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1. Introduction

Gordon Douglas Menzies I

University of Technology, Sydney
and Australian National University

Rational Expectations (RE) applies the principle of rational behavior to the
acquisition and processing of information and to the formation of expectations
(Maddock and Carter, 1982). Economic modellers and policy-makers who use
RE as a working hypothesis bestow upon their representative agents the
statistical prowess necessary to behave as if they were able to calculate
mathematical expectations, and, when information is limited, to calculate
unbiased and efficient parameter estimators.'
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This theory has had a central role in macroeconomics since the 1970s. It appears
in Lucas' (1972) 'Islands' model, Dornbusch's (1976) 'Overshooting' model,
Hall's RE Permanent Income Hypothesis (1978), Real Business Cycle theory
(e.g., Kydland and Prescott, 1982), and a host of new Keynesian models (e.g.,
Woodford, 1991). It continues to appear in models of recent financial crises (eg.
Agenor et al., 1999).

Abstract
We propose that the formation of beliefs be treated as statistical hypothesis tests,
and we label such beliefs inferential expectations. If a belief is overturned
through the build-up of evidence, agents are assumed to switch to the rational
expectation. Thus, rational expectations is a special case of inferential
expectations if agents are unconcerned about mistakenly changing their beliefs
(the test size a equals unity), or ifthere is so much information available about a
parameter that it is known with certainty (the sampling distribution of the
estimator collapses to a point). We.pr~~ent the results of an individual choice
experiment showing preliminary support for inferential expectations. in.
comparisonto either rational expectations, or adaptive expectations with one
degree of freedom. Least-squares estimates for a are less than unity for over
40% or over 60% of experimental participants. The impact of inferential
expectations is illustrated by showing how it alters a simple model of the
exchange rate and a Lucas supply function.

Despite its influence, the number of alleged empirical failures of RE has built up
over the passage of time. In the context of consumption behavior, 'near rational'
departures from RE were used to explain the excess sensitivity of consumption
to anticipated changes in income (Cochrane, 1989, following Akerlof and
Yellen, 1985). Similarly, evidence", against Uncovered Interest rate Parity
(Frankel and Rose, 1995) led some writers to suggest near rational departures
from RE (Gruen and Menzies, 1995). More recently, Mankiw (2000) has argued
that it is not possible to reconcile RE with the combination of the prediction of a
disinflationary boom in case of a fully credible disinflatory announcement, of
inflation persistence and of the observed output dynamic in response to
monetary policy shocks. His later work has tried to replace sticky prices with
'sticky information' adjustments (Mankiw and Reis, 2002, 2003).
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Other negative evidence comes from variable-forecasting experimental studies.
Although RE predictions are not rejected as null hypotheses in some contexts
(see Dwyer et al., 1993), the most common outcome is that individuals do not
hold RE (e.g., Schmalensee, 1976; Blomqvist, 1989; Camerer, 1995; Beckman
and Downs, 1997; Swenson, 1997). In addition, experimental research often
finds either under-utilization or over-utilization of priors (Camerer, 1995). Some
writers, perplexed by the rapid change of beliefs in the 1997 Asian financial
crises, also wandered from the hypothesis of RE, speculating instead that the

3 The name rational expectations emphasises the use of mathematical expectations. But any realistic
theory of 'rational' belief formation must take account of parameter estimation. Over the 1990s there
were 137 papers in the American Economic Review that undertook estimation (Ziliak and McCloskey,
in press).
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markets did not fully understand the mechanisms operating in their environment
until unfolding events made them look more closely (Corbett and Vines, 1999).

frugal heuristic' which may be rational in the presence of information-gathering
and information-processing costs.

In this paper we propose a simple alternative to RE for those environments
where its validity is doubted. We suggest that belief formation be treated as a
Neyman-Pearson hypothesis test, dubbed Inferential Expectations (IE). If a
belief is overturned through the build-up of evidence, agents are assumed to
switch to the RE of the variable. Thus, RE is a special case of IE if agents are
unconcerned about mistakenly changing their beliefs (the test size a equals
unity), or, if there is so much information available about a parameter that it is
known with certainty (the sampling distribution of the estimator collapses to a
point) leading to the rejection of any incorrect null.

IE could be relevant for more sophisticated hypothesis testing, for example to
detect the presence of autocorrelation, as in Rotheli (1998). Our approach is in
spirit similar to Frydman and Goldberg's (1996, 2003) approach to expectations
based on hypothesis testing over models." Their research program, tracing its
roots back at least to an informal discussion by Rappaport (1985), is more
radical than ours (they allow for multiple models, and imperfect information),
but at the cost of structural indeterminacy and complexity. Another way of
viewing IE modelling is as complementary to Mankiw and Reis (2002, 2003)
'sticky information' approach: IE at the micro level might imply sticky
information at a macro level.

The intuition is that economic agents hold beliefs that are subject to falsification
by new information, in much the same way that they are in conventional
statistical hypothesis testing. A change in beliefs thus requires new information
that exceeds a threshold, modelled here by statistical significance. We assert
that, at the individual level, beliefs about economic variables tend to be more
subject to periods of inertia interspersed with occasional discrete shifts than
what would be implied by rational expectations.

We intend to explore these research avenues in the future. However, this paper
has the narrow remit of explaining the idea of IE, finding some preliminary
experimental evidence for it, and showing its impact on theorizing with two
stylized models.

This is not a new idea in the philosophy of science (Kuhn, 1970), and it is
consistent with the standard practice of most scientists, including many
economists, who revise their theoretical beliefs only when classical hypotheses
tests achieve statistical significance at conventional levels such as 0.05 or 0.01.4

That being so, beliefs of economists about economics tend to be subject to
periods of inertia interspersed with occasional discrete shifts. IE potentially
explains deviations from strict rationality while still imposing a plausible
structure on expectations which is consistent with economists' own practices in
statistical data analysis.'

