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We numerically investigate the band structure and guided modes within arrays of metallic nanowires. We
show that bandgaps appear for a range of array geometries and that these can be used to guide light in these
structures. Values of attenuation as low as 1.7 dB/cm are predicted for arrays of silver wires at communi-
cations wavelengths. This is more than 100 times smaller than the attenuation of the surface plasmon po-
lariton modes on a single silver nanowire. © 2007 Optical Society of America

OCIS codes: 060.2310, 240.6680.

In their most common form, photonic crystal fibers
(PCFs) guide light by means of an array of air chan-
nels in a silica matrix [1]. The high refractive index
contrast between silica and air permits the formation
of photonic bandgaps (PBGs) that can be used to trap
light inside a hollow core. We consider here the guid-
ance properties of PCF in which the air channels are
replaced with metallic nanowires. In such structures
the very high permittivity contrast is likely to in-
crease the robustness of guided modes to bends and
other structural deformations, and field enhance-
ments at the metal-glass interfaces could be used to
increase nonlinear interactions. In addition it has re-
cently been demonstrated [2] that the guided light
can interact strongly with the surface plasmon polar-
iton (SPP) modes in the wires, and it has been sug-
gested that this can be used for sensors and fiber-
integrated optoelectronic components [2,3]. Here we
calculate the positions of the PBGs for a triangular
lattice of nanowires and calculate the effective index
and attenuation of the fundamental guided mode re-
sulting from removal of a single wire.

A necessary condition for achieving guidance is the
existence of a PBG below the light line of the host
material surrounding the wires. For this reason we
first consider the calculation of the band structure of
the cladding, which we consider to be a triangular
lattice of silver nanowires (pitch A, diameter d) em-
bedded in a matrix of fused silica. The permittivity of
the metal is assumed to be accurately described by
the Drude model [4]:

(1)

where w=27f is the angular frequency, v, and w, are
the plasma frequency and damping frequency, re-
spectively, and e, is the permittivity in the high-
frequency limit. In the following calculations we have
used the parameters
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w,=2m X 2175 THz, w,=2m X 4.35 THz,

and €,=1, which have been shown to give very good
agreement with measured values over a wide fre-
quency range [5]. The dispersion of the silica matrix
was modeled using Sellmeier equations [6].

Because the frequency dependence of the material
properties breaks the scale invariance of Maxwell’s
equations, it is necessary to consider a fixed operat-
ing frequency and then calculate the band structure
for a range of geometries having the appropriate val-
ues of €, and €,. We therefore choose the frequency
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Fig. 1. Presence of bandgaps (gray) as a function of nor-
malized frequency %A in a silica matrix of refractive index
n, for different wire diameters d. All calculations were per-
formed for the optical properties of silver and silica at \q
=1.55 um, neglecting material loss. The plasmon modes ap-
pear as resonances above the light line. Because of the
strong interaction between the plasmon modes, large nor-
malized frequencies (2yA >30) are necessary to establish a
gap below the light line.
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f=193.4 THz, corresponding to a vacuum wavelength
No=1.55 um, at which the permittivities ¢,, of the
metal and ¢, of silica are ¢,=-125.3+2.843i and
€,=2.085, relative to the permittivity of free space.
For these and subsequent bandgap calculations, we
model a structure in the absence of material absorp-
tion in the metal (Im[e,]=0). This has the advan-
tages of indicating where the bandgaps would occur
in a loss-free structure and of highlighting the effects
of optical absorption once it is introduced. Removing
absorption also means that both the frequency and
the Bloch wave vector remain real valued in the cal-
culations, avoiding the difficult business of distin-
guishing between evanescent decay (caused by band-
gaps or leakage) and decay caused by material
absorption. For all calculations we used the multipole
method [7], which is the fastest and most accurate al-
gorithm for arrays of high-contrast circular inclu-
sions.

The location of the bandgaps is plotted in Fig. 1 for
a number of different wire diameters, in terms of nor-
malized frequency k£yA=wA/c and mode propagation
constant B. The plasmon modes are clearly visible as
resonances, or photonic band windows [8], above the
light line. The existence of a PBG that can be used to
guide a defect mode depends on the positions of the
cutoffs of these plasmon modes as well as on the
breadth of the resonances as they cross the light line.
The spectral broadening is caused by coupling be-
tween the modes of individual inclusions, and in the
vicinity of cutoff this can be shown [9] to increase
rapidly as the mode order decreases. In contrast to
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the situation for silica—air PCF, the significant broad-
ening of the first two SPP modes above the light line
precludes gap formation, and so large values of 2yA
(>30) are necessary to achieve a PBG for all values of
d/A between 0.05 and 0.55. For the material proper-
ties given above, this choice of 2yA corresponds to a
pitch of at least 8 um.

