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Abstract 

The electronic band structures of Be and BeO have been measured by transmission electron 

momentum spectroscopy (EMS). The low atomic number of beryllium and the use of ultrathin solid 

films in these experiments reduce the probability of electron multiple scattering within the sample, 

resulting in very clean “benchmark” measurements for the EMS technique. Experimental data are 

compared to tight-binding (LCAO) electronic structure calculations using Hartree-Fock (HF), and local 

density (LDA-VWN), gradient corrected (PBE) and hybrid (PBE0) density functional theory. Overall, 

DFT calculations reproduce the EMS data for metallic Be reasonably well.  PBE predictions for the 

valence bandwidth of Be are in excellent agreement with EMS data, provided the calculations employ a 

large basis set augmented with diffuse functions. For BeO, PBE calculations using a moderately-sized 

basis set are in reasonable agreement with experiment, slightly underestimating the valence bandgap 

and overestimating the O(2s) and O(2p) bandwidths. The calculations also underestimate the EMS 

intensity of the O(2p) band around the Γ-point.  Simulation of the effects of multiple scattering in the 

calculated oxide bandstructures do not explain these systematic differences. 

Keywords:  M.  Metals; O. Oxides; E. Electronic band structure; S. Spectroscopy

                                                
∗ Corresponding author email: mike.ford@uts.edu.au 



2 B. Soulé de Bas et al. 

Introduction 

In the same way that electron momentum spectroscopy (EMS) has previously been 

used to probe the electronic structure of atoms and molecules in the gas phase [1], at 

Flinders we use the technique to provide measurements of the electronic band 

structure of the condensed phase [2]. EMS techniques have been refined to the point 

that it is now possible to map electron momentum distributions with a resolution 

approaching ‘chemical accuracies’ (< 0.2 eV), allowing a quantitative comparison 

between measurements and theoretical calculations. 

Transmission EMS on solid samples is generally difficult, since measurements are 

subject to multiple scattering of the electrons within the sample[3, 4].  However, the 

signal-to-noise ratio is vastly improved when the solid samples are thin (~100 Å), or 

when they are composed of light elements. In this sense, beryllium and beryllium 

oxide provide ideal standards with which to test the limits of EMS on solid samples, 

and the two systems are complementary examples of metallic and insulating solids.  

Beryllium has a low atomic number (Z = 4), and ultrathin films of Be or BeO are 

readily grown on carbon substrates using standard deposition techniques. The 

consequent reduction in multiple scattering yields a relatively clean signal in which 

plasmon excitation and small-angle elastic scattering effects are readily 

distinguishable from ‘true’ sampling of the bulk electronic band structure. 

The low atomic number of beryllium also facilitates theoretical studies of these 

systems.  Beryllium has been the subject of solid state calculations for nearly sixty 

years, yet still presents a unique challenge to modeling efforts.  Although solid Be is 

nominally metallic, the inter-crystalline bonding has directional ‘covalent’ properties 

and the solid displays a number of departures from free-electron-like metallic 
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behaviour [5]. Also, correlation effects between the two electrons in outer valence 

shell of Be must be taken into account in any realistic model [6, 7].  Similarly, the 

oxide is often characterised as ionic, yet there are several calculations that predict 

interstitial charge and directional bonding [8, 9]. 

Calculations for Be and BeO have traditionally been compared with optical, x-ray 

and photoemission measurements [10-16].  Generally, these techniques map certain 

aspects of the band structure such as special-point energies and densities of states, or 

require considerable theoretical input for their interpretation.  The band dispersions 

for Be have previously been mapped by angle resolved photoemission (ARPES) [17], 

however a full interpretation of the peak intensities observed in these measurements is 

complicated by the electron and photon interactions involved.  To our knowledge 

ARPES measurements for BeO have not previously been reported. 

The emphasis of the present work is to present our EMS measurements of the 

valence band structures of Be and BeO to demonstrate the utility of the technique and 

provide a set of benchmark experimental data.  EMS can measure directly the band 

dispersions and intensities, and provides information complementary to 

photoemission and other established techniques.  In addition, the metal and its oxide 

are complimentary types of solids representing more itinerant or more localised 

electronic systems respectively.  Whether a particular theoretical method is 

‘universal’ can then be tested to a reasonable degree by application to both these 

solids.  We compare our measurements to tight binding (LCAO) calculations using 

the CRYSTAL98 suite of programs [18].  The calculations have been spherically 

averaged to account for the structure of the target, and multiple scattering effects 

