next,
we calculate the multi-parameter extreme-change
sensitivity, iteratively adding consecutive
components from the ranking list obtained earlier,
until a predetermined value is reached. Components
thus selected are then removed from the circuit. This
reduces the complexity and the number of arithmetic
operations in the final formula.

It is important to point out that our approach needs
only one calculation of the network function of the
full circuit. Subsequent computations use the results
of this initial calculation, significantly reducing the
computational effort.

2 THEORETICAL BASIS
PROPOSED METHOD

THEOF

Let the circuit property of interest be described by a
network function T(s,p), where: s - complex
frequency, p = [PI> P2, ... , Pm]T - vector of circuit
parameters. The relative change of T(s,p), caused by
simultaneous change of m circuit parameters, is
given by:

gT = Tm(s,p)-To(s,p), (I)
P To(s,p)

where: To - initial value of the function,
Tm - value of the function after m

parameters have changed .
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The large-change sensitivity of a network function
T(s,p) to variation of a single parameter Pi is defined
as [5]:

If a parameter varies by 100%, i.e., I3.p = ±p, then
Splp, = ±I. Parameter (symbol) Pi can be removed
from the formula if the extreme-change sensitivity
and the network function satisfy the following
condition:

\6;,1 < e <:> II3.TITI < e, (3)

where E: is an arbitrarily chosen maximal acceptable
error.

Multi-parameter large-change sensitivity can be
calculated recursively using the two-port
trans impedance approach [3,4]:

Z~(a,ll) = Z~_I(a,ll) + K~_IZ~_I(a,~)Z~_I(~,Il), (4a)

where: ~ = I,2, ... ,m,
~= (~ll2) - pair of nodes to which the ~-th

element is connected,
Zoea,ll) - nominal trans impedance between

ports a and Il,
Z~(a,ll) - trans impedance after change of ~-

th parameter,
1

K~_I = (4b)
II l3.y~+ Z~_l(~'~)

To calculate changes in the network function it is
sufficient to know the changes in appropriate
transimpedances. When parameters change by 100%,
a situation that occurs with removal of elements, the
admittance variation equals: l3.y, = -y,. In such case
the coefficient K,_j in (4a) is equal to:

If an element is removed by short-circuiting, then
l3.y, ---+ 00 and

It is remarkable that the recursion (4a) works
equally well for any arbitrary parameter change,
including short- and open-circuiting of circuit
components. Another very important feature of (4a)
is the fact that it uses the trans impedances of the
nominal (unperturbed) circuit. Each nominal
transimpedance is calculated as a simple linear
combination of at most four elements of the inverse
of the node admittance matrix [3]. So, ultimately,
application of the recursive formula (4a) requires a
single numerical inversion of the node admittance
matrix.
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(2)

Our ability to calculate the multi-parameter
extreme-change sensitivities means that we don't
have to perform element-by-element elimination
(each time recalculating the network function), but
the entire set of candidate elements can be eliminated
at once.

The choice of the elements to be eliminated is an
NP-complete combinatorial problem. Fortunately, a
simple heuristic can dramatically reduce the solution
space. First, for each circuit element we calculate the
single-parameter extreme sensitivities to s-c and o-c,
The table of sensitivities is then sorted in ascending
order. Next, the elements are chosen successively
from this table and the multi-parameter extreme-
change sensitivities for each set are calculated. The
process continues until the predetermined error value
is reached. There are several possible variations:

• the elements are chosen from the ordered list
regardless of the sensitivity type (s-c or o-c),

• the elements with low open-circuit sensitivities
are preferred,

• the elements with low short-circuit sensitivity
are preferred.

Our experiments show that good results are obtained
when as many as possible elements are eliminated by
short-circuiting; then we try to remove elements with
lowest open-circuit sensitivity.

3 ALGORITHM

The following algorithm results in a simplified
formula for a network function; the simplified
formula will produce numerical results with
predetermined accuracy at given frequency points.

