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Abstract

The Gram negative bacteria Chlamydia trachomatis is an obligate intracellular human path-

ogen that can cause pelvic inflammatory disease, infertility and blinding trachoma. C. tra-

chomatis encodes a homolog of the dithiol oxidoreductase DsbA. Bacterial DsbA proteins

introduce disulfide bonds to folding proteins providing structural bracing for secreted viru-

lence factors, consequently these proteins are potential targets for antimicrobial drugs.

Despite sharing functional and structural characteristics, the DsbA enzymes studied to date

vary widely in their redox character. In this study we show that the truncated soluble form of

the predicted membrane anchored protein C. trachomatis DsbA (CtDsbA) has oxidase

activity and redox properties broadly similar to other characterized DsbA proteins. However

CtDsbA is distinguished from other DsbAs by having six cysteines, including a second disul-

fide bond, and an unusual dipeptide sequence in its catalytic motif (Cys-Ser-Ala-Cys). We

report the 2.7 Å crystal structure of CtDsbA revealing a typical DsbA fold, which is most simi-

lar to that of DsbA-II type proteins. Consistent with this, the catalytic surface of CtDsbA is

negatively charged and lacks the hydrophobic groove found in EcDsbA and DsbAs from

other enterobacteriaceae. Biochemical characterization of CtDsbA reveals it to be weakly

oxidizing compared to other DsbAs and with only a mildly destabilizing active site disulfide

bond. Analysis of the crystal structure suggests that this redox character is consistent with a

lack of contributing factors to stabilize the active site nucleophilic thiolate relative to more

oxidizing DsbA proteins.

PLOS ONE | DOI:10.1371/journal.pone.0168485 December 28, 2016 1 / 22

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Christensen S, Grøftehauge MK, Byriel K,

Huston WM, Furlong E, Heras B, et al. (2016)

Structural and Biochemical Characterization of

Chlamydia trachomatis DsbA Reveals a Cysteine-

Rich and Weakly Oxidising Oxidoreductase. PLoS

ONE 11(12): e0168485. doi:10.1371/journal.

pone.0168485

Editor: Joel H. Weiner, University of Alberta,

CANADA

Received: June 5, 2016

Accepted: November 30, 2016

Published: December 28, 2016

Copyright: © 2016 Christensen et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

detailed within the paper or are accessible via

public repositories. The final structure factors and

co-ordinates for the crystal structure of CtDsbA

have been deposited in the World Wide Protein

Data Bank (www.wwpdb.org/) with accession code

5KBC. The associated diffraction images have been

deposited at the University of Queensland’s

eSpace. The relevant DOI for the University of

Queensland eSpace is doi:10.14264/uql.2016.

1082.

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0168485&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://www.wwpdb.org/
http://dx.doi.org/10.14264/uql.2016.1082
http://dx.doi.org/10.14264/uql.2016.1082


Introduction

Disulfide bond proteins (DSB) are thiol-disulfide oxidoreductases found in the periplasm of

Gram negative bacteria which catalyse the oxidative folding of disulfide bond containing sub-

strate proteins. The first DSB protein to be described was that of the primary oxidase DsbA from

Escherichia coli (EcDsbA) [1]. EcDsbA is a highly oxidising protein with a redox potential of -122

mV [2] which introduces disulfide bonds into folding proteins resulting in its own active site

reduction. EcDsbA is subsequently returned to its active oxidized state by interaction with an

integral membrane partner protein EcDsbB. The structure of EcDsbA consists of a thioredoxin

catalytic domain (containing the active site motif CPHC) with an inserted helical domain [3].

Extensive efforts over many years have yielded a structural library of over a dozen bacterial

DsbA proteins. These have recently been classified into two groups (DsbA-I and DsbA-II) on

the basis of structural and functional features [4]. DsbA-I and DsbA-II proteins are demar-

cated primarily on the basis of altered central β-sheet topology, a distinction that also approxi-

mately separates DsbA proteins from Gram negative and Gram positive bacteria.

Each DsbA group can be further subdivided into two subclasses on the basis of surface fea-

tures. Type DsbA-Ia and Ib groups are relatively well represented with four and five protein

members respectively. By comparison, DsbA-II proteins are less well characterized; to date

only three DsbA proteins have been classified as DsbA-IIa (DsbA fromMycobacterium tuber-
culosis, Staphylococcus aureus and Bacillus subtilis) whilst DsbA-IIb is solely represented by

DsbA1 from the endosymbiontWolbachia pipientis. Within DsbA-Ia and DsbA-Ib, member

proteins have similar redox characteristics with redox potentials falling within a 10 mV or 15

mV range, respectively [5–9]. Among the DsbA-IIa proteins redox potentials are much more

varied, ranging from -131 mV [8] to -80 mV [10].

It is well documented that pathways responsible for disulfide bond formation can vary

markedly amongst different bacterial species [11]. In C. trachomatis, in silico analysis suggests

that the disulfide oxidative pathway, and to some extent the isomerase pathway, resembles the

canonical DSB pathways of E. coli K12. C. trachomatis possesses a gene predicted to be a homo-

log of the E. coli DsbA [11] hereafter referred to as CtDsbA. Immediately upstream of dsbA C.

trachomatis also encodes a homolog of E.coliDsbB. This protein is predicted to be a transmem-

brane protein with four transmembrane helices and two cysteine-residue containing periplas-

mic loops. DsbB is presumably responsible for oxidizing CtDsbA in a manner analogous to the

E. coli DsbA-DsbB interaction. Notably C. trachomatis does not encode a homolog of the E.

coli isomerase DsbC but has a gene with significant homology to E. coli DsbD, a membrane

bound electron transporter and partner protein of E. coli DsbC. Drawing on recent extensive

phylogenetic analysis of the DsbD superfamily in eubacteria [12], this gene is most likely a

member of the sub-family ScsB. Finally C. trachomatis was found to contain homologs to

genes coding for two periplasmic C. pneumonia proteins: DsbH and DsbJ. DsbH and DsbJ are

suggested to play a role in maintaining a reducing periplasm, and have not yet been reported

outside of chlamydial species [13].

Here we investigated the DsbA enzyme from Chlamydia trachomatis, responsible for

human urogenital chlamydia infections. This infection is among the most common sexually

transmitted infections worldwide with an estimated 131 million urogenital cases reported

globally in 2012 by the World Health Organization [14]. A common complication of genital

chlamydial infection in women is pelvic inflammatory disease, which, if untreated, can lead to

infertility. Furthermore, strains of C. trachomatis can also infect the ocular mucosa where it

can cause blinding trachoma [15].

In the present study we confirm that CtDsbA has oxidizing enzymatic activity and a struc-

ture similar to that of other DsbA-II type proteins that contain a second non-catalytic disulfide
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bond. We find that CtDsbA has a particularly weak oxidizing potential for a DsbA enzyme,

which appears to stem in part from its uncommon active site dipeptide motif of two uncharged

amino acids. Characterization of CtDsbA expands the DsbA structural library, provides fur-

ther insight into the diversity of bacterial DsbA proteins and supports continued exploration

of the potential for DsbA inhibitors with multi-species activity.