included for both systems using a Monte Carlo procedure.  For both Be and BeO, we 

find reasonable agreement between EMS measurements and calculations using 
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density functional methods (DFT) coupled with moderately-sized basis sets. There is, 

however, a systematic overestimation in the predicted bandwidths for BeO even after 

the inclusion of spherical averaging.  For metallic beryllium, we perform calculations 

with two different sizes of basis sets, and find that bandstructures predicted by the 

larger basis are in better agreement with experimental results.  The predicted band 

intensities for Be show significant deviations from the experimental data which can be 

explained in terms of many-body effects.  For BeO we observe considerable intensity 

in the O (2p) band around the Γ-point whereas the predicted intensity is small, a 

difference which is not readily explained by multiple scattering. 

In the following sections, we first give specifics of the EMS measurement, the 

sample preparation and the theoretical calculations in this study.  We next present the 

data analysis, including a quantitative comparison of our experimental measurements 

to the LCAO calculations, and discuss in more detail some of the conclusions we 

draw from these results. 

1. Experimental Methods 

A number of detailed accounts of EMS can be found in the literature, here we give 

an overview of the salient points of the experiment [1, 3].  EMS is an electron impact 

technique, which utilises ionisation of the target to probe electronic structure.   In the 

Flinders spectrometer [19], an incident electron beam of nominally 20.8 keV energy 

impacts on an ultrathin, self-supporting solid target.  Two energy and angle selective 

electron analysers are positioned on the opposite side of this target to the incident 

beam.  One analyser is set to detect electrons leaving the impact at nominally 19.6 

keV and 13.6° relative to the incident beam, and the other at nominally 1.2 keV and 
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76°.  A schematic diagram of the scattering geometry is shown in Figure 1(a).  

Electrons detected in the analysers can originate from a variety of scattering events - 

in EMS we are interested in only a small fraction of these: single ionisation of the 

target.  To discriminate these ionisation events from unwanted events, a time 

coincidence detection method is used, where the time difference between pairs of 

electrons detected at the two analysers is measured.  Two electrons which originate 

from the same ionisation event will arrive at the two analysers at essentially the same 

time, i.e. in coincidence.  Pairs of electrons from other events give a random 

distribution of time differences.   

The scattering geometry of the spectrometer is chosen so that the ionisation event 

can be described as a direct knockout of the target electron by the incident electron – 

the so-called (e,2e) process [20] – with momentum transferred only to the target 

electron.  The ion core is a spectator in the process.  Hence we know the energies and 

momenta of the incident and two outgoing electrons and can therefore determine the 

energy and momentum of the target electron the instant before it was ejected from the 

target.  The analysers detect electrons over a small window of energies and range of 

angles.  By measuring the number of coincidence events as a function of the energies 

and angles of the two electrons we build up a probability map of the bound target 

electrons having a particular binding energy and momentum.  In other words EMS 

provides a direct measurement of the band dispersion and density of occupied states 

for the target solid.   

Since this is a transmission measurement, the target has to be extremely thin in 

order to minimise multiple scattering of the incident or outgoing electrons.  In practice 

targets must be self-supporting and no thicker than about 10 nm.  Targets are easily 

prepared by standard evaporation techniques; Be is evaporated onto an amorphous 
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carbon film nominally 3 nm thick to form an overlayer of approximately the same 

thickness.  Evaporation is carried out in situ under UHV conditions, the base pressure 

of the evaporation chamber is about 10-10 Torr rising to typically 10-8 Torr during 

evaporation.  The oxide samples were prepared by heating Be targets to about 600 °C 

in an oxygen atmosphere of 3×10-7 Torr for about 20 minutes.  Overlayer thickness 

was monitored using a quartz crystal microbalance.  The relatively small escape depth 

of the slower 1.2 keV ejected electron means that the coincidence signal comes 

predominantly from about the outermost 2 nm of the target.  This is sufficiently depth 

sensitive that the am-C substrate does not contribute to the measured band structure 

yet not so surface sensitive that reaction of the surface with residual gases present in 

the vacuum during the measurement becomes a problem.  Data are collected over a 2 

to 3 day period in order to build up sufficient statistics. 

The quality of the prepared targets can be characterised using Auger electron 

spectroscopy as shown in figures 2(a) and (b).  In figure 2(a) the Be KVV line is 

clearly present together with a small peak at 270 eV attributable to the carbon KLL 

line.  In 2(b) the Auger spectrum shows a clear shift of the Be line together with the O 

KVV line at 512 eV indicting formation of the oxide. 