(5)

1. Determine a set of discrete frequencies F =
{Ii: i = 1,2, ... ,n} and the acceptable variation E:

of a network function at those frequencies:
maxll3.TITol < e. (7)
feF

2. With nominal parameters, calculate the nodal
admittance matrix Y, its inverse Z and the
network function at F.

3. Obtain single-parameter open- and short-
circuit sensitivities for each parameter in
P=[Pl,P2, ... ,Pmf according to:

()p=maxII3.TITol. (8)
feF

4. Sort the sensitivities in ascending order.
5. Until 6P1 ~ e, sequentially calculate the multi-

parameter extreme-change sensitivities for
the sub-vectors: Pj = [Ph P2, , pj]T

6P1 =(I3.TITotPj;j=I,2, ,m. (9)

(6)

82



6. Repeat until condition (7) is satisfied:
• j=j-I;
• remove the first j components from the

circuit;
• calculate the required network function of

the modified circuit.

Step 6 is very often performed only once.

4 CIRCUIT EXAMPLE

To illustrate the proposed algorithm we will present
a small circuit example [7].

Consider a BJT amplifier, shown in Fig. 1. The
hybrid-a model parameters of the BJTs are: rxl =
270, r,,1 = 200k, gmJ = 1 mS, roJ = 203M, C"J = 20 pF,
C~I = 3 pF, ra = 270, ra = 4.5k, gm2 = 75 mS, ro2 =

35k, C"2 = 60 pF, C~2 = 3 pF. Our goal is to obtain a
simplified symbolic expression for the voltage
transmittance TvCs,p) of this amplifier. The
expression should give at least 10% accuracy (I:: =
0.1) of the magnitude of TvCs,p) in the frequency
range 1kHz - 1MHz. As the function in question is
quite smooth, we can select only a limited number of
frequency points: F= {lk, 10k, lOOk, 1M}.

Cbl RbJ +Ec
HII--r--C::::J-<r---.-----o

Fig. 1: A simple BJT amplifier.

After performing steps 2 - 4 of the algorithm in
Section 3, we obtain a list of open- and short-circuit
sensitivities. The relevant part of this list is shown in
Table 1.

In step 5 we first calculate the multi-parameter
short-circuit sensitivities for P2 = [Rb3, CbIl, P3 =
[Rb3, Cbj, CI], P4 = [Rb3, Cbl' Cj, Cd, etc., until
lip! ;:::e. In our case lip. = -0.97 > e and

lip, = 0.0007 < e. Only seven components can be
removed by short-circuiting (marked in bold in
Table 1). Since the error is still much smaller than
the allowed 10%, we keep adding more parameters
to P, taking them now from the list in ascending
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Table 1: Ordered extreme-change sensitivities
I~TjT vOl for the amplifier in Fig. 1.

Rb3 o/c 1.145815e-013
Rb3 sic 3.383702e-008
Cbl sic 3.383702e-008
Cl sic 2.693101e-005
Rol o/c 6.770211e-004
Cb2 sic 1.48401ge-003
C2 sic 2.733563e-003
Rb2 olc 3.050170e-003
Cbl o/c 5.982624e-003
Ro2 o/c 1.110177e-002
Rcl o/c 1.304126e-002
Rbl olc 1.47660Be-002
Rxl sic 1.968737e-002
Rpl olc 2.369130e-002
Rx2 sic 3.132154e-002
Rc2 o/c 7.367996e-002
Rp2 o/c 8.496395e-002
Cp2 o/c 1.190218e-OOl
Cul o/c 3.038716e-OOl
Cpl o/c 5.498861e-OOl
Rel o/c 9.691058e-OOl
Cb2 o/c 9.693058e-OOl
Rf sic 9.975447e-OOl
Rcl sic 9.991137e-OOl
Rp2 sic 9.993755e-OOl

10',---~_~_~R_.la_tive_.~ITO_r_Of:-fT~~_~_~~

I I I I

.......rnax.~~~ ..~~~r T~by ~.:.