Materials and Methods

Protein expression and purification

The recombinant CtDsbA expressed and characterized in this study was generated using resi-

dues 34 to 238 of C. trachomatis dsbA (NCBI Gene with ID 5858475, currently annotated as

DsbG). A variant form of the protein (called CtDsbA-SSS) was produced by mutating each of

the three non-active site cysteines to a serine (C66S, C80S and C141S). Both constructs were

synthesized and inserted into a modified pET21a vector by ligation independent cloning as

described [16]. Both genes were codon-optimised for expression in Escherichia coli. The vector

includes a N-terminal His6-tag followed by a linker containing a recognition site for the

tobacco-etch virus (TEV) protease. Design of the constructs was informed by bioinformatics

analysis (HMMTOP [17, 18], and PSIPRED [19] to remove the predicted N-terminal trans-

membrane helix, and maximise solubility of the purified protein. Sequence verified plasmids

were routinely amplified in E. coli TOP10 cells cultured at 37˚C with orbital shaking (200 rpm)

in LB broth supplemented with ampicillin (100 μg/mL), and subsequently isolated with a QIA-

prep Spin Miniprep Kit (QIAGEN).

For biochemical assays CtDsbA and CtDsbA-SSS were expressed in Escherichia coli BL21

(DE3) pLysS cells using ZYP-5052 autoinduction medium [20] in the presence of ampicillin

(100 μg/mL) and chloramphenicol (34 ug/mL). Cultures were incubated at 30˚C, for 16 h with

orbital shaking at 200 rpm. Harvested cells were re-suspended in a solution of 25 mM HEPES

pH 7.5, 150 mM NaCl (Buffer 1), DNAse and protease inhibitors and lysed using a constant

pressure cell disrupter. Clarified lysate was purified with Talon1 resin (Clontech, Australia)

washing with 25 mM HEPES pH 7.5, 500 mM NaCl, 2.5 mM imidazole and eluting with Buffer

1 and 500 mM imidazole. Purified protein was dialysed against Buffer 1 to remove imidazole

prior to cleavage of the N-terminal His6-tag by treatment with a His-tagged TEV protease.

TEV cleaves leaving two non-endogenous amino acids (S -1 and N 0) at the N-terminus of the

protein. Contaminating TEV protease and uncleaved CtDsbA were removed by a second

immobilised metal affinity chromatography step prior to a final size exclusion step in Buffer 1

using a Superdex S75 column. As required CtDsbA and CtDsbA-SSS were reduced and oxi-

dized by 20 fold molar excess of DTT or 100 fold molar excess of oxidized glutathione, respec-

tively. The protein redox state was confirmed by Ellman’s reagent [21].

For crystallization experiments CtDsbA was prepared as described above with the following

differences. Harvested cells were re-suspended in a solution of 50 mM Tris pH 7.6, 500 mM

(NH4)2SO4 (Buffer 2), 0.5% Triton X-100, DNAse and protease inhibitors, and lysed by sonica-

tion. Immobilized-Metal Affinity Chromatography (IMAC) purification was performed with

Profinity resin (Biorad) equilibrated in Buffer 2 supplemented with 10 mM imidazole. Follow-

ing wash steps (5 column volumes of Buffer 2), purified protein was eluted in Buffer 2 supple-

mented with 500 mM imidazole. Purified protein was dialysed against 50 mM HEPES pH 7.6,

500 mM (NH4)2SO4 and 0.5 mM of the reducing agent tris-(2-carboxyethyl)fosfin (TCEP)

prior to TEV cleavage and a second IMAC step. Protein purity (>95%) were confirmed by

SDS-PAGE analysis.
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Insulin reduction assay

DsbA proteins catalyse the reduction of the disulfide bond formed between chain A and B of

insulin. When the disulfide bond is reduced, chain B of insulin precipitates. This reaction can

be monitored by an increase in absorbance at 650 nm [22]. Reaction mixtures were prepared

in 1 mL cuvettes with 10 μM protein, 0.33 mM DTT and 2 mM EDTA in 100 mM NaH2PO4/

Na2HPO4 pH 7.0. The reaction was started by adding insulin (IO516, Sigma Aldrich, Austra-

lia) at a final concentration of 0.13 mM. Plotted data shows mean and standard deviation (SD)

for three biological replicates.

Peptide oxidation assay

The redox activity of a disulfide bonded protein can be assessed by its ability to oxidatively fold

the peptide CQQGFDGTQNSCKwhich has a N-terminal europium ion (EuIII) in an amide-cou-

pled tetraazacyclododecane-1,4,7,10-tetraaceticacid (DOTA) chelate and a C-terminal couma-

rin chromophore (AnaSpec, USA) [23–25]. Upon oxidative folding the two terminal tags

come in close proximity resulting in a detectable fluorescent resonance energy transfer (FRET)

effect. The assay was performed in a 384-well plate (Perkin Elmer, USA). A solution of 50 mM

MES, 50 mM NaCl, 2 mM EDTA, pH 5.5, 2 mM GSSG and protein concentration of 80 nM

(EcDsbA) or 320 nM (CtDsbA, MtbDsbA and αWpDsbA1) were added to the wells in 25 μL

aliquots. Adding 25 μL peptide to a final concentration of 25 μM started the reaction. Change

in fluorescence at 340 nm was followed using a Synergy H1 Multimode plate reader (BioTek,

USA). Plotted data shows mean and SD for two biological replicates.

Scrambled-RNaseA assay

The ability of CtDsbA to isomerize disulfide bonds was evaluated by a scrambled RNaseA

(ScRNaseA) assay. To generate scrambled RNaseA, disulfides were first reduced and unfolded

by incubating RNaseA overnight in 50 mM Tris-HCl, pH 8 in the presence of 6 M GdmCl and

150 mM DTT at room temperature. The reduced and unfolded protein was acidified with 100

mM acetic acid/NaOH pH 4 and purified over a GE-25 Sephadex desalting resin. The eight

free thiols were confirmed by Ellman’s reagent. To randomly oxidized disulfides, the reduced

and unfolded RNaseA was diluted to 0.5 mg/ml in 50 mM tris-HCl, pH 8.5, 6 M GdmCl and

incubated in a dark room at room temperature for at least 5 days. The randomly oxidized RNa-

seA (ScRNase) was concentrated, acidified and purified as described above, and oxidation of

the disulfide bonds was confirmed by Ellman’s reagent. Isomerase activity was evaluated by

following the renaturation of ScRNaseA spectrophotometrically. RNase A with native disulfide

bonds is able to cleave cyclic-2’,3’-cytidinemonophosphate (cCMP) into 3’-cytidinemonophos-

pate (3’CMP) resulting in an increase in absorption at 296 nm. EcDsbA, EcDsbC and CtDsbA

(10 μM final concentration), were added to 100 mM sodium phosphate pH 7, 1 mM EDTA

and 10 μM DTT and incubated for 5 min. To start the assay ScRNase was added at a final con-

centration of 40 μM. Native RNase and ScRNase (40 μM) were included as controls. At multi-

ple time points from 0 to 360 min after initiation of the assay a 50 μL aliquot of each reaction

was added to 150 μL of 3mM cCMP and the increase in absorbance at 296 nm was monitored

every 10 second for 3 min. 3 biological replicates were performed for CtDsbA.