2. Computational Methods 

3.1  Ab Initio LCAO Calculations 

Theoretical band structures for Be and BeO were derived from self-consistent 

Hartree-Fock (HF) or density-functional tight-binding calculations using 

CRYSTAL98 [18]. DFT calculations included a local density approximation (LDA), a 

generalised gradient approximation (GGA), and a hybrid method incorporating HF 
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exchange. LDA results were obtained with Dirac-Slater exchange [21] and Vosko-

Wilk-Nusair correlation [22], and GGA results were obtained with Perdew-Burke-

Ernzerhof (PBE) exchange and correlation [23]. The hybrid method used was PBE0, 

developed by Adamo and Barone [24]. 

Calculations were performed with all electron basis sets specifically optimised for 

Be and BeO. For metallic beryllium, two basis sets were used: a small 5-111G basis 

developed by Dovesi and coworkers [6], and an extended 5-1111-(3p)-(2d) basis – 

‘vtz1’ – developed by Grüneich and Heß [25]. The vtz1 basis contains diffuse s 

functions specifically optimised to yield energies with 1mH of the HF limit, yet avoid 

numerical errors due to linear dependencies in periodic calculations. For BeO, the 

valence electronic structure is comprised mainly of O(2s) and O(2p) orbitals, so only 

moderately-sized basis sets were used in the calculations, namely 5-11G for Be2+ and 

8-411-(1d)G for O2- developed by Lichanot and coworkers [9]. 

To assess the performance of the two Be basis sets, minimum-energy structures and 

cohesive energies were calculated for each basis using HF and DFT methods. Results 

are listed in Table 1. Calculated values for the HF results are slightly different than 

those reported by Dovesi et al. [6], and Grüneich and Heß [25], with the variance (< 

1%) likely due to different SCF convergence properties and tolerances used in the 

respective calculations. The vtz1 basis gave better predictions for the experimental 

lattice parameters [26] than 5-111G for HF and DFT, albeit with a nearly ten-fold 

increase in computational effort.  However, cohesive energies closer to the 

experimental value of 76.6 kcal/mol [27] were obtained with the smaller basis using 

PBE and PBE0 density functional methods. 

A comparison of the calculated LDA band dispersions and electron momentum 

densities for metallic Be using the 5-111G and vtz1 basis sets are shown in Figure 3.  
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Here and elsewhere in this paper, electronic structures have been calculated at the 

experimental lattice parameters.  The experimental band dispersion derived from the 

EMS data also shown and will be discussed in the section 4.  EMS dispersion is a 

spherical average over all crystal directions, experimental data is the same in each 

panel of figure 3.  It is clear in this figure that the use of the more computationally 

expensive vtz1 basis set yields a slight improvement in the predicted electronic 

structure, with the 5-111G basis set giving a band dispersion 5 %larger than the vtz1 

basis.  

 

3.2 Spherical Averaging and Multiple Scattering 

The experimental targets prepared by the above methods are expected to have a 

polycrystalline structure, therefore the measured band structures represent a spherical 

average over all crystal directions.  In order to directly compare theoretical models to 

EMS measurements, a spherical averaging of the bandstructure calculation was 

performed via Monte Carlo sampling of the irreducible wedge of the Brillioun zone 

(IBZ) of Be or BeO.   The Monte Carlo procedure produces 25 equally spaced crystal 

directions within the IBZ, and the band dispersion and electron momentum density 

(EMD) is then calculated using CRYSTAL98 along these 25 directions.  The EMD is 

folded into the corresponding dispersion curve and the 25 results summed together.  

The spherical averages are then convoluted with gaussian functions representing the 

experimental resolutions in momentum and energy.  The resulting energy and 

momentum resolved density can then be compared directly to the output of the EMS 

spectrometer. 

Despite the thin targets and relatively low atomic number of the targets, the 

experimental data are still influenced by multiple scattering.  The incident or outgoing 
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electrons can undergo, in addition to the ionisation event, other elastic or inelastic 

scattering processes, giving rise to a background in the EMS data.  In order to account 

for this in the calculated data we have developed a Monte Carlo procedure to simulate 

multiple scattering that can be applied to both the (monatomic) metallic and 

(diatomic) ionic samples.  The input to the code is the spherically averaged LCAO 

calculation. The Monte Carlo procedure is used to determine whether and how many 

multiple scattering events the electrons undergo and modifies the LCAO energy-

momentum density accordingly.   Probabilities are assigned to the various processes - 

namely bulk and surface plasmon excitation, valence electron excitation, and elastic 

scattering - based upon their mean-free path as calculated from input parameters.    