The paper is organized as follows. In section 2 we provide a general framework
for IE, and demonstrate the conditions under which IE becomes RE; we
illustrate our analysis with a 'Bernoulli .data generation process, which we apply
to a stylized account of currency collapse in section 3. In section 4 we outline an
individual choice experiment that provides preliminary evidence for IE. In
section 5 we illustrate the simplicity of using IE as a modelling tool by
introducing IE into the Lucas (1972) 'islands' model. Section 6 concludes.

2. Inferential Expectations

One possible explanation for behavior consistent with IE is that, in many
contexts, gathering and processing information to adjust beliefs may be costly
relative to the marginal incentives to collect and process such information, in a
way which is not very different from the adjustment of nominal prices:" IE may
provide a 'near rational' state-dependent rule to decide whether to make the
effort. In the language of Gigerenzer et al. (1999), it may embody a 'fast and

In all IE models, there is a cognitive target (the variable or parameter that is
believed to be in one of two states, described by the null hypothesis H, and the
altenative hypothesis HI), a signal (a model variable that provides information
about the cognitive target), and a test statistic and rejection region which are
defined conventionally.

Let x be a parameter or random variable related in some way to a random
variable Y. Granted some economic significance to x, agents form beliefs about
it. Suppose that a data generating process for Yemits n stochastic signals S, (for
i = 1, ... , n) which provide information about x. We assume that stochastic
signals are independent random draws from Y. The expectational task facing
agents is to arrive at beliefs about x based on the signals.

• This occurs despite the availability of '!l' alternative approach based on Bayesian inference (e.g., Zellner, 1988).
One of the authors has once had a paper rejected by a top tier journal because one of the main results was
significant only at the 0.052 level.
, It is also consistent with modeIling practice in the Markov Switching literature, where passing a threshold,
however tentatively, leads to a new regime (Hamilton 1989).
6 Romer (1996) makes this point in relation to the Lucas (1972) 'islands' model.

7 Our work can also be seen as related to Foster and Peyton Young's (in press) game-theoretical work on
hypothesis testing by bounded-rational agents on their opponents' repeated games strategies.
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The rational expectation is the mathematically best guess for x. The inferential
expectation is the mathematically best guess for x, subject to a concern about
changing beliefs (made operational by a Neyman-Pearson hypothesis test of
size a.), and incorporating any testing shortcuts that qualify as a 'fast and frugal'
heuristic. When the concern about changing beliefs becomes vanishingly small
(a. - 1), IE and RE coincide.8 The cognitive target is x, the signal Sj, the test
statistic some function of Si; and the rejection region are the values of the test
statistic that lead to a rejection of a Neyman-Pearson hypothesis test of size a..

Under the assumption of IE, there is first 'under-use' of information (by
comparison with RE) and then 'over-use' (when beliefs change). As indicated in
the introduction, RE is nested in IE in two ways: .

The simplest application is when x is the true mean of Y. In this case, the
Maximum Likelihood (and Least Squares) estimator,S, is the RE, since it is the
mathematically best guess for x. Under RE, beliefs about x evolve continuously
as the estimate s updates for every new signal. For example, a series of signals
higher than the current sample mean will shift up the RE of x: see Figure 1.

1. RE is IE for the special case when a equals unity. This is clear from
the fact that a equals unity implies a rejection for any value of s . That
being so, the RE belief is constantly embraced.

2. RE is IE for the special case when x is a parameter and n equals
infinity (and memory is unbounded). When the number of signals is
very large, the sampling distribution of S. collapses to a single point at
the true value. All nulls will be overturned (except if the null is
correct), and RE beliefs embraced. In this limiting case, the RE belief
will actually be the true parameter x.

(Insert Figure 1about here)

IE requires the specification of a test size a and of a rejection region for the test
given a given value ofa. Standard classical inference theory (e.g., Hoel, 1984),
and computational convenience - on the part both of modelling economists and
presumably of economic agents -, can be used to determine the rejection region.
One obvious shortcut to model rejection regions is to assume that agents use a
Normal approximation." Another one is to devise a statistical test based on
Chebyshev's inequality. 10 Chebyshev's inequality says that:

If x is the true mean of Y, and IE hold, x is the cognitive target, and the draws S,
(for i = 1, ... , n) are the signals. The test statistic is the sample mean S of all
the Si, which forms the basis for hypothesis tests about x.

To define the rejeetiotrregion, we need to start with an initial belief about x (the
null hypothesis). Assume agents first form a belief about x upon receipt of the
kth signal (l =:; k < n), and this belief is Sk where the subscript refers to the
number of individual signals used in the calculation. In Figure 1, this is the value
a. This belief is maintained as a null hypothesis about the cognitive target. This
null hypothesis is tested against the data upon the receipt of each additional
signal. The null hypothesis is not rejected until the test statistic (for example, the
z value if a normal approximation is used) passes a critical value determined by
a standard statistical hypothesis test of size a. In Figure 1, we assume that the
hypothesis test is two-sided, defining the rejection region with probability a/2 in
each tail. Contingent on a and on the variance of the sampling distribution of S
(which is decreasing in n), this could take many signals. If the critical value is
reached after i signals, the mean is assumed to jump to the RE estimates .. In

I

Figure 1, the RE and IE ofx are both equal to c.

1 .
P(I z I>k) ~2

k

where z is a standardized random variable (the distance from the mean in units
of standard deviations), and the weak inequality is relevant for a discrete random
variable. If the probability of getting an observation more than k standard
deviations away from the mean is less than lie, we may set lie equal to a, and
make a rare event statement.