Motility assay

In order to investigate whether CtDsbA can complement EcDsbA, the CtdsbA gene was cloned

into the expression vector pBAD33 [26] under the control of an arabinose inducible promoter

and 3’ of an E. coli specific signal peptide sequence. EcdsbAwas likewise cloned into pBAD33
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as a control. E. coli strains deficient in EcDsbA (JBC817) and EcDsbA and DsbB (JBC818) [27]

were transformed with pBAD33-CtDsbA and pBAD33-EcDsbA and grown on LB agar. Liquid

cultures (20 mL) were grown in M63 minimal media lacking cysteine and methionine. Each

culture was normalized to an OD600 of 1.0. 2 μL culture containing ~107 cells was used to

carefully inoculate M63 minimal media soft agar in the presence or absence of arabinose (1

mg/mL). Plates were incubated at 37˚C. The zone of motility was measured after approxi-

mately 7 h.

Relative stability of oxidized and reduced forms of DsbA

The thermal unfolding of reduced and oxidized CtDsbA determined using a Jasco J-810 circu-

lar dichroism (CD) spectropolarimeter. Measurements were carried out with 10 μM protein in

100 mM NaH2PO4/Na2HPO4, 0.1 mM EDTA, pH 7.0 in a 1 mm quartz cuvette. The unfolding

was monitored as a change in molar ellipticity at 220 nm with a heat rate of 0.5 K/min from

298 K to 398 K. Plotted data shows mean and SD for two biological replicates.

Determination of the redox potential

The standard redox potential of CtDsbA was determined following a shift in electrophoretic

mobility upon reduction of the active site disulfide. Samples were prepared with fully oxidized

CtDsbA-SSS in degassed 100 mM sodium phosphate pH 7.0, 1 mM EDTA and 20 mM oxi-

dized DTT and varying concentration of DTT (0 μM-16 mM) and equilibrated at 30˚C. After

24 hours the reaction was stopped by adding 1/5 of the reaction volume of 10% 2,4,6-Trichlor-

oanisole (TCA). The precipitated protein was collected by centrifugation at 13,300 g for 10

min at 4˚C. The pellets were washed with 200 μL ice cold 100% acetone and dissolved in 10 μL

50 mM Tris-HCl pH 7.0, 1% SDS, 2 mM AMS. The difference in migration between the

reduced and oxidized CtDsbA-SSS was determined on a 12% SDS Bis-Tris PAGE (Life Tech-

nologies, USA). The gel was stained and the intensity of the bands were analysed by ImageLab

(BIO-RAD) The equilibrium constant Keq and the redox potential E0 were calculated as

described previously [28]. Plotted data shows mean and SD for four biological replicates.

Determination of pKa of Cys38 of CtDsbA

The pKa of the nucleophilic active site cysteine, Cys38, of CtDsbA was determined by following

the pH-dependent specific absorption of the thiolate anion at 240 nm. The pH-dependent

absorbance at 240 nm was measured for the oxidized protein as a reference.

20 μM samples of reduced and oxidized CtDsbA were prepared in 10 mM K2HPO4, 10 mM

boric acid, 10 mM sodium succinate, 200mM KCl and 1 mM EDTA over a pH range of 1.6–

8.0, in a total volume of 200 μL. Absorbance at 240 nm and 280 nm was measured in a Synergy

H1 multimode plate reader (Biotek, USA). The pH-dependent absorbance of the thiolate

anion was corrected for, buffer absorbance, non-specific absorption at 240 nm and variations

in protein concentrations and fitted to the Henderson-Hasselbalch equation.

Crystallisation of CtDsbA

CtDsbA was crystallised using The University of Queensland Remote Operated Crystallisation

X-ray Facility (UQROCX), the vapour-diffusion method and hanging drops. 96 well plates

(200 nL of protein and 200 nL of reservoir solution, against 75 μL reservoir solution) were set

using a Mosquito crystallisation robot (TTP Labtech) against commercially available crystalli-

sation screens. All crystallisation experiments were maintained at 298 K. Screening of com-

mercially available crystallisation screens with CtDsbA at a concentration of 26 mg/mL

Structural and Biochemical Characterization of CtDsbA
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identified an initial condition (100 mM BisTris propane pH 9.0, 3.1 M potassium formate)

that yielded both salt crystals as well as protein crystals. Subsequent investigation of additives

was performed in 24 well plates with (2 μL protein and 2 μL crystallisation condition, against a

500 μL reservoir volume) and resulted in an optimized crystallization condition of 100 mM

BisTris propane pH 9.0, 3.1 M Sodium formate and 4% Tacsimate™.

X-ray data collection, structure solution and refinement

Crystals were cryocooled in liquid nitrogen without additional cryoprotectant. X-ray data

were collected at 100 K at UQROCX using a Rigaku FR-E Superbright X-ray generator and a

Rigaku Saturn 944 CCD area detector. Data were collected over a 360˚ rotation at a wavelength

of 1.54187 Å. Using the autoPROC software toolbox [29] the data were indexed and integrated

with XDS [30], prior to further processing with Pointless and scaling with Aimless [31]. A high

resolution limit of 2.7 Å was applied to the data following evaluation of the half-dataset corre-

lation coefficient, Rmeas and completeness values in Aimless. As a result of this prioritisation,

the I/σI value in the highest resolution shell is high (5.9). The space group was determined to

be P21212 with two copies of CtDsbA in the asymmetric unit. We note that Xtriage analysis

flagged L-test anomalies that may stem from data quality deficiencies. Merohedral and

pseudo-merohedral twin laws are not possible in this lattice. All phasing and model refinement

procedures were implemented within the Phenix software suite. The data were phased using

molecular replacement methods with AutoMR using Bacillus subtilis BdbD (PDB ID, 3EU3,

[10]) as a search model. The search model was prepared for molecular replacement using

Sculptor, with additional trimming of predicted loop regions informed by inspection of

sequence alignment analysis with CtDsbA. The resulting model was subject to automated

building and rebuilding using AutoBuild followed by iterative rounds of refinement (phenix.

refine [32])—including refinement using hydrogen atoms using a riding model—and model

building using COOT [33]. The quality of the final model was assessed with Molprobity [34]

throughout the refinement process.

The electron density map supported building of an almost continuous model of residues

in chain A from residue 6–203. There was insufficient density to model residues 133–135

inclusive in a loop connecting H4 and H5. Lys16 and Tyr17 on chain A are modeled as ala-

nine as it was not possible to resolve the side chain atoms of either residue satisfactorily.

Chain B extends from residues 3 to 203 with breaks from 110–111 and 133–134 inclusive in

two separate loop regions. Both molecules in the asymmetric unit are structurally highly sim-

ilar, and superpose with a RMSD of 1.08 Å (191 equivalent Cα atoms). Inspection of the

structural alignment indicates that the main-chain atoms of all major secondary structure

elements superimpose almost exactly. Structural differences between the two molecules are

limited to the most N-terminal residues (residues 3–18) and several loop regions connecting:

B1-B2 (residues 23–28), H2-H3 (residues 88–93), H3-H4 (residues 109–116 and H4-H5

(residues 132–136). As noted above the H4-H5 loop is incomplete in both chains, and the

H3-H4 loop is incomplete in chain B. Additionally there are minor deviations in the position

of the C-terminal end of H7. Notably the loops that constitute the catalytic surface—includ-

ing the active site—are structurally equivalent. Further analysis of CtDsbA is restricted to

chain B. All figures depict chain B.