The code used in the present work is based upon that of Vos and Bottema [28] but 

contains an improved description of the scattering processes and a simple model to 

simulate systems containing two atom types.  For BeO, a calculated Rutherford 

scattering cross-section from the O2- and Be2+ ions has been used to simulate the 

elastic contribution to multiple scattering. A cut-off of 0.5 Å has been applied to these 

cross-sections since they tend to infinity as the scattering angle approaches zero.  For 

metallic Be, the Born cross-section for the neutral atom is used, and no cut-off is 

required as the cross-section is finite over all scattering angles. 

The left-hand panels in figures 4(a) and (b) show the spherically averaged LDA 

calculations with the Monte Carlo simulation for Be (5-111G basis) and BeO.  In the 

case of the Be calculation, the Monte Carlo simulation includes an additional 

convolution to account for electron-hole lifetime effects which are known to be 

important in the metal [17].  The effect of spherical averaging is close to a simple 

summation over the five directions shown in figure 3.  Some of the detail within the 

band structure will tend to be smeared out in the process, such as the band gaps or 
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small departures from free-electron behaviour at the Fermi surface. Multiple 

scattering produces a background in the data which smears intensity along the energy 

axis for inelastic processes, and along the momentum axis for elastic scattering.  

Small angle elastic scattering is the dominant multiple scattering effect in the oxide, 

resulting from a rapid increase in the Rutherford cross-section at small angles and 

hence small mean-free path for the process.  Conversely, in the metal it is inelastic 

processes that make a significant contribution producing an overall background and 

‘ghost’ bands below the O(2s) valence band due to valence electron and plasmon 

excitations.   

3. Results and Discussion 

The right hand panels of figures 4(a) and (b) show the measured energy and 

momentum resolved densities for Be and BeO respectively.  The binding energies in 

these plots are relative to the vacuum level of the spectrometer; the same reference 

point will be used throughout this paper.  Calculated binding energies in figure 4 have 

been shifted to match the Γ-point energy of the O(2s) band from the experiment. This 

accounts for the fact that the calculation is performed relative to the Fermi level.  

Because EMS measures real electron momentum rather than crystal momentum, 

our band structures are in the extended zone scheme and are labeled in atomic units 

(a.u.) of momentum rather than the more familiar symmetry points of the Brillioun 

zone. The overall energy and momentum resolution of our spectrometer is 1 eV and 

0.1 atomic units (a.u.) respectively. 

The predicted band structures and background simulations reproduce the general 

features of the measurement in figures 4(a) and (b).  For Be the result is a simple 

parabola indicative of a metallic (free-electron-like) system which stands out clearly 
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from the multiple scattering background.  A faint second parabola can be seen at an 

additional energy loss of about 19 eV, this is due to excitation of a single bulk 

plasmon by the incoming or outgoing electrons.  This feature is reproduced by the 

Monte Carlo simulation. 

The BeO bandstructure is characterised by two valence bands derived from the 

O(2p) and O(2s) orbitals.  As expected for an insulating system, both bands are less 

dispersive than for metallic Be.  Once again the EMS signal is relatively clean and the 

band structure stands out clearly from the multiple scattering background.  Small 

angle elastic scattering is the dominant process which tends to smear intensity within 

the band structure along the momentum axis.  A faint parabola is also visible in the 

experimental data, we believe this is due to the carbon substrate onto which the Be is 

evaporated. 

To provide a quantitative analysis of the data, we take vertical slices through the 

data in figure 4 spanning narrow momentum ranges (typically 0.1 or 0.05 a.u.).  The 

result is a series of binding energy profiles at different momentum values, and the 

peaks in these spectra can then be fitted to extract the band dispersions, bandwidths 

and intervalence bandgaps.  A least squares fit using a combination of a 3rd order 

polynomial for the background and one or two Gaussians for each binding energy 

peak was used for both the Be and BeO experimental data.  Two Gaussians were 

required to account for small shoulders present on the peaks, and in all cases the fit 

qualities were extremely high.   Fitting the data in this manner allows us to determine 

the peak positions to greater precision than the independent error in individual data 

points, or resolution of the experiment.  From the least squares fitting procedure we 

estimate that the overall precision of peak positions is ± 0.15 eV.  The spherically 
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averaged calculations have also be fitted in a similar manner.  We present and discuss 

the results of this analysis for Be and BeO in the following two sections. 