For example, suppose a test of size a = 0.25 is required. The above inequality
says that the chance of getting an observation more than 2 standard deviations
away from the mean is less than 25%. Therefore, if such an observation is
observed, a rare event has occurred and the belief can be changed with a chance
of making a mistake (probability of a type I error) no more than 25%.

The main advantage from employing Chebyshev's inequality is that it just
requires the computation of mean and variance, sidestepping the need for
distributional assumptions, albeit at a loss of statistical power. Both shortcuts• This is true regardless of any shortcuti used in the testing procedure. If the test size is unity, then hypothesis

testing is suspended (along with any shortcuts about distributional assumptions, etc.) because a Neyman-Pearson
hypothesis test minimizes the size of the probability of a type II error given the test size (probability of a type I
error). That is, given a test size of unity, the best way to minimize the chance offalsely believing the null is to
always reject it.

9 Naturally, when the Central Limit Theorem holds this is not a shortcut.
10 On Chebyshev's inequality, see for example Davidson and MacKinnon (1993).
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can be considered as consistent with a view of IE as a fast and frugal heuristic
(Gigerenzer et aL, 1999), and either one may be easier to work with in
theoretical applications. Chebyshev's inequality will be used in our illustrative
Lucas (1972) model with IE in section 5, and both IE with Chebyshev's
inequality and IE with a Normal approximation will be tested experimentally in
section 4.

3. Inferential Expectations and Sudden Currency Movements
If agents instead employ Chebyshev's inequality P (I z I > k) s 11K, for a sample
proportion we have

We now illustrate our analysis using a Bernoulli data generating process to
provide a stylized account of a sudden currency movement. There are three
reasons for doing so. First, it may make the analysis more concrete. Second,
while purely suggestive, the example of sudden currency movements is of
intrinsic interest, given the difficulties in explaining currency movements with
RE.lI Third, we use an almost identical set-up in relation to the experiment
described in section 4.

which, by setting a = 11K, becomes

( Is-si IJp i k > _ sa
~S;(I-Si)/i Ja

Let x now be the probability that a currency is worthless tomorrow. Suppose a
Bernoulli Data Generating Process emits n stochastic signals S, = I, 0 (for i = I,
... , n) about the value of x.12 These could be Bloomberg reports, where I
indicates that the currency will be worthless and 0 indicates that it will not. The
average of the signals is now the proportion of ones, S, and E(s)7'x"That is, if
the probability of the currency being worthless is 0.2 then, on average;' twenty
per cent of Bloomberg reports indicate that it will be worthless.

leading agents to reject the expectation s; corresponding to the null hypothesis
u, if

In this application the cognitive target is x, the signal is Si; the test statistic is s,
and the rejection region is defined as it was in section 2, namely using either the
Normal approximation or Chebyshev's inequality."

In either case, only once the critical value is reached the mean jumps to the RE
estimate s , .

I

The Normal approximation method requires agents to reject the expectation s;
corresponding to the null hypothesis Ho whenever the z statistic is higher in
absolute terms than the critical value of z for some given test size a, i.e. Za:

To complete a stylized model of currency collapse, let tomorrow be the end
period. The transversality condition is that the exchange rate is either unity with
probability I - x, or zero with probability x. Let interest rates in both economies
be the same, and agents in both economies be risk neutral (so that they only care
about expected returns). The transversality condition is that the end-period
exchange rate equals I -x, and, by backward induction, the current value of the
exchange rate must also be I-x.\I One problem is the vast literature debunking Uncovered Interest Parity (Frankel and Rose, 1995). Another is

that models of the Asian crisis struggle to reconcile RE with the apparent dearth of new information at the onset
of the crisis. One response has been to speculate that agents did not understand some important relationships in
the economy, but this really amounts to 'discarding RE (for example, Corbett and Vines, 1999). Another
(controversial) approach is to propose multiple equilibria (Krogman, 1999), but this raises the question of how
one moves between equilibria. ,
12 Being a Bernoulli, the sample mean of these signals is an unbiased estimator for the chance of success on a
single draw i.e. E( S) = x. Bondarenko and Bossaerts (2000) have a somewhat similar set-up, but the parameter
to be inferred is not part of the Data Generating Process for the signals.
13 Strictly speaking, the rejection region could be determined by Binomial rejection regions for a small sample,
However, unless the null belief of x is 0.5, the Binomial is not symmetric, implying no uniformly most powerful
test. Given a loss function, a full-blown optimization exercise could uncover an optimal rejection region, but we
prefer the testing shortcuts in the text as they seem more like a 'fast and frugal' heuristic..

Finally, suppose agents have IE about x based on a given sample. A shift in their
beliefs about x (and hence in the current exchange rate) can occur simply
because one piece of information - the proverbial straw that broke the camel's
back - takes the sample proportion into the rejection region. If the null is
overturned, IE agents change beliefs according to RE. If the RE belief about x
much greater than the previously held belief, a currency collapse may occur as
I-x shifts down. In the case of the 1997 Asian crisis, there could have been one
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small bit of information that, for a given rejection region, had the capacity to
dramatically alter beliefs. 14

There were six experimental sessions, three for each of the two experimental
conditions; all sessions had six subjects except the last one, which had seven, for
a total of 37 subjects. The experiment lasted about two hours, and paid an
average of 31.42 Australian dollars (AUS $).16 The experiment was in two
stages, structurally unrelated to one another; in this paper we focus only on the
first stage, which had six periods of fifteen rounds each and took over 75% of
the session time.

4 Inferential Expectations and Experimental Evidence

4.1 Introduction

In this section we describe an individual choice experiment designed to test
whether IE has significantly greater explanatory power than RE or, put it
differently, whether there are subjects for which assuming that a < I provides a
better fit. The individual choice design was thought to be best suited to test the
idea of IE in its cleanest form, i.e. without having to worry about the strategic
considerations that would arise from a strategic or market setting.

