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Abstract—Most improvements for Naive Bayes (NB) have
a common yet important flaw - these algorithms split the
modeling of the classifier into two separate stages - the stage
of preprocessing (e.g., feature selection and data expansion)
and the stage of building the NB classifier. The first stage
does not take the NB’s objective function into consideration,
so the performance of the classification cannot be guaranteed.
Motivated by these facts and aiming to improve NB with
accurate classification, we present a new learning algorithm
called Evolutionary Local Instance Weighted Naive Bayes or
ELWNB, to extend NB for classification. ELWNB combines
local NB, instance weighted dataset extension and evolutionary
algorithms seamlessly. Experiments on 20 UCI benchmark
datasets demonstrate that ELWNB significantly outperforms
NB and several other improved NB algorithms.

I. INTRODUCTION

Naive Bayes (NB), which is based on probability theory, is
one of the most widely used learning algorithms [1], [2]. NB
is computationally highly efficient and thus is suitable for
many learning scenarios such as text classification [3], web
mining [4], sentiment analysis [5] and image classification
[6], [7]. Indeed, NB is a special case of Bayesian network
[8], which considers the dependence of attributes to obtain
the correct classification. The time consumption of the
general Bayesian network can be very high, which affects
its application in the real world. To address this issue,
NB model adopts a simple and straightforward assumption
on the general Bayesian network, i.e., the attributes of
the training dataset are independent of each other. Under
this assumption, the examination of dependence between
attributes is no longer needed and building the NB model
only needs linear mathematical computation.

In many real world applications, there is a strong de-
pendence between attributes, the performance of the NB
classification can drop sharply. Furthermore, NB treats the
different instances with the same weight, but training in-
stances that are closer to the test instance may play a more
important role than those that are far from the test instance.
For this reason, many approaches have attempted to improve
the performance of NB [9], including feature based learning

[10], [11], [12], [13], [14], structure extension based learning
[15], [16], [17], local learning [18] and data expansion based
learning [19], [20].

The above methods of improving NB have achieved good
results, however, after carefully investigation, we find that
all these methods have a common disadvantage (i.e., the
NB models are separated into two steps). The first stage is
the preprocessing, and the second is the creation of the NB
model. These two stages are independent of each other and
the first stage is carried out without consideration of the NB
objective function. As a result, the performance of the NB
cannot be guaranteed.

To solve the common disadvantage of the above methods,
we propose a new method in this paper called Evolutionary
Local Instance Weighted Naive Bayes, namely ELWNB.
ELWNB constructs an extended training dataset based on
the original training dataset using instances cloning, which
will be used to build a NB classifier for further classification.
Indeed, how the extended training dataset is constructed
is determined by two important parameters: threshold
(determines whether this instance should be cloned) and
weight (determines the number of times that this instance
should be cloned). Here, the Differential Evolution (DE)
algorithm [21] is used to automatically search for the optimal
parameters. To obtain the best classification result, the NB’s
objective function is directly used as the fitness function of
the DE to evaluate the performance of different combinations
of the above two parameters. Experiments and comparisons
on 20 UCI benchmark datasets demonstrate the performance
of proposed ELWNB.

II. EVOLUTIONARY LAZY LEARNING FOR NB

A. EWLNB Algorithm

First, we define the distance of two instances as

d(m,n) =

√√√√ k∑
i=1

(mi − ni)2 (1)



Algorithm 1 EWLNB
Input:

Training dataset Da, a test instance x, parameter vector
wt

i ;
Output:

The classify result c(x);
1: Da

∗ ← Da;
2: for all yi in Da do
3: Compute d(x, yi) using the distance in Eq. (1);
4: threshold← wt

i,1, weight← wt
i,2;

5: for all the instances yi with d(x, yi) < threshold
do

6: clonenb← weight2

weight+weight∗d(x,yi)
;

7: Adding clonenb instance yi to Da
∗ ;

8: end for
9: end for

10: Build a Naive Bayes classifier on the new dataset Da
∗

and use this NB classifier to give the result of c(x);

where m and n are two vectors in a K-dimension space with
the value {m1, · · ·mk} and {n1, · · ·nk}, respectively.

Given a training dataset Da and a test instance x, we
first use Eq. (1) to calculate the distance d(x, yi) between
the test instance x and each training instance yi in Da.
Then, if d(x, yi) satisfies the requirements of the parameter
threshold, we get the clonenb of the i th individual through
d(x, yi), and add clonenb clones of yi into Da

∗ to expand
the training dataset Da. We deploy a NB classifier on the
expanded Da

∗ to calculate the class classification c(x). The
detailed EWLNB is depicted in Algorithm 1.