4.1 Be 

Experimental and calculated binding energy profiles over 0.1 a.u. momentum 

intervals are shown in Figure 5.  A smooth background has been subtracted from the 

EMS and calculated data using a 3rd order polynomial.  The calculations are 

spherically averaged LDA / 5-111G and LDA / vtz1, and include a simulation of 

multiple scattering and electron-hole lifetimes through the Monte Carlo procedure.  

Comparing calculated results obtained with the two different basis sets, it is clear that 

the extended vtz1 yields can also be seen in the calculated dispersion curves of figure 

3, and holds true for the HF and DFT Hamiltonians also employed in this study. 

There is reasonable overall agreement between the predicted peak positions and 

intensities compared with the experimental data.  Agreement in the peak intensities 

requires lifetime effects to be included in the calculation.  The inverse lifetime is 

largest at the bottom of the band (q = 0.0 a.u.) and decreases up the parabola. The 

intensity within the band is broadened according to the magnitude of the inverse 

lifetime.  Hence, the net effect is to distribute intensity along the parabola, with the 

maximum intensity pushed away from the band minimum toward larger momentum 

values [17, 29].  

To provide a direct comparison among all the theoretical methods we list 

bandwidths in Table 2.  These are obtained by finding the energy difference between 

the calculated Fermi energy and Γ-point energy in the lowest dispersion curve in 

figure 3.  A useful comparison can now be made by obtaining the experimental 

bandwidth from our data.  To this end, we first extract the experimental band 
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dispersion from data similar to that in figure 5.  The data were binned into a finer 

(0.05 a.u.) momentum interval and the least squares fitting method described above 

used to extract peak positions.  The result is shown in figure 3.  Beyond about 1 a.u. in 

momentum, the binding energy profiles of figure 5 are relatively small and very broad 

and it is difficult to extract meaningful peak positions.  The experimental points 

plotted in figure 3 beyond 1 a.u. correspond to the energy of the middle of the peak.  

For this reason the experimental (spherically averaged) bandwidth in figure 3 appears 

much smaller than the calculated bandwidths.  To obtain the full bandwidth requires 

knowing the work function of the spectrometer, since our binding energies are 

measured relative to this point.  This can be accomplished by comparing the 

experimental and theoretical binding energy profiles integrated over a 0.8 to 2 a.u. 

range.  The two profiles have the same shape but are shifted in energy, and by 

normalising the observed and calculated energies at the Γ-point, this shift provides a 

reasonable estimate of the spectrometer work function.  With this method we obtain a 

value of 3.2 ± 0.2 eV.  Our measured energy at the Γ-point relative to the vacuum 

level of the spectrometer is 14.3 ± 0.2 eV, hence the energy relative to the Fermi level 

(or bandwidth) is 11.1 ± 0.30 eV  

Comparing the data of Table 2, HF overestimates the bandwidth by nearly a factor 

of 2 irrespective of the size of the basis set used.   The larger vtz1 basis set narrows 

the bandwidths with respect to the 5-111G basis by less than 1 eV for all methods 

used.  Although this results is in some ways expected, it is also surprising given the 

popularity of HF for predicting optimum crystal structures, and the noticeable 

superior performance of the extended vtz1 basis set in this regard.  Clearly a basis set 

optimised at the HF level to reproduce physical crystal structures may not necessarily 

reproduce electronic structures.  With the inclusion of electron correlation, all three 
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DFT calculations give significantly narrower bandwidths that are more in line with 

the observation, although technically, DFT should not be used for this type of 

comparison. The LDA and gradient corrected (PBE) methods give best agreement, 

with the PBE/vtz1 combination reproducing the experimental value to within 

experimental error.  Inclusion of exact exchange in the PBEO hybrid method gives 

values which are around 2 eV wider than experiment. 

Previous experimental measurements of the bandwidth range from 10.25 ± 0.5 eV 

from the x-ray emission data of Lukirskii and Brytov [10] to 16.88 eV from the k-

emission spectrum of Sagawa [12].  Using the same technique, Skinner [11] reported 

a value of 13.8 ± 1 eV.  More recently, in an ARPES measurement, Jensen et al [17] 

obtain a value of 11.1 ± 0.1 eV. 

4.2 BeO 

The experimental (points with error bars) and spherically averaged LDA (solid line) 

binding energy profiles are shown in Figure 6.  A smooth background has been 

subtracted from the experimental data with a 3rd order polynomial to aid comparison 

with the calculation: the Monte Carlo simulation (dotted line) is dominated by elastic 

scattering events and does not reproduce this background. 