At the start of the session subjects faced a table on the top of which there were
two identical urns, a set of white and orange balls in a basket, and a screen. In
the 0.7 condition, the experimenter (a) showed subjects that both urns were
empty, (b) in front of the subjects, he took seven white balls and three orange
balls and placed them in one of the two urns (Urn I in what follows) (c) and he
took three white balls and seven orange balls and placed them in the other urn
(Urn 2 in what follows); (d) he then hid both urns behind the screen. The 0.6
condition was identical to the 0.7 condition, except that Urn I got six white balls
and four orange balls, and Urn 2 got four white balls and six orange balls.

The basic structure of the experiment closely mapped the analytical framework
of sections 2 within an individual choice setting. There were two urns reflecting
two possible states of the worlds, namely different combinations of white and
orange balls. The true state of the world was chosen randomly, and subjects
received signals about its nature by the means of random ball draws with
replacement from the 'chosen urn'. The prior probability of an urn being chosen
was 0.5 at the start of the experiment, but should have then evolved differently
according to the observed sequence of white and orange balls being drawn and,
importantly, according to different models of expectation formation. We next
describe the experimental design in more detail, and then move to the
experimental predictions and results.

At the start of each period subjects were reminded about the period number and
then one of the two urns was randomly chosen by the flip of a coin in front of
the subjects, and put on display. Let us label this urn the 'chosen urn'. It was
made clear to the subjects that the probability of Urn I being chosen was 50% at
the start of each period, but they were not told which urn had actually been
chosen.

4.2 Experimental Design
At the start of each round the experimenter drew a ball from the chosen urn,
showed it to the subjects and then put it back in; subjects were asked to write
down the ball color in correspondence to the correct period and round in their
answer booklet, and then had to make a probability guess, between 0% and
100%, on how likely it was that the chosen urn was Urn 1. Subjects were told
not to change choices made in previous draws. 17

The experiment was run in at the School of Finance and Economics, University
of Technology Sydney, in September 2003.15 Recruitment was through lecture
announcements, posters, and UTS Online (a local forum for electronic notices).
Recruits were predominantly, though not exclusively, undergraduate students.

Once a period was completed, the following period got started with a new flip of
the coin, up to the end of the 6th period. It was made clear to the subjects that the
probability an urn was chosen was entirely independent of the probability that it
had been chosen in previous periods. A questionnaire administered to the
subjects at the start of the experiment ensured that this, and other key points,
were clear. 18

I.Two other factors may also be part of an IE-based explanation of the Asian crisis. First, agents may
have become more inclined to change beliefs for a given number. of signals (a became larger,
reflecting less concern about Type I errors). Accordingly, investors could have suddenly discarded
their conservatism about negative information coming out of Asia as a increased. Second, agents may
have received a large number of new signals that caused the variance of the sampling distribution to
shrink, so that the previously believed nulls were overturned. A deluge of information could have built
up as the Asian crisis played out (n increased) collapsing the sampling distributions and leading to the
overturning of null beliefs. While both these explanations have some merit in describing developments
towards the end of 1997, they are lesscompelling as an explanation of the onset of the crisis in the
middle of that year. Radelet and Sachs (1998) argue that there was not much new information about
Asia at the onset of the crisis, and, MacLeod (1998) makes the same point about Indonesia.
IS It was approved by the UTS Ethics Committee. The experimental instructions can be found in
AppendixA.

16 This is roughly equal to 25 US dollars.
17 We shall return to this point towards the end of section 4.3.
18 The experimenters gave clarifications to the subjects who got answers wrong on the questionnaire.
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Payment was based on the guess made in a randomly chosen period and round
picked at the end of the experiment. A standard quadratic scoring rule (e.g.,
Davis and Holt, 1993) was used in relation to this round to penalise incorrect
answers: if the chosen urn was Urn 1, then subjects got 25 - 25 x (guess - 1/
AUS $; if the chosen urn was Urn 2, then subject got 25 - 25 x guess: AUS $.
Subjects were provided with a payment table detailing the payment for each
level of error, without need of any computation on their part (see Appendix A).
There was also a participation fee of 8 ADS $.

consider all the choices made across rounds and periods by each subject (90 in
the full sample) and we find the subject-specific value of a that mimimizes the
sum of squared differences between IE (lEe or lEN) and such choices. These a
values will be those used in comparing the performance of IE against RE and
AE. We also employ the least squares method to estimate a values that best fit
each period as played by each subject. That is, we consider the 15 choices made
by a given subject in a given period, and we find the period-specific value of a
that mimimizes the sum of squared errors between predictions and observations.
Thus, for each subject there are six period-specific values of a, and one can
analyze whether these period-specific values followed any particular dynamic
pattern in the experiment. These period-specific values of a are estimated only
for the purpose of testing Hypothesis 3 below; whenever we do not specify
otherwise, we shall be referring to subject-specific a instead.

4.3 Experimental Predictions

Rational Expectations. The prior probability was set at 0.5. As information
flowed in, RE (or, equivalently, IE with a = I) predicted straightforward
Bayesian updating depending on whether white or orange balls were drawn.

Inferential Expectations. IE for a < 1 would predict the value of 0.5 to be
retained until the rejection region was reached according to the two-sided P:
value from a binomial distribution with the Bernoulli probability of a white
being 0.5 under the null. If and when the null hypothesis of 0.5 should be
rejected, a new null hypothesis corresponding to the RE prediction in that round
would be formed, and so on for the following periods. The appropriate test here
is a two-sided test, and we use "bdth'the Normal approximation method and the
Chebyshev's inequality method {see section 2) to determine the rejection region.
The Normal approximation method requires agents to maintain the belief
corresponding to the null hypothesis until signal i is received such that

Adaptive Expectations. As the IE model has one degree of freedom relative to
RE, we also tested IE against another hypothesis on belief formation also with
one degree of freedom, in the form of a traditional adaptive expectations (AE)
model of the form:

that is, the expectation' about the value of the variable after receiving i signals
sequentially is equal tothe expectation after receiving i-I signals plus the /3-
weighted value of the current signal. 13 E [0, I ] provides the required degree of
freedom. The AE model can be solved recursively from the initial value So = 0.5
for any given value of 13. We determine the value of 13 corresponding to each
experimental subject by using the least squares method.