There is additional electron density adjacent to the non-catalytic disulfide bridge (Cys

84-Cys 145) suggestive of a small molecule ligand. We attempted to identify this ligand by

searching a library of 200 common ligands using the Ligand Identification module in Phenix.

This relatively blind search strategy proposed succinic acid (a component of the crystallisation

reagent Tacsimate™) as a potential ligand. Refinement of a model including succinic acid

Structural and Biochemical Characterization of CtDsbA
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resulting in an acceptable fit to the electron density but an elevated Rfree factor. For comparison

we also modelled another potential ligand (2-oxoglutaric acid) identified by the search which

we do not believe to have been present during protein purification or crystallisation, and this

yielded a similar density fit and elevated Rfree factor. User guided searching and modelling of

other known crystallisation components did not yield a better fitting ligand. In light of the

moderate resolution of the data and as we cannot identify a ligand with confidence, this density

remains unmodelled.

Data-collection and refinement statistics are summarized in Table 1. The final refined

structure has been deposited in the Protein Data Bank (PDB ID 5KBC.) All structural figures

were generated using Pymol (PyMOL Molecular Graphics System, version 1.6 Schrodinger,

LLC, http://pymol.org) and Adobe Illustrator.

Results

The Chlamydia trachomatis genome encodes a DsbA with multiple

cysteine residues

C. trachomatis DsbA was first identified using a bioinformatic interrogation of all publicly

available and complete prokaryotic genomes, using the Complete Microbial Resource at the

Craig Venter Institute and the DsbA sequences from E. coli, S. aureus andW. pipientis as

query terms [11]. This analysis returned a single gene in C. trachomatis (strain: 434/Bu,

serotype: L2) predicted to encode a DsbA-like protein (Gene ID 5858475; UniProt

CTL0429) and hereafter referred to as CtDsbA. We note that this gene is currently anno-

tated as DsbG in UniProt, but based on its 15% sequence identity with EcDsbA, and 20%

and 21% sequence identity with SaDsbA andMycobacterium tuberculosis DsbA, respec-

tively, we hypothesized that it is in fact a DsbA-like protein. Unlike EcDsbA or SaDsbA, but

in common with MtbDsbA, P. aeruginosa DsbA2 and WpDsbA1, the predicted CtDsbA

encodes additional cysteine residues outside of the active site motif. The full-length encoded

CtDsbA protein has six cysteines in total. Bioinformatic analysis using multiple algorithms

indicated that CtDsbA has a predicted transmembrane region from residues 11/12–28/29.

From residue 29 onwards the protein sequence is predicted to face the outside of the cyto-

plasmic membrane (as described in Materials and Methods). We designed an expression

construct restricted to the expected mature soluble CtDsbA protein starting at residue 34 to

ensure no inadvertent inclusion of the predicted transmembrane helix. This construct has

five cysteines.

CtDsbA catalyzes the reduction of insulin

To investigate CtDsbA activity we first evaluated its redox activity in the classic insulin reduc-

tion assay. Isomerases such as EcDsbC catalyze this reaction very rapidly whereas oxidases,

such as EcDsbA, catalyze the reaction much more slowly. We found that CtDsbA is able to cat-

alyze the reduction of insulin more slowly than EcDsbA and EcDsbC (Fig 1A). The weak insu-

lin reduction activity of CtDsbA relative to EcDsbC suggests that CtDsbA is more likely to be

an oxidase than isomerase or reductase.

CtDsbA has oxidase activity in vitro

The oxidase activity of CtDsbA was further investigated by its ability to oxidize a fluorescently

labeled peptide substrate containing two cysteine residues. Like EcDsbA, CtDsbA was able to

oxidize the model peptide substrate but a similar response required a concentration of CtDsbA

four times that of EcDsbA (Fig 1B). At equivalent concentrations, the activity of CtDsbA is

Structural and Biochemical Characterization of CtDsbA
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similar to the DsbA-IIb protein, WpDsbA1 but markedly less than that of the DsbA-IIa protein

MtbDsbA. These results indicate that CtDsbA has oxidase activity in this assay, but either is

intrinsically less active than EcDsbA and the class IIa protein MtbDsbA or does not interact

with the substrate as avidly as EcDsbA and MtbDsbA.

Table 1. X-ray data measurement and refinement statistics for CtDsbA.

Data collection and processing

Wavelength (Å) 1.54187

Resolution range (Å) 43.3–2.7 (2.8–2.7)

Space group P 21 21 2

Unit cell dimensions

a,b,c (Å) 92.2, 98.1,44.8

α, β, γ (˚) 90.0, 90.0,90.0

Rmerge 0.101 (0.401)

Rmeas (within I+/I-) 0.110 (0.429)

Rmeas (all I+ & I-) 0.109 (0.432)

Total number of observations 82358 (737)

Total number unique 11646 (102)

Mean((I)/sd(I)) 19.6 (5.9)

Mn(I) half-set correlation CC(1/2) 0.998 (0.880)

Completeness (%) 100 (86.4)

Multiplicity 7.1 (7.2)

Refinement and model quality

Refinement
‡R-factor (%) 24.76 (30.84)
§R-free (%) 28.23 (38.54)

Number of atoms 6176

macromolecules 3083

ligands

water 22

Protein residues 390

R.M.S.D from ideal geometry

RMS(bonds) (Å) 0.003

RMS(angles) (˚) 0.69

Molprobity analysis

Ramachandran favored (%) 96.84

Ramachandran outliers (%) 0.26

Clashscore* 6.36 ((100th percentile* (N = 186, 2.706 Å ± 0.25Å))

Molprobity score** 1.74 ((100th percentile* (N = 5290, 2.706 Å ± 0.25Å))

Average B-factor (Å2) 45.90

macromolecules 45.90

Solvent 44.20

Values in parentheses refer to the highest resolution shell
‡ Rfactor = Σh||Fobs|h − |Fcalc|h | /Σh|Fobs|h, where h defines the unique reflections
§ Rfree calculated over 5.0% of total reflections excluded from refinement

* Clashscore: 100th percentile is the best among structures of comparable resolution; 0th percentile is the

worst. For clashscore the comparative set of structures was selected in 2004, for MolProbity score in 2006

** MolProbity score combines the clashscore, rotamer, and Ramachandran evaluations into a single score,

normalized to be on the same scale as X-ray resolution

doi:10.1371/journal.pone.0168485.t001
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CtDsbA does not have isomerase activity in the scrambled RNase assay

To determine whether CtDsbA has disulfide isomerase activity we measured the ability of

CtDsbA to isomerize the non-native disulfide bonds of scrambled RNaseA (ScRNaseA).

Whereas the isomerase EcDsbC was able to restore about 80% of RNaseA activity over the

course of the experiment, CtDsbA was only able to restore approximately 20% of RnaseA activ-

ity in this same time period (Fig 1C); this is comparable to the activity of the oxidase EcDsbA.

Fig 1. Biochemical characterization of CtDsbA. A Reduction of insulin (131 μM) was measured as increase in absorbance at 650nm in 0.1mM sodium

phosphate buffer, pH 7, 2mM EDTA. The reaction was performed in the absence (&) or presence of 10 μM EcDsbC (●), EcDsbA (♦) or CtDsbA (�).