The spherically averaged LDA calculation reproduces the measured intensity and 

dispersion of the lower O (2s) band relatively well, but does not perform so well for 

the upper O (2p) band, particularly in regard to the intensity distribution.  The 

calculation predicts very little intensity at the Γ-point, whereas we observe 

considerable intensity.  Small angle elastic scattering which smears intensity along the 

momentum axis will contribute to intensity at the Γ-point, however our simulation of 

this process using the Monte Carlo procedure does not produce sufficient intensity to 
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explain the observation.  In addition, the shape of the measured and predicted binding 

energy profiles are quite different.  At higher momentum values, the Monte Carlo 

simulation reproduces the observed profiles well, albeit with much smaller intensity.  

The intensity ratio between the upper and lower valence bands across the entire 

momentum range also appears quite different in the experiment compared with the 

calculation, and again cannot be remedied by including multiple scattering effects in 

the calculation. 

Although it is clear that multiple scattering, particularly elastic scattering, does re-

distribute intensity in the bands, it is not sufficient to explain the large discrepancy 

between experiment and theory at small momentum values.  It also seems unlikely 

that the finite momentum resolution of the spectrometer is responsible for this 

difference, as this has, to some degree, been built into the binding energy profiles 

through the momentum integration.   The anomalous intensity may indicate a 

contribution of cation states to the predominantly oxygen valence band or that the 

ionization process itself has some momentum dependence to it.  The covalent 

character of BeO is well known and experimental and theoretical studies point to the 

importance of including metal ion p-states at the top of the valence band.  It seems 

unlikely that the scattering cross-section is the origin of these differences, as this is 

believed to be well understood from experiments on atomic and molecular targets.  

Nevertheless, we find that LCAO calculations predict other aspects of the EMS 

electronic structures, such as bandgaps and bandwidths reasonably well. 

Oxygen intervalence bandgaps at the Γ-point have been obtained in previous x-ray 

and photoemission measurements of the density of states (DOS).   Fomichev [14] 

reports a value of 21.3 eV, and Lukirskii and Brytov [10], 19.5 eV.  Photoemission 

measurements of Hamrin et al [15] give a similar value of 20 eV.  Our experimental 
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result of 19 ± 0.2 eV (listed in Table 3) is consistent with these values.  We obtain the  

experimental value from a least squares fit to the EMS binding energy profiles similar 

to those shown in Figure 6, but with a 0.05 a.u momentum integration.  Although it is 

a spherical average, this value is comparable to previous values due to degeneracy at 

the Γ-point. 

The DOS bandgaps can be compared directly with ones derived from our calculated 

dispersion curves similar to Figure 3.  Values are given by the first number in each 

column of Table 3.  Hartree-Fock overestimates the bandgap compared with the x-ray 

and photoemission measurements.  The DFT methods give much better agreement, 

with LDA and PBE underestimating and PBEO giving perhaps the closest agreement.  

The plane-wave pseudopotential calculation of Chang et al [30] predicts a value of 19 

eV. 

Values from our spherically averaged calculation obtained by fitting the predicted 

binding energy profiles are also given in Table 3 in brackets.  Comparing these values 

with our experiment, PBE gives the closest prediction.  Spherical averaging reduces 

the predicted bandgap by only about 1 %.  It is therefore reasonable to compare our 

experimental value directly with previous DOS values.   This slight change in 

bandgap arises because there are two separate O 2p bands at the Γ-point: most of the 

intensity lies in the upper of these bands but the small amount present in the other 

shifts the spherical average to a lower value. 

The above x-ray emission and photoemission measurements give O (2p) 

bandwidths that range from 8.8 [10] to 10.3 eV [14]; our experimental value, on the 

other hand is 4.7 ± 0.2 eV.  Care has to be taken comparing these values because of 

the effects of spherical averaging, which becomes clear when comparing the 

calculated bandwidths in Table 3.  Spherical averaging reduces the O (2p) bandwidth 
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by about 17 % due to the bands being non-degenerate along different directions at the 

band minimum.  However, the experimental bandwidth is still narrower than the 

spherically averaged calculations, with HF overestimating by about 40 %, and PBE 

giving the smallest overestimate at 10 %.   