If the Chebyshev's inequality method is instead used, it will be recalled from
section 3 that Chebyshev's inequality predicts rejection of Ho if

Experimental Hypothesis. We can compute the expectations profile for RE, AE,
lEN, and lEe agents in relation to each session, using the sequence of observed
ball draws and the procedures described so far. All our experimental hypotheses
are designed to test the performance and robustness of IE.

HYPOTHESISI. lEN and lEe perform significantly better than RE and AE.

HYPOTHESIS2. Mean a values do not significantly differ between the 0.6 and 0.7
conditions.

In what follows we label lEN the predictions of IE complemented with Normal
approximation and lEe the predictions of IE complemented with Chebyshev's
inequality. In both cases we. estimate the value of a corresponding to each
experimental subject by using a least squares method, i.e. by minimizing the
sum of squared errors between predictions and observations. That is, we

HYPOTHESIS3. Mean period-specific a values tend to converge to I as the
experiment progresses and the subjects have opportunities to learn about the
nature of the task.



Hypothesis 2 is an obvious test of robustness in our a estimates to changes in
the task they are estimated from. Hypothesis 3 is also a test of robustness, and
aims to verify the absence of any obvious convergence towards greater RE play
(i.e., IE with a = 1) across the 90 rounds of the experiment. Relatedly, in testing
Hypothesis 1 and 2 we use not only the 'full' sample from all six periods but
also an 'experienced' sample which removes the observations from periods 1
and 2, thus allowing subjects to get some practice and experience about the
nature of the task. We also considered a 'restricted' sample of observations
where periods in which subjects altered their choices (notwithstanding our
instructions to the contrary), and periods where some misfcerceptions occurred in
the recording of the color of the balls, were removed. 9 Overall, in order to
check the robustness of our results, we considered four samples: the full sample,
the experienced sample, the restricted sample, and the experienced restricted
sample.

13 14

The selected profiles are not uncommon in the data; a number of respondents
adopted a strategy of absorbing information, and then moving suddenly. This is
important because it would be possible for IE to perform best on a Least Squares
criteria, and yet be unconvincing as a micro-model for decision making. This
would occur if all respondents changed beliefs with every draw of the ball,
contrary to the basic intuition of a hypothesis test.

We now turn to the analysis of the least-squares alphas. Figure 2 provides
histograms for the distribution of a for both lEN and lEe, in the various samples.

(Insert Figure 2 about here)

Mean a values were 0.636 for lEN and 0.786 for lEe. A non-negligible fraction
of agents had a < I in both cases: for example, in the experienced sample, 16
out of 37 subjects (0.432) seems to have employed a < I for lEe, a number
rising to 25 out of 37 (0.676) for lEN. The clear differences in the distributions
of as may suggest that, somewhat worryingly, lEN and lEe may bear little
relation to one another. However, while there were differences in the
distributions of the as, Pearson r (lEN, lEe) is equal to 0.909, 0.814, 0.883 and
0.784 in the full, experienced, restricted, and experienced restricted samples
respectively" (P < 0.001). Although lEN values tend to be. lower than lEe
values, they tend to follow each other closely.

4.4 Experimental Results

The following statistical analysis asks which model of belief formation is best
on a Least Squares criteria. However, it is worth noting that a number of
respondents adopted a 'hold-then-change-rapidly' pattern, which is consistent
with the IE stylization. The following four responses are taken from a particular
group of draws; white balls are unshaded and orange balls are shaded.

Individual Responses Hypothesis I and related results. Figure 3 and Table I compare the mean sum of
squares error, computed by period, of the various algorithms in the different
samples." F tests can be used to test significance of the ratio between pairs:
Table I illustrates the results for the various measures and samples.
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(Insert Figure 3 and Table I about here)

Some results emerge:
(1) both lEN and lEe outperform RE and AE, and robustly so in all samples;
(2) we cannot reject the statement that lEe and lEN perform equally well;
(3) we cannot reject the statement that RE and AE perform equally well in the
experienced samples (whether restricted or not), but, once we move on to the
full sample or the restricted sample, AE performs rather badly.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
20 Spearman p (lEN, lEe) is equal to 0.855, 0.820, 0.845 and 0.788 in the full, experienced, restricted,
and experienced restricted samples respectively (P < 0.001).
21 We are forced to use mean sum of square errors computed by period for the F tests because of the
non-independence of observations within each period. Appendix B contains details on the computation
of the mean sum of square error by period, and notes how, while flawed, using mean sum of squares
error computed by observation (i.e., the straightforward mean squared difference between each choice
and the theoretical prediction) would only strengthen the case for Hypothesis I.

19 A total of nine periods were removed in this way, six from choice alteration and three from apparent
misperception. Five of the nine periods removed were in periods I or 2.
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However, the use of F tests is not ideal. The two groups of errors are highly
correlated, making F tests not entirely appropriate; Table 2 exemplifies this
correlation for the full sample.

(Insert Figure 4 about here)

(Insert Table 2 about here)

In period I RE performs better in the first seven periods, but lE does better on
average afterwards. In periods 2 and 6, with the exception of round 7, IE may be
doing a better job in capturing the lower variability of choice relative to RE. In
periods 3, 4 and 5 IE (especially lEN for period 3) clearly does a better job at
tracking mean choices than RE. Relative to RE, there appears to be a lower
mean sensitivity of IE (with a < 1) predictions to new information (though
exceptions exist).

