
Invited Paper, 17th Annual Conference of the National Advisory Committee on Computing Qualifications (NACCQ),
Christchurch, New Zealand, July 2004, pp. 13-19.

Objectives and Object-
Oriented Programming

Dr. Raymond Lister

Faculty of Information Technology,
University of Technology, Sydney

NSW, Australia
Email: raymond@it.uts.edu.au

After decades of experience, the computer education
community has settled upon a relatively standard way
of teaching procedural programming. With the
growing use of object-oriented languages, the question
is whether new wa ys are required. Some in the
community argue that object-oriented programming
languages are an extension of the 3GL approach, and
students should still be taught the 3GL way first, even
if students are using an object-oriented language. On
the other hand, the “objects early” proponents argue
for radical change. As with most debates, the points
raised by both sides contain implicit assumptions. Our
real differences of opinion are at a more abstract level:
our teaching objectives. This paper describes my
experiences in trying to make teaching objectives more
explicit, within the domain of object-oriented
programming. First, I discuss PigWorld, a micro-world
for teaching programming that blends “objects -early”
with a traditional emphasis on algorithms. Second, I
describe my use of Bloom’s taxonomy to make my
assessment objectives more explicit. Finally, I look
beyond introductory programming, to describe how an
explicit acknowledgement of objectives clarifies the
debate on whether the teaching of data structures needs
to change if we teach “objects early”.

Keywords:

CS1, objects-early, Bloom’s taxonomy, CS2, Data
Structures, phenomenography.

1. INTRODUCTION

Computing educators are not lighthouse keepers: we
do not work alone. We work within several
communities: from a world -wide community, national
communities, down to our own faculty or department.
Within all these communities, there are specifications
on many educational issues. At an international level,
organizations like the Association of Computing

Machinery publish guidelines on curricula . At a
national level, organizations like the NACCQ publish
more specific frameworks. At the faculty or
department level, there are frequently quite detailed
specifications for what shall be taught, how it is to be
taught, and how it is to be assessed.

Despite all these specifications, there is still plenty of
argument about how computing should be taught.
There may be more contested territory in computing
than in other disciplines, given the rate of change of
information technology. Some see the Internet and
object-oriented programming as new developments
that require changes to our teaching, while others
argue that the curriculum should emphasize the
fundamental concepts that do not change.

Most computing education discussion at the
faculty/department level is of a poor standard.
Discussion is usually about a very concrete issue, such
as which programming language should be taught first,
when the real difference of opinion is usually at a
higher level of abstraction, and remains implicit. In
their popular book on negotiation, Fisher, Ury, and
Patton (1991) describe a lower-level issue as a
“position”, and a higher level abstraction as an
“interest”. They write, “Interests motivate people; they
are the silent movers behind the hubbub of positions.
Your position is something you have decided upon.
Your interests are what caused you to decide” [p41].
For example, advocating that Java be taught as the first
language is a position. Your interest in doing so could
be that you want a language that (you hope) will
inspire students to study harder.

When debating education issues, we usually see it as a
monotonically decreasing process: we either eliminate
positions until there is a single “winner“ , or we merge
positions by negotiating a compromise. Fisher, Ury,
and Patton argue that we should actively seek to invent
new options that satisfy most interests of most parties.
For example, having established that your interest is

inspiring students to study harder, can that be achieved
without changing to a particular programming
language? Alternately, having established that your
interest is the teaching of fundamental concepts that do
not change, perhaps the introduction of a new
programming language is the ideal opportunity to
demonstrate that “the more things change, the more
they stay the same”.

Currently, object-oriented programming generates
most discussion on curriculum change. In the
remainder of this paper, I shall describe three
experiences of my own, where I have sought to invent
options to accommodate multiple interests while
introducing Java into the undergraduate curriculum.