Comparing our calculated bandwidths, derived directly from dispersion curves for 

BeO, with previously published x-ray and photoemission measurements, the HF 

calculation underestimates the O (2p) bandwidth from the experiments.  Including 

electron correlation effects with the DFT methods produces even narrower 

bandwidths.  This is in contrast to metallic Be where bandwidths are generally 

overestimated by HF and in reasonable agreement with DFT calculations.  Two 

previous DFT calculations [16, 30] both give a bandwidth of 6 eV. A later x-ray 

emission measurement of the DOS [16] gives a value of 6.8 eV for the bandwidth, 

which is more consistent with our calculation and considerably narrower than the 

previous x-ray and photoemission measurements.  The difficulty of comparing 

photoemission DOS measurements with calculations has been pointed out previously 

[31], where it was suggested that bandwidths extracted from the photoemission DOS 

may be broadened by instrumental and thermal effects.  

From our calculations, it is obvious that spherically averaging reduces the O (2s) 

bandwidth, in this case by about 10 %.  Once again our measured value falls below all 

the calculations with PBE giving a value just outside the experimental error. Previous 

experimental measurements do not assign a width to the O (2s) band. 

4. Conclusion 

In this paper we have presented electron momentum spectroscopy of Be and BeO. 

EMS is a technique that provides a direct and complete mapping of band structures.   
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The Be and BeO results are relatively free of the effects of multiple scattering and so 

can provide a benchmark set of data for the technique and a quantitative comparison 

with theoretical models.   We have also presented LCAO electronic structure 

calculations within the HF and DFT formalisms.  Spherical averaging over all crystal 

directions (to account for the polycrystalline structure of the target) and multiple 

scattering effects have been included in our modeling efforts in order to address 

differences between theory and observation. 

The Hartree-Fock method is very popular and has proved quite successful for 

modeling crystal structures.  However, we find strong disagreement between EMS 

measurements and HF predictions of electronic structure.  For Be metal in particular, 

HF overestimates the bandwidth by nearly a factor of two.  Clearly, inclusion of 

electron correlation is critical in modeling the electronic structures of both the 

metallic and ionic species.  The use of an extended basis set for Be, for its high 

computational overhead, does not significantly improve electronic structures at the 

HF level, although its predicted lattice constants are in excellent agreement with 

experiment. 

All three levels of DFT calculation reproduce the EMS results more closely.  In the 

case of the intervalence bandgap in BeO, both LDA and gradient corrected DFT 

underestimate the experimental value, although gradient corrections (PBE) give larger 

values.  Inclusion of exact exchange (PBEO) increases the bandgap further to the 

point of overestimating the experimental value.  The intervalence bandgap is 

relatively unaffected by spherical averaging since most of the intensity lies in 

degenerate bands along different directions at the Γ-point.  Therefore our EMS 

bandgaps can be compared directly with photoemission or x-ray measurements and 

other calculations.   Our results are consistent with previously published values. 
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Even accounting for the effects of spherical averaging in our data, earlier x-ray and 

photoemission O 2p bandwidths are considerably wider than either our calculated or 

experimental values.  Contrary to previous measurements, we find that all three of our 

DFT calculations slightly overestimate the widths of the oxygen valence bands in 

BeO.  For both the 2p and 2s bands, PBE gives the narrowest width followed by LDA 

then PBEO. Previous calculations agree with our predictions and the more recent x-

ray emission measurement gives a narrower 2p bandwidth that better agrees with the 

EMS result.  

The PBE calculation gives excellent agreement for the bandwidth in Be provided 

the extended basis set is employed.  With the 5-111G basis, all the DFT methods 

overestimate the bandwidth, LDA being narrowest and PBEO considerably broader.   

For the extended basis, LDA underestimates and PBEO overestimates the bandwidth. 

Overall, the PBE functional within a DFT framework reproduces the measured 

band energies most accurately, although it must be remembered that strictly speaking 

DFT only provides the total ground state energy and density and not the quasi-particle 

energies. 

The experimental band intensities, of both Be and BeO are significantly different to 

model predictions of any level.  For the metal, the discrepancies arise from many-

body interactions in the form of electron-hole lifetimes.  However, the differences in 

the oxide are not readily explained.  Our Monte Carlo simulations indicate that 

multiple scattering effects are not the primary cause of anomalous intensity.  One 

explanation could be the inability of the model calculations to adequately describe 

covalent effects in the bonding. 
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The observed discrepancies between theory and experiment, particularly the 

difference in O (2p) band intensity and bandwidth for the oxide, warrant further 

investigation.  The thickness of the target used in these measurements may be 

responsible for these differences.  Our future efforts will concentrate on understanding 

the character of the targets used in the experiment and incorporating this into the 

modeling, in particular, calculating band structures for slabs rather than bulk since the 

targets are relatively thin.   
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FIGURE CAPTIONS 
 
Figure 1.  (a) Schematic of the spectrometer scattering geometry, shaded areas 

represent angular acceptance of analysers.  (b) Target orientation with respect to 

incident and outgoing electrons, shaded region represents portion of target 

contributing to (e,2e) signal. 