In the light of this, and as a further test of robustness, we also ran nonparametric
sign tests comparing the goodness of fit of different algorithms in relation to
each subject; the results of these tests are illustrated in Table 3.22

(Insert Table 3 about here) Hypothesis 2. As shown by Table 4, mean a values are stable between the two
conditions, no matter the sample.

lEN now outperforms lEe: for example, in the experienced sample, out of 37
subjects lEN performed worse than lEe once, tied for twenty subjects, and
performed better 16 times (P = 0.001, two-tailed). There is insufficient evidence
for RE outperforming AE instead.

(Insert Table 4 about here)

In relation to Hypothesis I, because of the way that a is estimated, lEN and lEe
will always outperform RE for any subject for which a < 1.23 The sign test

.. ' enables us to see whether a sufficiently large number of subject has a < I so as
. for the improvement in fit to be considered statisticallysignificant, Table 3
shows that the answer is positive (P < 0.001). The following balance therefore
emerges from the sign tests:
(I) once again, both lEN and lEe outperform RE and AE across samples;"
(2) lEN performs better than lEe;
(3) we cannot reject the statement that RE and AE perform equally well, in
relation to all samples.

For example, in the experienced sample, in relation to lEe the mean a is 0.713 in
the 0.6 condition and 0.764 in the 0.7 condition, with still greater stability in the
full sample and the purified sample. Using t tests, we can never reject the
hypothesis that mean a values differ between conditions. This is in contrast to
the instability of~ estimates in the calibration of the AE model.

We conclude that the evidence from both parametric and nonparametric tests
agrees in showing support for Hypothesis 1. An electronically available
appendix25 contains the mean choices and predictions according to each model
of expectation formation by session and period; Figure 4 exemplifies the kind of
aggregate dynamics observed by reproducing the graphs from session 4 (a 0.7
condition session). '

Hypothesis 3. The fact that the evidence discussed so far is robust to the removal
of the first two periods, as in the experienced sample, already suggests that IE
may not tend to converge to RE as experience grows. This holds
notwithstanding the fact that Figure 3 suggests a reduction in the noise in the
data as one moves to the experienced sample. Figure 4 shows not only that no
convergence to RE is observed, but also that if anything mean a values may
tend to decrease with the progress of the experiment, especially in relation to
lEe, though the effect may be restricted to the initial acquisition of experience.

(Insert Figure 5 about here)

Nevertheless, while Pearson nor Spearman coefficients between period and
either lEe or lEN are always negatively signed, they are never significant,
ranging from - 0.026 (Pearson r (Period, lEN), full sample) to - 0.109 (Pearson r
(Period, lEe), purified sample).22 There is no problem in determining goodness of fit for each subject by using mean sum of square

errors by observation in relation to the sign tests, and so we do. However, results do not qualitatively
change if they are computed by period in analogy to the F tests: see Appendix B for details.
23 This is because a < I implies that a = I was not the coefficient minimizing the sum-of-squares error
for a given subject. ,
24 The comparison is unequivocal in the relationship between lEN or IEe and RE; in relation to AE, it
is unequivocal for the full samples (restricted or not) while being less so (P < 0, I in a one-tailed test)
for the experienced samples.
25 The appendix is at http://www.economics.ox.ac.uklResearchIReeIMZlMenziesZizzoWebAppendix,pdf,

4.5 Experimental Evidence: Some Conclusions

The evidence we have presented is preliminary, being as it is from a small
individual choice experiment. Nevertheless, we believe that the evidence is
suggestive in a variety of ways. In a sample where AE does not fare well in

http://www.economics.ox.ac.uklResearchIReeIMZlMenziesZizzoWebAppendix,pdf,
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comparison to RE notwithstanding its extra degree of freedom, IE does perform
significantly better. Over 40% had a < 1 according to lEe, and over 60%
according to lEN. Of course, these percentages would decrease if for the purpose
of modeling parsimony we restricted the a < 1 values to one of only a limited
set of values, in the limit just one value. Even so, a non-negligible proportion of
agents would still be classified as having a < I, even with lEe: for example, if
we allow only for one value of a < I, in the experienced and purified sample
some 19% of the agents would still be classified with a < 1 (specifically, with a
= 0.25).

include Rational Expectations (RE) into a macroeconomic setting. The Lucas
supply function appears as a result of aggregation across islands.

E('i I pJ = ~(Pi - E(p))
Vr + vp

(1)

Lq "t. Vy=_' =_L...,_,= __ r -(p-E(p))
n n V,+vp

(2)

We found that lEN had the edge relative to lEe in the nonparametric sign tests,
though no statistically significant difference can be found using F tests; the sets
of a estimates are highly correlated with one another. In any case, the design
itself may have been biased against IE, since the only new thing happening
between successive guesses was the provision of a piece of information, thereby
potentially biasing subjects towards doing something with it in terms of their
guesses.

Our point of departure comes in the expectations equation I. We give the agents
the same parameter information set." However, we assume that discovering that
the distribution is Normal and working out the signal extraction problem
involves psychic (and/or pecuniary) costs that exceed the benefits. Therefore the
agents resort to a fast and frugal heuristic, by conducting a preliminary
hypothesis test: they take extreme values of the island price as evidence of a
relative price change.

5. Inferential Expectations and the Lucas Supply Curve

Informally, they do not use the information of the island price unless they have
evidence that it has changed in an important way. It is as if they 'tum a blind
eye' to the change in the island price unless it is large. Only if this is large do
they bother to do the signal extraction problem.

Formally, the cognitive target is P - E(P) (or p, since E(p) is given), the signal is
Pi, the test statistic is also Pi, and the rejection region is defined below.