2. ALGORITHMS VERSUS OBJECTS EARLY

Some computer scientists argue that the teaching of the
procedural programming paradigm must precede the
teaching of object-oriented programming. Burton and
Bruhn (2003) argued as follows:

”... while OOP undeniably represents a new
paradigm, it in no way replaces the older
paradigm ... rather it is in addition to it. As a
paradigm in its own right algorithmic thinking
(together with procedural programming) needs
to be understood first, and in isolation from
OOP. Students need to know how OOP fits into
the bigger picture and a first course is surely
required to do this. ... all students should be
given a firm foundation in algorithms,
structured programming, procedures, and an
appreciation of this historical development,
before proceeding to object-oriented
programming.”

The above is a commonly expressed view, which
Culwin (1999) breaks it into two related strands:

“The first is that the new paradigm is more
complex and hence more difficult than the old
paradigm. The second is that knowledge and
experience of the old paradigm is a necessary
pre-requisite for working effectively within the
new paradigm. The first of these justifications
is possibly true but the second is based upon an
obvious fallacy. The people who decide upon
the nature, content and focus of undergraduate
curriculum are, in general, of an age where
their own professional and intellectual
development mirrors the development of
computing over the last twenty years or so.
Hence their personal perception of how they

learned ... [is generalized] ... to a conception
that knowledge of the old paradigm is a
necessary pre-requisite for learning the new
paradigm...”

2.1 PigWorld
PigWorld (Lister, 2004) demonstrates that there is no
need to choose between objects-early and algorithms -
early. The apparent need to do so is caused by a
widespread misunderstanding of what it means to
encode algorithms in the object-oriented style. The
misunderstanding is prevalent even among those who
advocate objects -early. The algorithm-object dialectic
is transcended by the following general principle:

In the procedural style, algorithms are encoded
explicitly within the method of an object, but in
the object oriented style, algorithms emerge
implicitly from the interactions between
objects.

This general principle is illustrated in the remainder of
this section, by describing how pigs in PigWorld use
“flower power” to traverse a maze. Figure 1 shows a
simple PigWorld scenario, with one pig. There are also
pig food trees, which periodically drop pig food pills
onto squares adjacent to the tree. Hungry pigs move,
one square at a t ime, toward the nearest pig food. As a
pig moves, it leaves a trail of flowers.

When a pig has eaten sufficient food, the pig will
become “in the mood for love”. Boy pigs in such a
mood move to the nearest girl pig. If the girl pig
reciprocates the boy’s amour, they mate to produce a
new pig. When first demonstrating PigWorld to a new
undergraduate class, the creation of the first baby pig
is met with laughter and applause: sex sells, especially
in an undergraduate class.

Robots (or creatures) that traverse mazes have been a
staple of teaching introductory programming for over
20 years (see Lister, 2004, for citations). However,
those earlier approaches have traversed mazes in the
procedural style, with the robots/creatures maintaining
internal data structures to map their path through the
world. Pigs traverse the maze without such data
structures, in the object-oriented style, by interacting
with flowers. A flower has only one real encapsulated
property, its age, which increments with each time step
in PigWorld. If a pig moves on to a square that already
has a flower, then the old flower is replaced with a
new flower of zero age. When a pig chooses the next
square to which it will move, it does so according to
the following three criteria: (1) A square not
containing a flower is preferred; (2) If there is a choice
between moving to two squares, neither of which

contains a flower, then the square in the direction
nearest to the pig’s intended target (e.g. food) is
preferred, and (3) if all adjacent squares contain
flowers, then the square with the oldest flower is
preferred. Thus a pig’s maze traversal proceeds
according to the principle enunciated earlier:
algorithms emerge implicitly from the interactions
between objects.

Figure 1. PigWorld

Even a mathematically rigorous introduction to
algorithms can be done in the object-oriented style. For
those who doubt that assertion, consider this problem:
either prove that a single pig in any connected maze
will eventually visit all squares using “flower power”,
or provide a counter example.