Here Da
∗ is the extended training dataset, wt

i,1 and wt
i,2 are

the two dimensions of the parameter vector, in our algorithm,
they represent threshold and weight respectively. clonenb
is a integer which represents the number of times that should
be cloned of the training instance yi.

It is clear that EWLNB algorithm’s main procedure is
expanding the training instances Da for a test instance x.
We call our learning algorithm Evolutionary Local Instance
Weighted Naive Bayes, or EWLNB, because it spends no
effort during training time, delays all computation until
classification time and the evolutionary algorithm is used to
achieve the optimal parameter vector. Our learning algorithm
deals with NB’s shortcomings by cloning some of the
training instances to produce an expanded training dataset.

B. Evolution of the Parameter threshold and weight

To obtain the optimal parameters to get the extended
dataset Da

∗ , we use DE to learn two important parameters
for EWLNB classification. In our solution, the different
combinations of the two parameters act as candidates, pre-
sented by parameter vector W . The main stages of the
evolution are initialization, cloning, mutation, and selection.
The evolving optimization will assist the discovery of the

optimal W vector with the best classification accuracy.
Before introducing details of the algorithm, we define a
number of notations.

. W represents the set of candidates, which we call the
population. W = {w1, · · · , wL} where L represents
the size of the population, wi = {wi,1, · · · , wi,n} rep-
resents a single candidate, which we call an individual,
and where n is the size of the parameter vector. In our
algorithm, the value of n is two.

. wi,j denotes the j th value of the i th individual.

. wc represents the individual which has the best fitness
(i.e.,best classification accuracy) on the test instances.

The detailed DE process is descripted as following steps:
1) Initialization of the Parameter Vectors: For individuals

in W = {w1, · · · , wL} with a population size L, we should
ensure that every individual wi = {wi,1, · · · , wi,n} in the
population is generated through certain random mechanisms.
We therefore set wj

i value of wi for each individual as a
uniformly distributed random number within the range (0,
1]. In the experiment, 90% of the original training instances
D are used as the training dataset Da to learn wc and the
remaining instances are used as the test dataset Db, with the
population size L set to 50.

2) Evaluation of EWLNB: The process of Evaluation of
EWLNB can be divided into following steps:

Calculation of Fitness Function: the fitness of the i th
individual of the t th generation is the classification accuracy
that is obtained by EWLNB using the wt

i to carry out the
probability estimation. The calculation of fitness function
can be described as:

f [wt
i ] =

1

N b

Nb∑
1

δ[c(xbi ), y
b
i ] (2)

where c(xbi ) is the classification result of the i th instance
in test dataset Db with N b instances, using Algorithm 1
based on individual wt

i . y
b
i is the actual class value of the

i th instance. δ[c(xbi ), y
b
i ] is one if c(xbi ) = ybi and zero

otherwise.
Individual Selection: we sort the individuals in every

population according to the fitness of each individual, and
choose the individual wt

c with the best fitness performance
in the t th generation to use as the base of the DE mutation.

Individual Mutation: we use the mutate operation to get
the mutation individuals in the t th generation through small
changes over the best individual of the current generation.
For any individual wt

i from the t th generation, the new
variation individual vti can be generated as followings.

vti = wt
c + F ∗ (wt

i − wt
j) (3)

where wt
i and wt

j are two different individuals of generation
t, F is a normally distributed random variable within the
range [0,1].



Algorithm 2 Evolution Process of EWLNB
Input:

Maximum Evolution Generation MaxGen;
Population W ;
Training dataset Da;
Test dataset Db;

Output:
The best parameter vector wc;

1: W ← the initial wi,j value of wi for each individual is
set to a random number distributed between (0, 1];

2: while t < MaxGen do
3: f [wt

i ]← using Da as the training dataset, Db as the
test dataset, wt

i as the parameter vector, calculating
the fitness of each wt

i for the the whole W t;
4: f [wt

c]← choose the best wi;
5: for all each yi in Da do
6: vti ← apply wt

c and a normally distributed random
variable N(0, 1) to wt

i and obtain the mutation
individual vti ;

7: uti ← crossover wt
i and vti to obtain the crossover

individual uti
8: wt+1

i ← get the new generation through the fol-
lowing Equation.

wt+1
i =

{
wt

i f(uti) ≤ f(wt
i)

uti f(uti) > f(wt
i)

(5)

9: end for
10: end while
11: wc ← wMaxGen

c ;
12: return wc;

Individual Crossover: we use the crossover operation to
exchange the dimensions of vectors in the t th generation of
W t and V t. For each wt

i in W t, there is a corresponding
vti in V t. The crossover vectors are created through W t and
V t to involve more varieties using the following equation.

utj,i =

{
vtj,i if(randj,i ≤ CR)or(j = jrand)

wt
j,i otherwise

(4)

where wt
j,i is the j th dimension of the i th individual in

the t th generation. utj,i is the j th dimension of the i th
mutation vector in the t th generation, vtj,i is the formed j th
dimension of the i th crossover vector in the t th generation.
CR is a fixed parameter for the whole algorithm within the
range [0,1], and in our algorithm, the value of CR is 0.5.
randj,i is a normally distributed random variable within the
range [0,1], which is generated for every dimension of the
vector, and jrand is a normally distributed random integer
within the range [0, n], where n is the dimension of the
individual. In our algorithm, the value of n is two, jrand is
generated once for every individual.