10.2 - r - - - --,-- - - -I - - -' - ,- - - - .- - - - T - - - --, -

removal
~ 10'" --

~ ,
,
,
,

, ,
- - - - - - - - - - - - - - - - - - - - .., , ,

,

10-6 :

10·L-:;---_~---:--~-~,-----~--'---
6 8 10 12 14

number of remcsed elements

Fig. 2: Error behaviour during elimination of circuit
elements.

order of the open-circuit sensitivity (marked in
italics in Table 1; note that the elements which have
been already removed by s-c, are not included). Now
we reach the point where Ii = 0.154 > e andp"
li

pll
= 0.073 < e. The iteration process is illustrated

in Fig. 2.
Step 6 requires only one iteration to confirm that

the accuracy condition is indeed satisfied.
So, to keep the relative error of I Tv(s,p)1 below

10%, we can eliminate 13 components from the
equivalent small-signal circuit of the amplifier. This
reduces the number of symbolic parameters in the
voltage transmittance formula to 12.
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It is important to emphasize the fact that to achieve
this result we only need to calculate the inverse of
the node admittance matrix of the original circuit
once. All subsequent calculations are performed on
this matrix using transimpedancies and the simple
recursive formula (4a) in conjunction with (4b).
Other methods require recalculation of the entire
circuit after each modification.

With the modified circuit, the transmittance
formula can be generated by any convenient method.
For example, using our software STAINS [6], we
obtain the sequential formula for the voltage
transmittance:

dl (Gc2+Gf+GL+s*Cu2)/(Gm2-s*Cu2);
xl s*CuI*dl;
x2 -s*Cu2-(Gp2+s*(CuI+Cp2+Cu2))*dl;
d2 Gf/(s*Cu2-Gm2);
x3 s*Cul*d2-s*Cpl;
x4 -Gml-(Gp2+s*(CuI+Cp2+Cu2))*d2;
d3 x2/ (x-t ) ;
xS xl-x3*d3;
x6 -Gf-(Gel+Gf+Gml+s*Cpl)*d3;
d4 (Gml-s*Cul)/(x4);
x7 Gs+s*(Cpl+Cul)-x3*d4;
x8 -Gml-s*Cpl-(Gel+Gf+Gml+s*Cpl)*d4;
dS x6/ (x8);
x9 Gs*dS;
xlO = xS-x7*dS;
Tv = Gs/xIO;

Fig. 3 shows the comparison between the voltage
transfer magnitude of the original and the simplified
circuits.

SMACD'04 Example: frequency response
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Fig. 3: Frequencyresponseof the original(lowercurve)and
the simplified(uppercurve)circuits.

5 CONCLUSION

We have presented a new method for simplification of
symbolic network functions of linear electronic
circuits. Our method is based on the application of the
transimpedance concept [3] to calculation of the
single-parameter and multi-parameter large-change
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sensitivities of network function to short- and open-
circuiting of elements.

The entire process of selecting components for
elimination requires only a single analysis of the
nominal circuit (involving formulation of the node
admittance matrix Y and inverting it numerically to
obtain matrix Z). Components are selected for
elimination using the ranking list obtained by sorting
on the single-parameter extreme-change sensitivity.

Instead of removing elements one by one, each time
recalculating the entire modified circuit, we compute
the multi-parameter extreme-change sensitivity with
successively expanding parameter list until a
predetermined error value is reached. This calculation
is performed with a simple recursive formula (4a) and
involves only operations on the elements of the once
calculated Z. The recursion (4a) handles both open-
and short-circuit elimination of elements.

Our approach is conceptually simple and elegant. It
requires less computational effort than methods based
on element-by-element elimination and is independent
of the symbolic technique employed in deriving the
transmittance formula.
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