Notwithstanding the many incarnations of the Phillips curve, economists
continue to believe in a short-run trade-off between inflation and unemployment
(Mankiw, 2000). In this section we illustrate the impact of IE on a standard
'islands' set-up (Lucas, 1972). This is done purely to show how IE can be used
as a modelling tool.

The implicit null and alternative hypotheses are:

Log prices are decomposed into an average price P and a relative price.

Pi = Pi - P + P = 'i + P
LPi

p=_i_
n

Ho: pi=E(p), so Pi-E(P)=0
HI: Pi=Piobserved.so Pi-E(P)i-O.

Using standard rnicrofoundations, island labour supply is increasing in the
inferred relative price, based on the revealed price Pi en island i. We make a
simplifying assumption about the parameter in the labour supply function.

One possible mechanism that justifies IE in this setting is that the benefits of
obtaining information are positively correlated with the distance of the island
price away from E(p).27

Aiming to find an information-cheap way to decide if it is worth calculating RE,
we assume that agents use Chebyshev's inequality.

The problem is solved in' Lucas (1972) by assuming a bivariate Normal
distribution for the observed island price and the relative price, and finding the
mathematical expectation for the relative price. The model was one of the first to

26 We assume E(p) is given as information, and does not have to be worked out.
27 This is in keeping with the interpretation of 'sticky information' as analogous to 'sticky prices', with
the costs of making an adjustment requiring to be compared to the marginal benefits, to which we
already referred to in the introduction.
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1
and setting a = k'

The IE Lucas Supply Curve is a locus of aggregate-price aggregate-output pairs.
For large (positive or negative) values of aggregate log price, the IE Supply
curve will have less of an output response for a change in the aggregate price
level, since IE(P) usually lies betweenp and E(P).3o

P(Pi-E(P) >_l_);s;a
~(J' + (J2 --->JJa.a---------

P 'I

The IE Phillips curve will therefore be flatter for extreme values of p, giving less
response in output for price changes; for values of p closer to E(P), it is less
clear what the function will look like (see Figure 6).

That being the case, the rejection event R ('reject Ho') occurs when:
(Insert Figure 6 about here)

(J2 + (J2_P_-"
a

The interpretation is straightforward. Under IE, increases in prices in the
neighbourhood of expected price do little for output because producers (who, in
the monetary misperceptions story, are making incorrect output decisions)
discount their relevance. However, beyond some point, producers start to take
notice of the inflation and reductions in unemployment are possible. Monetary
policy (or any aggregate demand policy) may have a 'band of inaction'.

If they do reject, they then pay the costs of discovering the distribution and
working out the signal extraction problem. This takes them back to the rational
expectations solution." Thus, when Inferential Expectations (IE) is applied to
the expectations equation we obtain a modified Lucas supply curve.

(J2 + (J'
-p_-")

a

We conclude this section with some comparative statics. The departures from
the Lucas supply curve envisaged above become less pronounced as IE(P)
approaches p. This, in turn, occurs when the hypothesis test size a approaches
unity. Furthermore, if'some agents use IE and some RE (i.e. IE wifha = 1),
JE(p) approaches p as the proportion of rational agents rises.

v
JE(r;lpJ=v:v (<f>;-E(p))

, P

where c, ifR (r.e.] p; -E(p) I;::

2 2
(Jp +(J" )

a
To illustrate these implications of our model, we drew 200 Normal Pi samples of
for 5 islands, and calculated the Lucas Supply function, together with the IE
supply function. The sample was constructed so that p ~ N(O, 0.252

).

E(p) if not - R (i.e. I Pi - E(p) 1<

y= Lq; = L/; =b(JE(p)-E(p)),
n n

Initially, twenty percent of the agents (that is, one in five islands) had IE with a
test size of 0.25. This is consistent with the calibration exercise referred to in
section 4, where, if one assumes that agents use lEe and forces a to have just
one of two values, and one takes the experienced restricted sample as the most
reliable, one obtains a = 0.25 for 19% of the subjects. The results of this
simulation are in the top graph of Figure 7, where y is the vertical axis and p is
the horizontal axis.

!<I>i
where JE(p) = ..!=!...--

n

The new supply function is the same as Lucas', except that IE(P) has replaced
the general price indexp. The index IE(p) replaces any. statistically insignificant
island price (i.e., in not-R) with the true-mean price.29 The logic is simple; non-
volatile prices are simply discounted by producers when setting output. (Insert Figure 7 about here)

28 The procedure is slightly different if the level of significance is unity. Gi~en that a unit probability
implies the null must be overturned, the RE solution is embraced, even If the rejection inequality
evaluated with a. equal to unity is not true. .. . . .
29 Ai; an aside, this contrasts sharply with the practice of removmg volatile Items from pnce mdexes.
Here, the non-volatile items are removed.

30 This intuition follows from the sample version of Chebyshev's inequality, which says that no more
than IDOlI?per cent of the data can lie more than k sample standard deviations away.from the sample
mean. Since p is a sample average, the individual Pis must be clustered around p, WIth the degree of
clustering determined by Chebyshev's inequality. That being so, setting individual Pi draws equal to
E(p) will tend to drag IE(p) closer to the true Eip), since many of the individual Pi values are between
p and E(P). The simulations confirm this intuition.
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The intuition outlined earlier is confirmed; for large values of p the IE points
tend to have less response on y. Due to leverage, this implies that an OLS line
through the IE points will be flatter.3! In the bottom graph of Figure 7 we
increase the test size to 0.75. This must imply that nulls are overturned more
easily for the given draw of data, and so there is less difference between the two
lines.

when the test size a is equal to I, or when there is so much information
available that the sampling distribution collapses to a point.

Finally, we make 80 per cent of agents have an a equal to .25, and the other 20
per cent have RE, i.e. a = I.