2.2 Linked Lists Early
In the philosophy of procedural programming, one
cannot realistically talk about algorithms without also
talking about data structures. In teaching procedural
languages, the first data structure taught is the array. In
teaching objects -early, the first data structure taught
should be the linked list. Algorithms for manipulating
linked lists are more complicated in the procedural
style than in the object-oriented style. The recursive
code of procedural programming is elegant, but too
difficult for the novice. On the other hand,
implementing a linked list in Java requires no more
than a grasp of the most basic concepts (objects,
message passing, parameters) plus the “if” statement –
what more natural way to introduce these concepts

(and make clear the distinction between classes and
objects) than via the linked list? The message passing
nature of object-oriented programming code simplifies
many issues of control flow, and provides much of the
same style and elegance of recursive code.

We propose the following principle about data
structures, which is a special case of the earlier
principle on the algorithm-object dialectic:

In the procedural style, data structures are
controlled by algorithms outside the data
structure, but in the object oriented style,
algorithms emerge from the interactions
between the objects containing the data.

We now illustrate this principle by describing recent
experiences with PigWorld (Lister, 2004). In a recent
semester, students were required to modify PigWorld
so that pigs traversed the maze by trailing a rope,
rather than dropping flowers. Once a pig satisfied its
current goal (e.g. located food), the pig was supposed
to “roll up” its rope and begin a fresh maze traversal.
An instance of the Rope class is associated with a
square. Each instance has the references of up to two
other pieces of rope, the instance laid out by the pig
before this instance, and the instance laid out after.
Thus, the entire trail of rope is a doubly linked list. The
code that allowed pigs to lay out rope was supplied to
students , and students were required to write code to
“roll up” the rope, implemented as the destruction of
the linked list. Each instance in the linked list need
only pass along a “destroy” message, which requires
less than 10 lines of code. Of the students who
attempted this assignment task, 82% were successful
(Lister, 2004).

In the most recent semester, a new type of creature was
added to PigWorld, the snake, that may occupy several
squares simultaneously. The snake’s body was
implemented as a linked list, and students were
required to write code that passed messages along the
body of the snake. In a reflective document written as
part of the assignment, one student wrote, “I have
messed around with programming languages for
several years and was always intimidated by linked
lists. Here they are pretty harmless actually.”

If we accept that linked lists are an easy and natural
data structure to teach “objects early”, then it becomes
obvious that there need be no tension between those
who advocate “objects early” and those who advocate
an early emphasis on algorithms.

3. MAINTAINING STANDARDS VERSUS
DUMBING DOWN

Irrespective of whether we teach the object or
procedural styles, the sad fact is that many students
struggle with programming. The results from a
multinational project led by McCracken (2001)
indicate that the problem is world -wide, and
transcends the 3GL and object-oriented paradigms. In
the McCracken study, the ten authors in four countries
tested their respective students on a common set of
programming tasks. Most students did not even get
close to solving the tasks. McCracken et al. noted that
many weak students became so engrossed in
overcoming syntax errors that they lost sight of the
problem to be solved, and when they achieved their
first clean compile, were “surprised” by what the
program did when presented with data.

Most people who have taught introductory
programming will relate to the McCracken experience.
Many of us have invested enormous amounts of time
to structure lecture materials for weaker students, and
provide helpful lab exercises. When we succeed, and
the failure rate for introductory programming falls, our
reward is to be accused by our colleagues of having
“dumbed down” introductory programming. It is as if
we face two incompatible constituencies: our students
and those who teach “downstream” from us.

The dialectic articulated in the heading of this section
appears most difficult to transcend. Only those of us
who have direct contact with novice programmers
develop a real appreciation of just how difficult
programming is for many novice students, but only
those who teach further downstream develop a real
appreciation of what our graduates can really do.
There even appears to be a moral dimension to the
dialectic: some tertiary teachers see their role as
filtering out “the dross”, while others see their role as
helping the students who struggle .

3.1 Bloom’s Taxonomy
Bloom's taxonomy (Bloom, 1956) can clarify any
debate on “maintaining standards” versus “dumbing
down”. The taxonomy contains six levels , which from
lowest to highest are: Knowledge, Comprehension,
Application, Analysis, Synthesis and Evaluation. Each
level of the taxonomy describes a type of competence
in some domain. The key principle of Bloom’s
taxonomy, the principle that clarifies the debate on
“maintaining standards” versus “dumbing down”, is
that competence at a higher level of the taxonomy
implies a reasonable degree of competence at the
lower levels.