3) Update of EWLNB: To determine whether the
crossover individual uti can replace the target individual
vector wt

i to be the new individual wt+1
i in the t+ 1 th

generation, the EWLNB algorithm uses Eq. (5) to adopt a
greedy search strategy. It is chosen as the offspring only if
the fitness of uti is better than that of the target individual
wt

i , otherwise, the individual wt
i is maintained in the tth

generation. Following this process, the system again chooses
the individual wt+1

c with the best fitness performance in the
t+ 1 th generation as the new local optimal individual.

A complete evolutionary process (as shown in Algorithm
2) of the population includes Evaluation and Update, which
continuously repeats until the algorithm surpasses the pre-set
maximum number MaxGen, or the same result is obtained
for a number of consecutive iterations. After obtaining the
best individual wc, corresponding to the obtained parameter
values of threshold and weight, we use the values to
construct the extended Training dataset D∗ and build a NB
classifier over D∗ to classify the test instances.

III. EXPERIMENT

A. Benchmark data and parameters

We implement the proposed method using the WEKA
[22], [23] data mining tool and validate its performance on
20 benchmark datasets from the UCI data repository [24].
The detailed information of the 20 datasets is shown through
table I. Because NB is designed for categorical attributes, we
first replace all missing attribute values in our experiment
using the unsupervised attribute filter ReplaceMissingValues
in WEKA. Then, we apply unsupervised filter Discretize
in WEKA to discretize numeric attributes into nominal
attributes. The three parameters L, MaxGen and CR in
our algorithm are set to 50, 50, and 0.5, respectively. All
results are obtained via 10 runs of 10-fold cross validation.

B. Baseline Methods

For comparison purposes, we compare ELWNB with the
following baseline methods.

. NB: a standard Naive Bayes classifier with conditional
attribute independence assumption.

. LNB: a lazy Naive Bayes classifier which calculates
the distances of instances through attribute similarity.

C. Evaluation criterion

In our experiments, the selected algorithms are evaluated
on the criterion of classification accuracy (measured by
ACC), which is calculated by the percentage of successful
predictions on domain specific problems [25], [26], [27]. The
detailed experiment results are shown in Table II and table
III. We compare our algorithm with each other algorithm via
a two-tailed t-test with significantly different probability of
0.95, because we speak of two results for a dataset as being
“significantly different” only if the difference is statistically



Table I
20 UCI DATASETS.

Datasets Instances Attributes Classes Missing Numeric

anneal 898 39 6 Y Y

lymph 148 19 4 N Y

artificial 10218 8 10 N N

monks 556 7 2 N N

audiology 226 70 24 Y N

newthyroid 215 6 3 N N

energy 768 9 37 N N

primary-tumor 339 18 21 Y N

glass 214 10 7 N Y

qar 1055 42 2 N N

hypothyroid 3772 30 4 Y Y

robot 5456 25 4 N N

ionosphere 351 35 2 N Y

sick 3772 30 2 Y Y

iris 150 5 3 N Y

vehicle 846 19 4 N Y

labor 57 17 2 Y Y

vowel 990 14 11 N Y

letter 20000 17 26 N Y

zoo 101 18 7 N Y

significant at the 0.05 level according to the corrected two-
tailed t-test [28], as shown in Table II. Table III shows the
results of the two-tailed t-test with a confidence level of
95% between each pair of algorithms in terms of accuracy.
Each entry w/t/l in the tables means that the algorithm in
the corresponding row wins in w datasets, ties in t datasets,
and loses in l datasets, compared to the algorithm in the
corresponding column. The results displayed in Tables II
and III show that ELWNB significantly outperforms LNB
and NB measured by ACC. We summarize the highlights as

1. It is clear that ELWNB significantly outperforms NB
measured by ACC: the w/t/l value on ACC between
ELWNB and NB is 8/12/0. The average ACC for
ELWNB is 83.11%, which is higher than the average
ACC 76.23% of NB.