Representative data are shown for the absence and presence of 10 μM EcDsbA. Mean and SD are shown for two biological replicates (three biological

replicates for CtDsbA). B 80 nM EcDsbA (▼) and 320 nM CtDsbA (●), MtbDsbA (&) and WpDsbA1 (▲) oxidize a fluorescently labeled protein in the

presence of 2 mM GSSG. GSSG shows only limited oxidizing activity in the absence of a DsbA protein (&). The buffer only control (�) shows no oxidizing

activity. For MtbDsbA, WpDsbA1, EcDsbA and CtDSbA mean and SD of two biological replicates are shown (for each biological replicates four technical

replicates was performed.) For the buffer and GSSG only controls, mean and sd for four technical replicates are shown. C Isomerase activity was assessed

as the ability to refold scrambled RNAseA. ScRNase (40 μM) was incubated in 0.1 M sodium phosphate buffer pH 7.0, 1 mM EDTA, 10 μM DTT in the

absence and presence of 10 μM EcDsbA (&), EcDsbC (�) and CtDsbA (●). RNase activity was monitored as the cleavage of cCMP which leads to an

increase in absorbance at 296 nm. Mean and SD for three biological replicates is shown for CtDsbA. EcDsbC and EcDsbA is able to restore ~80% and

~20% of RNaseA activity, which is equivalent to what has been reported previously [8] D Temperature induced unfolding of oxidized (�) and reduced (●)

CtDsbA was determined by far UV CD spectroscopy. The thermal unfolding of CtDsbA results in an increase in molar ellipticity at 220 nm showing that the

reduced form of CtDsbA is more stable than the oxidized form. Mean and SD are shown for two biological replicates.

doi:10.1371/journal.pone.0168485.g001
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Together these data indicate that CtDsbA does not have isomerase activity and behaves more

like an oxidase in this assay.

The active site disulfide in CtDsbA is destabilizing

The disulfide bond in DsbA proteins is typically destabilizing, in contrast to most proteins

where disulfide bonds generally confer stability. We found that CtDsbA also has a destabilizing

disulfide as the melting temperature (Tm) for the reduced form (339.1 K ± 0.2) is 4 K greater

than the oxidized form (335.1K ± 0.1) (Fig 1D).

CtDsbA is less oxidizing than E. coli DsbA

The redox potential of CtDsbA in equilibrium with DTT was determined by monitoring the

difference in electrophoretic mobility between the reduced and oxidized form (Fig 2). To mea-

sure the redox potential of the active site disulfide, we used the CtDsbA-SSS construct that

only contains the two cysteines in the active site. We found a Keq of 3.7 ± 0.8 × 10−4 M corre-

sponding to a redox potential of -229 mV. This makes CtDsbA a much weaker oxidase than

EcDsbA (E˚ -122 mV) and to our knowledge, the most reducing DsbA characterized to date.

CtDsbA cannot rescue deletion of dsbA in E. coli

Deletion of the dsbA gene leads to pleiotropic phenotypes in E. coli [27]. One phenotype asso-

ciated with DsbA-deficient E. coli is the loss of motility due to a failure to assemble functional

Fig 2. Redox potential determination for CtDsbA-SSS by electrophoretic motility shift. A SDS-PAGE

gel of oxidized CtDsbA (3 μM) incubated for 24 h with increasing concentration of DTT (0 μM -12 mM). B The

fraction of thiolate as a function of reduced DTT versus oxidized DTT is plotted. Fitting of the data revealed a

Keq of 3.8 ± 0.8 x 10−4 M equivalent to a redox potential of -229 mV. Mean and SD calculated from 4 biological

replicates are plotted.

doi:10.1371/journal.pone.0168485.g002
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flagella [35]. CtDsbA was expressed in ΔdsbA and ΔdsbA/dsbBbackgrounds to determine if

CtDsbA can complement EcDsbA. Exogenous expression of EcDsbA restored motility in

ΔdsbA E. coli on soft agar (zone of motility 21 mm in comparison to 6 mm in the uninduced

control; Fig 3) but as expected could not rescue the phenotype in ΔdsbA/dsbBbacteria. Expres-

sion of CtDsbA did not restore motility in either the ΔdsbA or ΔdsbA/dsbBbacteria, suggesting

that CtDsbA cannot complement EcDsbA deficiency in E. coli.

The crystal structure of CtDsbA features an uncommon dipeptide

catalytic motif

We solved the crystal structure of CtDsbA, which was determined to 2.7 Å resolution by using

molecular replacement methods. The resulting model was refined to a final Rfactor and Rfree of

24.8% and 28.2%, respectively. Full details of data collection and refinement parameters, and

additional model quality indicators can be found in Table 1.

Consistent with all structurally characterized DsbA proteins, CtDsbA comprises a thiore-

doxin domain into which a second helical domain is inserted (Fig 4A). The catalytic face of

DsbA proteins is composed of a canonical Cys-Xaa-Xaa-Cys motif (where Xaa is any amino

acid) positioned at the N-terminal end of H1, and three additional neighboring loops: Loop 1

(linking B3 and H2), the so-called cisPro Loop 2 (linking H6 and B4) and Loop 3 (linking B5

and H7) (Fig 4A). Together these loops determine DsbA enzymatic activity, modulate redox

character and govern interactions with both substrate proteins and the redox partner protein

DsbB [16].

In CtDsbA, the active site motif is Cys-Ser-Ala-Cys (Fig 4B). Commonly the active site

motif of DsbA proteins features a Pro at the X1 position: 78% of DsbA proteins identified in

prokaryotic genomes have a Pro at this position [11]. Furthermore the active site motif com-

monly includes an aromatic, polar or positively charged side chain at position X2 (just 13% of

DsbA proteins identified in prokaryotic genomes lack such a residue at this position [11]).

Fig 3. CtDsbA does not complement EcDsbA. ecdsbA null E. coli are unable to swarm on soft agar.

Exogenous expression of EcDsbA under an arabinose inducible promoter is able to complement this non-

motile phenotype as shown by the swarming halo around the original inoculation point (upper panel, EcDsbA

induced). CtDsbA is not able to restore the phenotype. Neither EcDsbA nor CtDsbA are able to restore

mobility in a ecdsbA/ecdsbB double null E. coli strain (lower panels) indicating the requirement for EcDsbB to

maintain a pool of oxidized DsbA.

doi:10.1371/journal.pone.0168485.g003
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Via extensive mutational and biochemical analyses it has been established that the dipeptide

sequence is a very important—although not the sole—determinant of thiol-disulfide oxidore-

ductase potential and function [36–38]. CtDsbA’s dipeptide sequence is notable in that it lacks

a Pro at X1 and has a non-polar aliphatic residue (Ala) at X2. This is the first structural descrip-

tion of such an active site configuration. In the crystal structure Cys38 and Cys41 are oxidized,

with a disulfide bond length of 2.03 Å (Fig 4B). This is unusual in that X-ray crystal structures

of oxidized DsbA proteins often capture a radiation-induced reduced state (e.g. [39]). The elec-

tron density maps for CtDsbA clearly support the presence of the oxidized form (Fig 4C).