 

Figure 2.  Differential Auger spectra for (a) the metallic Be target and (b) the BeO 

target. 

 

Figure 3.  DFT band dispersions and electron momentum densities for Be calculated 

with the LDA.  Experimental (spherically averaged) band dispersion derived from 

EMS data also shown.  Binding energies for the two calculations are relative to the 

Fermi energy, experimental binding energies are normalised to the 5-111G basis set 

calculation at the band minimum.  Momenta are given in atomic units (a.u.). 

 

Figure 4.  Energy-momentum resolved densities.  The calculation is the spherically 

averaged DFT LDA with a Monte Carlo simulation of multiple scattering and lifetime 

effects for Be.  Calculated binding energy has been normalised to the experiment at 

zero momentum.  Intensity is on a linear gray scale. 

 

Figure 5.  Binding energy profiles for Be extracted from the measured and calculated 

energy-momentum resolved density.  Calculations are spherically averaged LDA with 

the Monte Carlo simulation.  A smooth background has been subtracted from all data 

sets.  Calculated binding energy and intensity of the valence band has been 

normalised to the experiment at 0.0 a.u. momentum. 
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Figure 6. Binding energy profiles for BeO extracted from the EMS measurement and 

calculated energy-momentum resolved density.  Calculations are spherically averaged 

LDA, with and without the Monte Carlo simulation of multiple scattering.  A smooth 

background has been subtracted from the experimental data. Calculated binding 

energy and intensity of the 2s band has been normalised to the experiment at zero 

momentum.  The calculated O(2p) peak at 0 and 0.1 a.u. momentum.with no Monte 

Carlo simulation has been scaled upwards by a factor of 10. 
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Table 1.  
Calculated and experimental lattice constants and binding energies. The percent 
difference between calculated and experimental values are given in parentheses. 
 
Basis and method a (Å) c (Å) Emin (au) Eb (kcal/mol/atom) 

HF/5-111G 2.2312 (-2.39) 3.4878 (-2.69) -29.2500 45.2 
LDA/5-111G 2.2016 (-3.68) 3.4908 (-2.61) -29.1564 94.8 
PBE/5-111G 2.2080 (-3.40) 3.4846 (-2.78) -29.4763 80.9 
PBE0/5-111G 2.1961 (-3.92) 3.4694 (-3.21) -29.4879 79.7 

HF/vtz1 2.3141 (+1.24) 3.5959 (+0.32) -29.3054 56.5 
LDA/vtz1 2.2268 (-2.58) 3.5064 (-2.17) -29.2032 103 
PBE/vtz1 2.2610 (-1.08) 3.5622 (-0.62) -29.5319 91.6 
PBE0/vtz1 2.2583 (-1.20) 3.5523 (-0.89) -29.5419 90.4 

Experiment 2.2858 ± 2a 3.5843 ± 2a -- 76.6b 

aref [26] 
bref [27] 
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Table 2 
Experimental and calculated Be conduction band widths (eV).  Theoretical 
predictions based upon experimental lattice constants. 

 

Method/basis Bandwidth (eV) 

HF/5-111G 19.52 
LDA/5-111G 11.55 
PBE/5-111G 11.7 
PBE0/5-111G 13.65 
HF/vtz1 19.24 
LDA/vtz1 10.97 
PBE/vtz1 11.13 
PBE0/vtz1 13.24 

Experiment 11.1 ±  0.3 
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Table 3 
Measured and predicted bandwidths for BeO in eV. The first number in each column 
is the calculated from the dispersion curve, numbers in brackets are from the 
spherically averaged calculations.  
 

Method  Γ1 →   Γ1,6 ΔE(O 2p) ΔE (O 2s) 
HF     (sph av)  25.22  (24.93) 8.05 (6.77) 2.84 (2.56) 
              
LDA   (sph av) 18.47 (18.29) 6.43 (5.39) 2.39 (2.19) 
              
PBE   (sph av) 18.73 (18.50) 6.36 (5.30) 2.32 (2.09) 
              
PBE0  (sph av) 20.44 (20.22) 6.88 (5.75) 2.47 (2.27) 
              
Expt. 19 ± 0.2 4.7 ± 0.2 1.7 ± 0.2 

 