When competent at the knowledge level, a student can
regurgitate a fact when prompted for it , without
necessarily understanding the significance of the fact.
Students can operate at the knowledge level merely by
rote learning. That is not a level of competence of
much interest in tertiary education, but it serves a
purpose much like that of the base case of a recursive
function: it identifies the trivial case.

In absence of any knowledge of this taxonomy, debate
about teaching frequently confuses the concepts
represented by the knowledge level and the next level
up, the comprehension level. This level is a higher
level of competence than the knowledge level because
a student competent at the comprehension level
understands the significance of a fact. A student can
demonstrate competence of programming at the
comprehension level in several ways. One way is to
translate a piece of novel pseudo code into working
code – an excellent lab exercise and practical exam
Another way is to correctly predict the output of a
novel piece of code, which lends itself well to
assessment by multiple choice questions. These tasks
describe a competence significantly less than the
ability to actually write code, but the philosophy
behind Bloom’s taxonomy is that we should assess
students at this comprehension level before we assess
their capacity to write code.

The lesson of the McCracken project was that many
students around the world currently receive passing
grades in programming subjects, despite not being able
to program. I believe the problem has a two-fold cause.
The first part of the cause is the unhealthy
concentration on assessing students by requiring them
to write code. (What is the point in doing that when,
as McCracken et al. observed, the weak students are
“surprised” by what their code does after the first clean
compile!) The second part of the cause is that, having
set students a programming task, we frequently give
half marks – a pass – to students who submit poorly
structured, buggy programs. The true measure of a
teacher’s standards is not to be found in their syllabus
outline, their lecture notes, nor even their exam. The
true measure of a teacher’s standards is to be found in
how they mark. Teachers who set difficult
programming assignments are not maintaining
standards if they hand out passing marks for bad
solutions. Indeed, they may be guilty of covert
dumbing down.

At my university, programming in the first and second
semester is now assessed explicitly according to
Bloom’s taxonomy (Lister and Leaney, 2003a, 2003b).
To pass the first semester, a student need only
demonstrate competence at the comprehension level.

(The students are expected to demonstrate higher
competencies in subsequent semesters.) In that first
semester, students seeking the lowest possible passing
grade are assessed in two ways. First, in a practical
exam, they are required to translate a piece of novel
pseudo code into working code. Second, they must
achieve 70% or higher in a multiple choice exam,
where questions typically ask them to predict the
output of a piece of code, or nominate the missing line
from a short piece of code. We find the multiple
choice exam to be a more demanding test than
requiring students to write code, as there is only a
single correct answer to these multiple choice exams,
whereas when students provide written answers, it is
all too easy to conceal our teaching mistakes by
marking generously.

My interest in teaching programming is no different
from any other teacher: I want students to be
competent – eventually - at the highest levels of
Bloom’s taxonomy . The difference in my position is
merely a matter of timing: I do not expect the weakest
passing students to be competent at designing
programs until their third semester. In that third
semester, our students are taught the classic, 3GL data
structures, in the “C” programming language, with a
heavy emphasis on students writing programs . The
third semester failure rate has a long history of being
very bad. Since our change in the first year to a
grading approach explicitly based on Bloom’s
taxonomy, the failure rate of that third semester subject
has plummeted, and within the department this
improvement is commonly attributed to the change in
how students are assessed in their first year.

Teaching a lot of material and then assessing it badly
is not “maintaining standards”. We should all aim to
teach less, but assess it thoroughly: that is not
“dumbing down”.

4. TEMPLATE LIBRARIES VERSUS
IMPLEMENTING DATA STRUCTURES

If novice programmers are being taught objects-early,
should changes now flow through to the rest of the
programming curriculum? For example , should the
teaching of data structures place less emphasis on the
direct implementation of data structures and more
emphasis on the good use of existing data structures in
the template libraries of C++ and Java?

Debate on the teaching of data structures illustrates
beautifully the need to debate interests rather than
positions. A typical staff room debate on data
structures will revolve around a position, such as “the

students must implement a balanced binary tree”, and
not the higher level skills we hope the students will
gain from that exercise.