Spatially close to the active site CSAC motif is the cisPro L2 loop (3) (Ala-Thr-cisPro) con-

necting H6 and β4. This motif (typically Xaa-Val/Thr-cisPro, where Xaa is usually an aliphatic

residue) is very highly conserved among DsbA homologs and is critical for activity. In the oxi-

dized CtDsbA structure the Cys 38 sulfur atom is 3.6 Å from the carbonyl oxygen and 3.3 Å

Fig 4. Crystal structure of CtDsbA. A. The crystal structure of CtDsbA contains a thioredoxin domain (light green) and

a helical domain (dark green.) Loops on the catalytic surface that constitute the active site of CtDsbA and determine

redox activity are colored orange and labeled. The active site catalytic disulfide is highlighted with sulfurs shown as

yellow spheres. The non-catalytic disulfide (between Cys84 and Cys145) and the single thiol (Cys70) in L1 are shown in

stick representation. The most N-terminal region of CtDsbA is unstructured. Crystal packing interactions with the

second monomer in the asymmetric unit and a symmetry related molecule (shown in white) stabilize this region of the

protein such that is well resolved in the electron density map. B. Close view of the four loops (L1, cisPro L2, L3 and the

Cys-Ser-Ala-Cys motif) which constitute the active site surface of CtDsbA. C. In the crystal structure the active site

cysteines are oxidized. Analysis of bond distances indicates that the Cys 38 thiolate could be stabilized by favorable

bond interactions with Thr 172 (3.4 Å between Thr 172 OH and Cys 38 SG in the oxidized structure) of the neighboring

cisPro L2 consistent with an oxidizing protein character. The Cys 41 sulfur atom is 3.5 Å from the Thr 172 hydroxyl in

the oxidized structure. 2Fo-Fc and Fo-Fc electron density maps for the active site and cisPro Loop 2 were generated

from calculated phases using phenix.maps and are shown contoured at 1.0 σ and 3.0 σ respectively. The maps are

shown within a 1 Å radius of each atom of each loop.

doi:10.1371/journal.pone.0168485.g004
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from the side chain hydroxyl of the cisPro-1 residue Thr 172 (Fig 4C). As with other DsbA

proteins, it is conceivable that in the reduced form these atoms may facilitate hydrogen bond

mediated stabilization of the enzyme. We note that the Cys 38 sulfur is 3.3 Å from the side

chain hydroxyl of Thr 172, which is within the range of observed atomic distances (3.1–4.6 Å)

for DsbA proteins [4].

L1 and L3 play a role in partner protein interaction in other DsbA proteins. In CtDsbA L1

is 7 residues in length (Val-Cys-Phe-Ile-Arg-Gly-Ser) and is oriented towards the active site.

Notably L1 contains an unpaired cysteine residue, which to our knowledge is the first struc-

tural report of an unpaired cysteine in a surface loop adjacent to the active site in DsbA (Fig 4).

In EcDsbA, Loop 1 residues contribute to the binding interface with EcDsbB. In particular

when Met 64, located in the middle of EcDsbA L1, is mutated to Ala the KM of DsbA-DsbB

interaction is significantly increased [40]. In CtDsbA, Cys 70 is positioned at the C-terminus

of the B3 strand, and directed towards Ser 75 and Met 76 of the adjacent H2; as the side chain

of Cys 70 is relatively buried in comparison to Cys 38 it is unlikely to play a role in interaction

with substrate or redox partner proteins unless this loop undergoes a significant conforma-

tional change during the catalytic cycle. Finally CtDsbA Loop 3, connecting B5 and H7 is short

(Asp184-Pro185-Tyr186) and adopts a tight turn facilitated in part by the central proline residue.

CtDsbA has a negatively charged catalytic surface without significant

pockets

Unlike EcDsbA and other enterobacteriaciae DsbA proteins, CtDsbA does not have a pro-

nounced groove along its active site surface, nor are there notable pockets adjacent to the

active site (Fig 5A). Small discrete pockets are present on the non-catalytic face sandwiched

between H1 and H3 (pocket 1), and formed between the long N-terminal extension and H6

(pocket 2) (Fig 5A). Inspection of the electrostatic potential of the active site surface indicates

it to be predominantly acidic. Of particular note is the highly acidic patch immediately adja-

cent to the active site cysteines on the catalytic surface (Fig 5B).

CtDsbA has a second non-catalytic disulfide bond

Notably CtDsbA has a second disulfide bridge formed between Cys 84 (H2) and Cys 145 (H5)

stapling this helical bundle (Figs 4A and 6). A similar non-catalytic disulfide has been observed

previously in the structures of WpDsbA1 [28], MtbDsbA [41] and PaDsbA2 [42]. Superposi-

tion of these four structures reveals that the position of this non-catalytic disulfide is highly

similar among these four structures in each case linking equivalent helices (Fig 6).

CtDsbA is the fourth structure of a DsbA protein with a second (structural) disulfide bond,

permitting a detailed examination of these enzymes as a group. Overall the sequence identity

of CtDsbA, WpDsbA1, PaDsbA2 and MtbDsbA is modest (15–21%; Fig 7, Table 2). The cisPro

Ala-Thr-Pro motif is conserved among the four proteins but the active site dipeptide is differ-

ent in each and there is only limited sequence similarity in the residues immediately following

the non-catalytic cysteines. Structurally they are similar overall, superimposing on CtDsbA

with a RMSD of 2.5–2.6 Å (for 163–176 equivalent Cα atoms) (Table 2) although MtbDsbA is

distinct at its C-terminus where it has an additional and unique eighth helix. Aside from this,

structural differences are confined to loop regions. CtDsbA has a particularly extended and

disordered C-terminus and two elongated loop regions: residues 128–137 linking H4 and H5,

and 88–94 linking H2 and H3 relative to the other proteins. These loops are aligned in a paral-

lel manner adjacent to one another creating a horse shape protrusion on the back of the pro-

tein, encasing a number of small pockets.
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Classification of CtDsbA

DsbA proteins have previously been segregated into distinct structural classes [4]. Assignment

to one of the two major classes (DsbA-I and DsbA-II) is defined primarily by the β-sheet topol-

ogy of the thioredoxin domain [4]. In the thioredoxin domain of CtDsbA, β1 hydrogen bonds

Fig 5. Surface properties of CtDsbA. Surface representation for CtDsbA of the catalytic (left) and non-catalytic

(right) faces. The active site residues Cys-Ser-Ala-Cys are colored yellow and the nucleophilic cysteine sulfur

highlighted in orange. Pockets formed on the posterior face of the protein between H1 and H3 (pocket 1) and the N-

terminal unstructured region and H6 (pocket 2) are labeled. B. Electrostatic surface representation of CtDsbA.

Views are oriented as above. Electrostatic surface potential is contoured between -5 (red) and +5 (blue) kT/e. The

nucleophilic cysteine is annotated with an S.

doi:10.1371/journal.pone.0168485.g005
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to β3 to give a β-sheet topology of 1-3-2-4-5, assigning CtDsbA to the DsbA-II enzyme class.

Previously identified members of DsbA-II include DsbA from the Gram positive species S.

aureus and B. subtilis, M. tuberculosis and the endosymbiont Gram negative speciesW. pipien-
tis. Consistent with its assignment to DsbA-II, interrogation of the Protein Data Bank using

DaliLite [43] identified that CtDsbA is structurally similar to the DsbA-II proteins B. subtilis
BdbD (PDB ID 3EU3, 1.9 Å rmsd, 28% sequence identity) andW. pipientis DsbA1 (PDB ID

3F4R, 2.3 Å rmsd, 20% sequence identity) as well as PaDsbA2 (PDB ID 4N30, 2.6 Å rmsd, 15%

sequence identity) which although not previously classified also shares the β-sheet topology of

other DsbA-II proteins and a second non-catalytic disulfide bond observed in 3 of the 4 previ-

ously assigned DsbA-II proteins (Fig 4, Table 2).