We now consider the case of a finite guiding struc-
ture and include the material absorption of the metal
nanowires. To achieve a PBG at Ay=1.55 um, we
choose a structure with a pitch of A=10 um and wire
diameter d=1.5 um. For this fixed value of pitch we
are now free to include the material dispersion of the
metal wires and of the silica matrix in both mode and
bandgap calculations. We consider the simplest case,
that of a defect PCF waveguide consisting of three
rings of wires with a single wire removed from the
center of the array to form the guiding core. For this
finite structure the multipole method can be used to
calculate the effective refractive index of the funda-
mental guided mode, the imaginary part of which
gives the attenuation.

The effective refractive index n g=B/k of the fun-
damental guided mode is shown in Fig. 2(a). For this
structure the positions of the frequency-dependent
bandgaps have also been calculated. The fundamen-
tal mode can be seen to exist within the gap below
the light line and undergoes an anticrossing with the
second order (m=2) plasmon mode at a frequency of
f=253 THz. The attenuation of the fundamental
mode is shown in Fig. 2(b) and is compared with the
attenuation of the SPP modes for a single wire with
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(a) Fundamental guided mode and bandgaps (gray regions) of an array of nanowires consisting of silver cylinders

in a silica matrix, with d=1.5 um and A=10 um. (b) Attenuation in the fundamental guided mode (solid), as compared with
the first three plasmon modes of a single wire (dotted). (c) Magnified view of the anticrossing point. The imaginary part of
the effective index (Im[n.4]) is depicted as the shaded region on either side of the mode itself and shows the relative mag-
nitude of the attenuation. (d) Real part of the Poynting vector of the guided mode at the anticrossing point, on the lower
branch (f=253 THz, \j=1.18 um). The closeup shows that the fields have a strongly quadrupolar dependence.



the same physical properties as the components of
the array. We can see that the attenuation for this
guided mode is more than 100 times smaller than
that of the plasmon modes above the light line; this is
because most of the light of the guided mode is con-
fined to the nonlossy core region. For the mode at
No=1.55 um the attenuation has been calculated to
be 1.7dB/cm, which is relatively small when com-
pared with other metallic waveguides at communica-
tions frequencies [5].

We see in Fig. 2(c) that the anticrossing between
the fundamental guided mode and the second-order
SPP mode is accompanied by a substantial increase
in attenuation as the mode traverses the resonances
between the bandgaps. Within this region we see
[Fig. 2(d)] that the mode extends strongly into the ar-
ray, and one can also observe a strong quadrupolar
component in the field distribution around the cylin-
ders. On one side of the anticrossing the fundamental
mode undergoes a smooth transition to an array of
surface-plasmon resonances, while on the other side
the fundamental mode becomes a sum of Bloch
modes with appropriate symmetry.

In silica—air PCF the attenuation can be reduced
by adding additional rings of wires around the core,
thereby increasing the distance over which the light
must tunnel through the PBG to escape. This is not
necessarily the case with the metallic PCF studied
here, where ohmic losses will play an important role
in the attenuation. To examine the relative strengths
of leakage and material loss, we have calculated the
separate contribution from these loss mechanisms for
structures having one-, two-, and three-ring layers of
wires surrounding the guiding core (Fig. 3). The
ohmic loss of the mode was calculated by using an
overlap integral between the modal fields and the
material loss of the metal [10]. The leakage loss was
calculated by integrating the outgoing energy per
unit of length over a perimeter external to the wave-
guide. This quantity can also be calculated by arbi-
trarily setting the imaginary part of ¢, to zero and
computing the overall loss in this artificial case—this
method was also used and provided us with an addi-
tional check on the validity of our numerical simula-
tions. As can be seen in Fig. 3, the leakage loss indeed
decreases rapidly with additional layers of wires. We
observe, however, that the material loss dominates
over a broad range of frequencies. In the vicinity of
the resonance both loss mechanisms become impor-
tant, because of stronger coupling with the SPP
modes, which causes both a larger material loss and
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Fig. 3. Total attenuation (top) and comparison of leakage
and material loss (bottom) of the fundamental mode in
structures possessing one, two, and three rings of wires
surrounding the core. The leakage loss decreases rapidly
with each successive layer, and the resulting total attenu-
ation is dominated by the material loss.

increased transport of light into the region outside
the core. We observe that optimal light confinement
can be achieved with as few as two surrounding
rings.
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