4.1 The Dimensions of Variation in the Teaching of
Data Structures
Recently, I was part of a project to determine the
interests behind the teaching of data structures (Lister
et al., 2004). We used a research method kn own as
phenomenography. It is not necessary to give a
detailed description of that method here. Suffice to
say that we collected data by interviewing some
teachers, and we also collected position statements
from the introductions of so me text books. We then
analyzed that data to identify the interests that were
behind the stated positions. We identified five
interests that teachers have in teaching data structures:

1. Developing Transferable Thinking: Data structures

are a vehicle for developing thinking skills that
have relevance beyond their immediate application
to data structures. Just as PigWorld provides a
micro world in which students can learn object-
oriented concepts, data structures provides a micro
world in which students develop the thinking skills
that transfer to other programming tasks.

2. Improving Students’ Programming Skills:

Especially student dexterity with recursion and
pointers. As one interviewee expressed it, “reading
and using the code without having written
something similar is like watching Olympic ping
pong on TV. It sure looks easy, even somewhat
repetitious; however, the level of precision is only
experienced by trying to do the same.”

3. Knowledge of Software Libraries: This category

gives a central role to teaching data structure
libraries. Of all the views, it is the most utilitarian,
seeing data structures as a set of tools used for
solving problems. As one interviewee expressed it,
“... many career paths will never lead the graduate
to read or write code which implements the
operations of a binary search tree, B-tree, hash
table, heap-structured priority queue, etc. So for
these structures, it's enough to know how to read
and write code that uses them, based on their
presence in good collection libraries.”

4. Component Thinking: This category sees object-

oriented programming as having a design
methodology beyond that of procedural
programming, emphasizing code reuse, abstraction,
information hiding, and patterns.

5. Knowing “What’s Under the Hood”: The
assumption is that before students can make
effective use of the data structures in the template
libraries of C++ Java, students must develop
insight into how those data structures are
implemented.

It is important to understand that an individual teacher
does not typically subscribe to just one of the above
interests. There may be interests to which an
individual identifies strongly, other interests to which
they identify weakly, and some interests with which
they do not identify at all .

From the first four of the above five categories, we
identify two dimensions in which the categories differ.
These dimensions are shown in Table 1. In one of the
dimensions, the variation is in the degree of
abstraction. The categories “Improving Students’
Programming Skills” and “Knowledge of Software
Libraries” both emphasize implementation skills,
whereas the categories “Developing Transferable
Thinking” and “Component Thinking” both emphasize
the design process. The other dimension of variation
is “Computer Science” versus “Object Engineering”.
The category “Developing Transferable Thinking”
relates to the Turing Machine as a universal
computational device, while the category “Improving
Students’ Programming Skills” relates to the
realization of the Turing Machine in the von Neumann
architecture. On the other hand, “Object Engineering”
is not about building universal computational devices,
but instead devices that are well suited to specific
purposes. The fifth category “Knowing What’s Under
the Hood” transcends the Computer Science vs.
Object Engineering dialectic, but it is more concrete
than abstract.

 Computer Science vs. Object Engineering

Developing
Transferable
Thinking

Component
Thinking

Abstract
 vs.

Concrete
Improving Students’
Programming Skills

Knowledge of
Software
Libraries

Table 1. The Dimensions of Variation in the Teaching
of Data Structures

Having identified the real differences behind various
positions, we can now reinterpret the staff room
debate: “that students must implement a balanced
binary tree”. Teachers who subscribe strongly to either
or both categories in the “Computer Science”
dimension might agree, because the exercise will

strengthen a student’s skills (although each of those
two categories emphasises different skills). However, a
teacher who subscribes strongly to either or both
categories in the “Object Engineering“ dimension is
likely to disagree. A teacher who subscribes to the fifth
category “Knowing What’s Under the Hood” might
agree, but some teachers who subscribe to this
category might also disagree, believing that it is
sufficient for students to understand the concept of a
balanced binary tree, and be aware of its time
complexities.