Discussion

In the present study we demonstrate that the C. trachomatis encodes a DsbA protein (Gene ID

5858475 (UniProt CTL0429), which has oxidase activity and the structural features of a

DsbA-II type protein. The weak activity of CtDsbA in the insulin reduction assay relative to

EcDsbC, suggests that CtDsbA is a thiol disulfide oxidase and not an isomerase. Consistent

with this, CtDsbA is able to oxidize the folding of a model peptide substrate in vitro, albeit less

efficiently than the canonical oxidase EcDsbA. Our finding that CtDsbA is significantly less

active than the isomerase EcDsbC in the ScRNase assay further supports the assertion that

CtDsbA is an oxidase without disulfide isomerase activity.

Fig 6. CtDsbA has a second non–catalytic disulfide bond. A. CtDsbA (green) is structurally most similar to WpDsbA1 (light blue),

MtbDsbA (pink) and PaDsbA2 (orange) although it features an extended N-terminal unstructured region and lacks an additional eighth C-

terminal helix present in MtbDsbA (not visible in this orientation.) Each of the four structures has a second non-catalytic disulfide bond which

are very similarly positioned bracing H2 and H5 (or equivalent helices in PaDsbA2), the location of which is highlighted by a rectangular box.

For clarity, depth cueing has been applied to focus on the foreground of the superimposed structures. B. Enlarged view of H2 and H5 and the

non-catalytic disulfide bonds in each of the four superimposed structures. The view is oriented as in the rectangular box in panel A.

doi:10.1371/journal.pone.0168485.g006
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Heterologous complementation studies shows that CtDsbA is not able to complement

EcDsbA deficient E. coli. However this is not unprecedented among DsbA proteins. The

DsbA-II proteins MtbDsbA and WpDsbA1, as well as the DsbA-Ib protein N.meningitis
DsbA3 (NmDsbA3) are all DsbA proteins that are not able to complement EcDsbA deficiency.

In common with CtDsbA these proteins are relatively structurally distinct from EcDsbA

(RMSD between 2.76 and 3.71 Å, over 152–175 Cα atoms). Successful rescue of function relies

upon an ability of the exogenous DsbA to interact with both the substrate flagella proteins and

EcDsbB. The observed structural diversity may preclude one or both interactions and explain

why they are not able to rescue DsbA activity in dsbA deficient E. coli.
Whilst DsbAs can be broadly very similar in their structure and function, the redox charac-

ter of individual enzymes can vary considerably [16]. Like other DsbA proteins CtDsbA active

Fig 7. Sequence alignment of DsbAs with two disulfide bonds. Sequence alignment of structurally characterised

DsbAs with two disulfide bonds. Sequences were aligned using Clustal Omega and visualized using ESPript 3.0 [53].

Secondary structural elements are shown for the structure of CtDsbA. Disulfide bonds are indicated with black

connecting lines and labeled S-S. The single unpaired cysteine C70 is highlighted in yellow.

doi:10.1371/journal.pone.0168485.g007
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site has a destabilizing disulfide bond that lowers the melting temperature of the oxidized pro-

tein by 4 K relative to the reduced state. Tm differences between oxidized and reduced DsbAs

range from 1 (SaDsbA) to 15 K (NmDsbA1) (Table 3). This puts CtDsbA at the lower end of

the range of a destabilizing disulfide placing it between SaDsbA, which, with a ΔTm of 1 K has

a melting temperature that is barely affected by oxidation [3], and WpDsbA1 with a ΔTm of 6

K. Furthermore it suggests that the destabilizing effect of oxidation in CtDsbA is relatively

mild compared to that of the enterobacterial DsbAs (ΔTm of 8–12 K for EcDsbA, SeDsbA and

KpDsbA) or NmDsbA1 (ΔTm 15 K). The redox potential of CtDsbA is -229 mV. This is sub-

stantially less oxidizing than that of EcDsbA (-122 mV) and is to our knowledge, the most

reducing redox potential reported for a DsbA protein. It is most similar to the redox potential

of WpDsbA1 (-163 mV), and approaches that of the reducing enzyme thioredoxin (-270 mV,

[44, 45])

The reactivity of DsbA proteins is greatly influenced by the pKa of the nucleophilic active

site cysteine. In reduced EcDsbA the thiol group of the surface exposed Cys 30 has a pKa of 3.3

[2] which is notably lower than the typical value for a cysteine residue (~8.5). Preliminary

experiments indicate that the pKa of the nucleophilic cysteine in CtDsbA is slightly higher

than that of EcDsbA. This observation is based on a single experiment (described in Methods)

Table 2. CtDsbA is structurally similar to other DsbA proteins containing a second disulfide bond.

Reference protein—CtDsbA

Identity TM-score RMSD (Cα) CXXC L1 cisPro L2 L3

Bacterium DsbA PDB ID

C. trachomatis CtDsbA This study - - - EEPSCSAC VCFIRGS ITATP DPT

P. aeruginosa PaDsbA2 4N30 15 0.728 2.49 (168) ADLECPFC NMHG ITATP MAD

W. pipientis WpDsbA1 3F4R 20 0.773 2.57 (176) ASLTCYHC FPLDY ITATP GGYK

M. tuberculosis MtbDsbA 4K6X 21 0.699 2.63 (163) EDFLCPAC AILDSA VHATP IFNNG

E. coli EcDsbA 1FVK 15 0.598 3.45 (153) FSFFCPHC NFMGGC LRGVP NPQGMDTSN

Structural comparison of CtDsbA to three other DsbA proteins that also contain a second disulfide bond (PaDsbA2, WpDsbA1 and MtbDsbA) and the

canonical single disulfide containing EcDsbA. Structures were aligned to the reference CtDsbA protein using TM-align. The resulting template modelling

score (TM-score) and root mean squared deviation (RMSD, for which the equivalent number of Cα atoms involved in the structural alignment is given in

parenthesis) are tabulated. TM-score is a quantitative measure of similarity between two proteins independent of their length (a TM-score >0.5 generally

corresponds to the same fold in SCOP; a score closer to 1.0 implies that they are highly similar.) Sequences of the catalytic motifs and loops on the catalytic

face of each protein are also detailed. Note that the sequences of the highly variable L3 loop are not aligned.

doi:10.1371/journal.pone.0168485.t002

Table 3. Comparison of melting temperatures, pKa and redox potential of different DsbA proteins.