2. It can also be seen that ELWNB significantly out-
performs LNB measured by ACC: the w/t/l value on

ACC between ELWNB and LNB is 8/12/0. The average
ACC for ELWNB is 83.11%, which is higher than the
average ACC 80.25% of LNB.

IV. CONCLUSIONS

In this paper, we first investigated the classification per-
formance of improved NB methods and found that they
all have a common disadvantage, that is, the building of
the NB classifier is carried out without consideration of
the NB’s objective function. Motivated by this observation,
we presented a new evolutionary lazy learning algorithm
called ELWNB. We experimentally tested the proposed
algorithm ELWNB, using 20 UCI datasets recommended
by WEKA, and compared our algorithm ELWNB with NB
and LNB. The experimental results show that our algorithm
significantly outperforms NB and LNB in yielding accurate
classification. We believe that our work provides an effective



Table II
EXPERIMENTAL RESULTS: ACC AND STANDARD DEVIATION.

Datasets ELWNB LNB NB

anneal 97.77±1.82 97.44±1.58 ◦ 94.32±2.38 ◦

lymph 84.33±8.16 86.33±8.80 85.67±9.55

artificial 68.58±1.84 47.72±1.19 ◦ 36.40±1.00 ◦

monks 97.29±2.75 75.36±2.53 ◦ 74.64±2.15 ◦

audiology 77.39±5.55 78.32±7.12 71.23±7.03

newthyroid 95.30±4.98 92.99±5.08 92.08±4.46

energy 65.76±4.86 58.85±4.30 ◦ 45.05±3.92 ◦

primary-tumor 47.49±5.20 47.50±4.90 46.89±4.32

glass 58.40±7.05 59.85±7.39 60.32±9.69

qar 80.29±4.91 81.05±3.37 79.81±4.43

hypothyroid 92.82±1.37 92.84±0.88 92.79±1.02

robot 89.08±1.49 83.84±1.79 ◦ 80.57±2.02 ◦

ionosphere 91.17±3.42 91.44±3.82 90.89±3.49

sick 97.64±0.63 97.08±0.54 ◦ 96.74±0.53 ◦

iris 95.33±8.34 96.67±4.71 94.67±8.20

vehicle 64.18±4.54 67.86±4.73 61.82±3.54

labor 91.67±14.16 90.00±14.05 93.33±11.65

vowel 90.61±2.70 87.68±2.22 ◦ 67.07±4.21 ◦

letter 80.95±2.30 76.00±2.23 ◦ 66.15±2.15 ◦

zoo 96.18±6.54 96.18±6.54 94.18±6.60

AVERAGE 83.11±4.60 80.25±3.89 76.23±4.62

◦: Statistically significant degradation.

Table III
SUMMARY OF TWO-TAILED T-TEST RESULTS

LNB NB

NB 0/13/7

ELWNB 8/12/0 8/12/0

data mining classification algorithm. An aspect of ELWNB
that could clearly be investigated further is the method of
calculating the number of times that a specific instance

should be copied. Extending ELWNB to calculate the times
that a specific instance should be copied in a more efficient
way is our main direction for future research.



ACKNOWLEDGMENTS

This work was supported in part by the China Scholarship
Council Foundation (No. 201206410056), and the Australian
Research Council (ARC) Discovery Projects under Grant
No. DP140100545.

REFERENCES

[1] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian
network classifiers,” Machine Learning, vol. 29, no. 2, pp.
131–163, 1997.

[2] D. Berend and A. Kontorovich, “A finite sample analysis
of the naive bayes classifier,” Journal of Machine Learning
Research, vol. 16, pp. 1519–1545, 2015.

[3] J. Chen, H. Huang, S. Tian, and Y. Qu, “Feature selection
for text classification with naı̈ve bayes,” Expert Systems with
Applications, vol. 36, no. 3, pp. 5432–5435, 2009.

[4] C. Zhang, G.-R. Xue, Y. Yu, and H. Zha, “Web-scale clas-
sification with naive bayes,” in Proceedings of the 18th
International Conference on World Wide Web (WWW). ACM,
2009, pp. 1083–1084.

[5] P. Shanmuganathan and C. Sakthivel, “An efficient naive
bayes classification for sentiment analysis on twitter,” Data
Mining and Knowledge Engineering, vol. 7, no. 5, pp. 180–
185, 2015.

[6] R. Timofte, T. Tuytelaars, and L. Van Gool, “Naive bayes im-
age classification: beyond nearest neighbors,” in Proceedings
of the 11th Asian Conference on Computer Vision (ACCV).
Springer, 2012, pp. 689–703.

[7] S. McCann and D. G. Lowe, “Local naive bayes nearest
neighbor for image classification,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). IEEE, 2012, pp. 3650–3656.
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