This phenomenographic study demonstrates a more
constructiv e approach to syllabus design. Most
discussion on syllabus design is done face-to-face, in
an adversarial style. Many teachers avoid such
confrontation, or do not perform well in such a
“hostile” environment, despite having something of
value to contribute. This may explain a recent finding
that the primary driver of curriculum change is
influential or outspoken individuals, with pedagogic
arguments being a very minor driver of change (Gruba
et al., 2004). If a syllabus review process began with a
phenomenographic study, more teachers might
articulate their position. In this phenomenographic
study, my own view changed as the study progressed.
One of the insights for me was the distinction that
emerged between “Component Thinking” and
“Knowledge of Software Libraries”. Prior to the study,
I had been inclined to think they were the same
category, and I believe that is a common mistake in
our community. People who advocate a greater
emphasis on the template libraries of C++ and Java are
frequently and incorrectly shouted down as advocating
nothing but the teaching of an application program
interface.

5. CONCLUSION

In our teaching communities, we are prone to foster a
culture that focuses upon our internal differences, not
what we have in common. We may differ on what
programming language should be taught first, but we
all do want our students to program. We may differ on
what a student should be able to do after one semester,
but there is a high level of agreement on what they
should be able to do by the time they graduate. We
may disagree about how far down into the bowels of
the von Neumann machine all students must go, but
we do agree that the primary reason for sending them
there is to make them better software engineers.
Behind our many different, detailed positions, we have
remarkably similar interests: that is why we are a
community.

When we disagree, we should go back to first
principles, and re-establish what we agree upon. We
might then be surprised that apparent differences are
really just implementation details that are amenable to
solution - provided we are willing to negotiate, willing
to change, and provided we approach our teaching
with imagination.

REFERENCES

Bloom, B.S. (Ed.) (1956) “Taxonomy of Educational
Objectives: Handbook I: Cognitive Domain”,
Longmans, Green and Company.

Burton, P.J., Bruhn, R.E. (2003) “Teaching
Programming in the OOP Era”. SIGCSE Bulletin, 35:2
(June), pp 111-114.

Culwin, F. (1999), “Object Imperatives!”Proceedings
of the 30th Technical Symposium on Computer
Science Education (SIGCSE), New Orleans LA , USA,
March, pp 31-36.

Fisher, R., Ury, W., and Patton, B. (1991). “ Getting
To Yes: Negotiating Agreement Without Giving In”.
New York, NY: Penguin. 2nd edition.

Gruba, P., Moffat, A, Sondergaard, H., Zobel, J.
(2004) “What Drives Curriculum Change?”
Proceedings of the Sixth Australasian Computing
Education Conference (ACE). Dunedin, New Zealand,
18-22 January, pp 109 -117 .

Lister, R. and Leaney, J. (2003a) “First Year
Programming: Let All the Flowers Bloom”.
Proceedings of the Fifth Australasian Computing
Education Conference (ACE). Adelaide, Australia, 4-7
February, pp 221-230.

Lister, R and Leaney, J (2003b), “Introductory
Programming, Criterion Referencing, and Bloom”.
Proceedings of the 34th Technical Symposium on
Computer Science Education (SIGCSE), Reno,
Nevada USA, 19-23 February, pp 143-147.

Lister, R. (2004). “Teaching Java First: Experiments
with a Pigs-Early Pedagogy”. Proceedings of the Sixth
Australasian Computing Education Conference (ACE).
Dunedin, New Zealand, 18-22 January, pp 177-183 .

Lister, R., Box, I., Morrison, B., Tenenberg, J.,
Westbrook, S. (2004) “The Dimensions of Variation in
the Teaching of Data Structures ”. Proceedings of the
9th Annual Conference on Innovation and Technology

in Computer Science Education (ITiCSE), Leeds, UK,
28-30 June.

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagan, D., Kolikant, Y., Laxer, C., Thomas, L.,
Utting, I., Wilusz, T. (2001) “A multi-national, multi-
institutional study of assessment of programming skills
of first-year CS students”, SIGCSE Bulletin, 33:4,
(December), pp 1-16.