Tm K) reduced Tm (K) oxidized pKa Keq (M) E˚ (mV)

EcDsbA [2, 7] 350.9 ± 0.2 341.7 ± 0.2 3.3 ± 0.09 8.1 ± 0.2 × 10−5 -122

SeDsbA [16] 351.2 ± 0.2 342.8 ± 0.4 3.3 ± 0.06 12.8 ± 0.3 × 10−5 -126

KpDsbA [9] 347.1 ± 0.2 335.8 ± 0.3 3.2 6.14 ± 0.1 × 10−5 -116

VcDsbA [5],[46] 357 ± 0.2 346 ± 0.2 5.1 7.7 ± 0.03 × 10−5 -116

NmDsbA1 [6] 348 ± 2 333 ± 2 3.0 3.7 × 10−6 -79

SaDsbA [8] 345.1 ± 0.08 345.6 ± 0.09 3.4 ± 0.07 2.09 ± 0.27 × 10−4 -131

MtbDsbA [41] ND ND 4.2 ± 0.2 17.37 ± 0.1 × 10−6 -99

WpDsbA [28] 337 ± 0.05 331 ± 0.05 4.7 ± 0.08 2.2 ± 0.27 × 10−3 -163

CtDsbA 339 ± 0.2 335 ± 0.1 ND 3.7 ± 0.8 × 10−4 -229

Errors are provided were available. ND Not determined

doi:10.1371/journal.pone.0168485.t003
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that could not be reliably repeated due to the instability of oxidized CtDsbA below pH 7. Thus

the pKa of the nucleophilic active site cysteine Cys38 in CtDsbA has not been determined. The

interatomic distances suggests that the thiolate anion is somewhat stabilized by hydrogen

bond interactions with the Cys41 amide N (2.8 Å in the oxidized structure) and the active site

dipeptide X2 Ala40 amide N (3.6 Å distance in the oxidized structure, Fig 4C) as is observed in

other DsbA proteins (summarized in [4]). However, the primary factor stabilizing the nucleo-

philic thiolate in dithiol oxidoreductases is the N-helix dipole of H1 [36, 47], which is very sen-

sitive to the microenvironment of the helix terminus.

Notably an uncharged aliphatic Ala at position X2 of the active site dipeptide in CtDsbA

would not destabilize the N-helix dipole as per His 32 in EcDsbA [47]. Nor can it offer direct

electrostatic stabilization of the thiolate anion as per a basic [48] or aromatic amino acid (via a

sulfur-aromatic ring interaction [38] at this position). Similarly the lack of a helix breaking

proline in the active site dipeptide removes enhancement of the H1 dipole proposed to occur

in other more oxidizing DsbA proteins [38, 49]. Together the apparent lack of factors in

CtDsbA to destabilize the oxidized form of the protein, or conversely to stabilize the nucleo-

philic thiolate in the reduced state, is consistent with both the relatively small difference in

Tm between oxidized and reduced CtDsbA, and the less oxidizing redox potential relative to

EcDsbA and other CPHC dipeptide containing DsbA proteins.

CtDsbA, WpDsbA1, PaDsbA2 and MtbDsbA all have a non-catalytic disulfide in the helical

domain, in addition to the active site catalytic disulfide [28, 41, 42]. The functional conse-

quence of the second disulfide bond in CtDsbA is unknown but in WpDsbA1 it may play a

regulatory role by autoinhibiting its reoxidation by WpDsbB (25). In PaDsbA2 it is reported to

influence the redox potential of the active site cysteines [42] as mutation of the second disulfide

results in reduction of redox potential from -67 mV to -118 mV [42]. However, this is not the

case in WpDsbA1 where deletion of the additional cysteines has a very modest effect on redox

potential (-170 mV for wild-type and -163 mV for the mutant [28]), although it is associated

with a small increase in the pKa (pKa of 4.7 for the wild-type and 5.0 for the mutant) of the

nucleophilic cysteine [28]. MtbDsbA and wild-type PaDsbA2 have strongly oxidizing redox

potentials (-99 mV and -67 mV respectively) whereas WpDsbA1 and CtDsbA are the two

most reducing DsbA proteins characterized to date. Together this suggests that the second

disulfide is not a significant modifier of redox potential for enzymes containing two disulfides.

Instead it is more likely that differences in redox character are a composite of contributing fac-

tors including the nature of the dipeptide sequence in the catalytic motif.

In the present study, we used a recombinant expression construct with five cysteines (one

unpaired). In the full-length gene there is an additional cysteine in a predicted transmembrane

region. In light of the predicted location of the additional cysteine, and the relative inaccessibil-

ity of the unpaired Cys 70 it appears unlikely that the N-terminal transmembrane cysteine and

Cys 70 would interact with one another in the native protein. The high cysteine content is

notable relative to other DsbAs, and may be a feature of chlamydial DSB proteins more gener-

ally; Chlamydia pneumoniae DsbH, a reducing dithiol oxidoreductase with structural similarity

to thioredoxin and EcDsbDγ has seven cysteine residues, of which only two are engaged in a

disulfide bond [13] Interestingly the chlamydial proteome has striking cysteine and disulfide

features more generally; for example, during its unique developmental cycle the bacteria adopt

an extracellular infectious form called an elementary body which is encapsulated by a highly

complex envelope of disulfide cross linked proteins [50]. Upon infection of a host cell, these

disulfide bonded proteins are reduced and the elementary body differentiates into reticulate

bodies [50]. Additionally a greater proportion of secreted proteins in C. pneumoniae have an

unpaired number of cysteines (57%) compared to that of E. coli (39%). This has led to a

hypothesis that chlamydial species may maintain a particularly reducing periplasmic
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environment in order to prevent misfolding of cysteine rich proteins. If so, this may be sup-

ported in C. trachomatis by the relatively low redox potential of CtDsbA.

Based on its topology we assign CtDsbA to the DsbA-II class of enzymes. DsbA-II type

enzymes can be further separated into two sub-divisions (DsbA-IIa and DsbA-IIb) on the

basis of catalytic surface loop configurations and surface features. The archetypal DsbA-IIa

protein is MtbDsbA in which Loop 1 is oriented towards the active site motif and the protein

surface is decorated with negative potential [4]. Until now WpDsbA1 has been the single rep-

resentative member of the DsbA-IIb subdivision distinguished primarily from DsbA-IIa by

its strikingly positive electrostatic potential around the active site, and Gram negative origin.

Notably the L1 configuration in DsbA-IIb also points towards the active site; and the same

conformation is adopted in CtDsbA. Similar to currently identified DsbA-II proteins the sur-

face of CtDsbA lacks the canonical grooves observed in DsbA-I (either along the catalytic sur-

face (DsbA-Ia) or the posterior face of the protein (more typical of DsbA-Ib.) CtDsbA is

strikingly charged near its active site with a pronounced patch of negative potential in this

region. Taken together the structural features of CtDsbA and similarity to other DsbA-II pro-

teins do not definitively assign CtDsbA to one of the two DsbA-II subclasses: whilst structur-

ally more similar overall to DsbA-IIa’s MtbDsbA with a similarly negatively charged catalytic

surface, its Gram negative origin and more reducing redox potential is more consistent with

that of WpDsbA1 and DsbA-IIb. It is possible that DsbA-II proteins represent a broader con-

tinuum of structural features not yet fully captured by the current repertoire of structures. We

await further population of the DsbA-II class before definitively sub-categorizing CtDsbA.

In conclusion, we have demonstrated that C. trachomatis encodes a DsbA protein with oxi-

dase activity. The structure of CtDsbA yields new insight into the protein’s relatively negative

redox potential and our observation that the oxidized form of CtDsbA is only mildly destabi-

lized relative to the reduced form. This characterization of CtDsbA expands our understanding

of the range of redox activities exhibited by DsbAs. Further it is a significant addition to a

growing structural library of DsbA proteins, supporting ongoing exploration of the potential

for development of narrow or broad spectrum antimicrobials against this important family of

virulence-associated proteins [51],[52],[9],[4].
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