Our individual choice experiment showed a significant improvement of fit
relative to rational expectations and a simple model of adaptive expectations
with one degree of freedom. We used two ways of determining rejection
regions,one based on a standard normal approximation and the other on
Chebyshev's inequality. Both are closely related to one another, and,
furthermore, a estimates are robust to the specific experimental condition
subjects were faced with in different sessions. Across six periods of fifteen
rounds each, there is no evidence suggesting a progressive convergence towards
rational expectations. Depending on whether Chebyshev's inequality or a
normal approximation is used, we find that respectively over 40% or over 60%
of experimental participants used inferential expectations with a < I.

(Insert Figure 8 about here)

Clearly, if most of the agents have IE, there is a considerable band of inaction
for policymakers.Y

We illustrated the implications of inferential expectations with reference to
currency collapse, offering a possible mechanism for the sudden currency
movements in the 1997 Asian Crisis. The most parsimonious way in which IE
may have explained the evolution of beliefs in the context of this crisis is that
small bits of information may have acted as the proverbial straw that broke the
camel's back, by bringing agents into the rejection region and hence to reject
their null hypothesis forecast about the value of the exchange rate.

6. Conclusion

This paper has presented a new model of belief formation, which we labeled
inferential expectations. The basic idea of inferential expectations is that beliefs
are maintained or revised using a Neyman-Pearson hypothesisctest..Hhey are
rejected in favour of the rational expectation prediction as' the . new null
hypothesis only when the rejection region, determined by the test size a, is
reached. This is congruent with the scientific practices of most scientists,
including many economists, in forming and revising their beliefs in academic
research: for example, the achievement of a 0.05 significance level is often
assigned considerable relevance to be satisfied that a particular hypothesis is
supported. It is also congruent with a view of decision-making as characterized
by information-gathering and information-processing costs, and hence by the
usefulness of fast and frugal heuristics.

We also exemplified the use of inferential expectations as a modelling tool in
the context of the Lucas (1972) islands model; we found that replacing rational
expectations with inferential expectations causes monetary policy (or other
aggregate demand policy) to have a 'band of inaction'.

We intend to develop IE further, both theoretically and empirically. The goal of
this paper was simply to defme IE, present experimental evidence in favour of it,
and demonstrate its potential as a modelling device.

In all IE models, there is a cognitive target (the variable or parameter that is
believed to be in one of two states, described by the null and the alternative
hypothesis), a signal (a model variable that provides information about the
cognitive target), and a test statistic and rejection region which are defined
conventionally. Rational expectations is a special case of inferential expectations
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31 The impact on the slope of an individual OLS observation depends upon the distance from the mean
of the independent variable; observations furthest away from the mean have the greatest impact.
32 We do not consider the other case when IE becomes RE. That is, when the number of pieces of
information become infinite. This is so because the basic structure of the islands model prohibits it.
Agents look at one piece of information only (the island price).
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Appendix A. Experimental Instructions If you are in period 6, please wait until the sheets are collected and the material for Stage 2 is
distributed.

Instmctions for 0.7 Condition
Stage 1 Payment. It is important that you try to make your best probability guesses, both
because it is important for the value of the experiment. and because your final winnings
depend on it. At the end of the experiment the experimenter will randomly choose a winning
draw to reward your performance. The experimenter will roll a die to choose the period, and
pick randomly from a third urn (with balls numbered between I through 15) to choose the
winning draw. Your Stage 1 Payment will depend on your choice in the draw corresponding
to the number on the ball which has been picked. In relation to this draw, the experimenter
will take your choice and compare it with the true chosen urn for that draw. If in the winning
draw the chosen urn was Urn I, then the correct probability of the chosen urn being Urn 1 is
100%; if the chosen urn was Urn 2, then the correct probability of the chosen urn being Urn I
is 0%. Your Stage 1 Payment will then be equal to

Welcome to the experiment!

The experiment is divided into two parts, Stage 1 and Stage 2. Your final winnings will be
equal to the Stage 1 Payment, the Stage 2 Payment and a participation fee of 8 dollars. (All
winnings will be rounded to the nearest 5 cents).

You are playing Stage 1 first. You can see two identical urns on the table, and a set of white
and orange balls in a basket; you can also see a screen. The experimenter will shortly do the
following:
(a) show you that the urns are empty;
(b) take ~ white baDs and three orange balls, and put them in one of the two urns; let us
label this urn Um 1;
(c) take three white balls and ~ orange balls, and put them in the other urn; let us label
this urn Um 2;
(d) hide both urns behind the screen.

25 - 25 x (guess - correct probabilityy:

There are six periods in Stage I. You have received an answer booklet with a sheet for each
period.

that is, to 25 dollars minus a penalty. The penalty will be equal to the square of the error, that
is of difference between the guess and the correct probability, multiplied by 25. The Stage I
Payment will be higher the more correct your guess is. The enclosed table provides Stage I
Payment values corresponding to some possible error levels. "

At the start of each period, the experimenter announces the period number and writes it on the
board. Then one of the two urns will be randomly-chosen, by the flip ofa coin, independently
of what urns were chosen in previous periods. You,'Win Bot be able to see whether this chosen
urn is Urn I or Urn 2, but you will be asked to guess how likely you think it is that the chosen
urn is Urn 1.

Please stay seated throughout the experiment. It is essential, for the scientific value of the
experiment. that you (a) do not communicate in any way with other participants during the
experiment; (b) do not change your guesses for previous draws. You are liable to be expelled
from the experiment, and forfeit all winnings (including the participation fee), if you do not:
comply with these simple rules.

There are sixteen draws in each period. At the start of each draw the experimenter announces
the draw number and writes it on the board. In Draw 0, which happens at the start of the
period, your best probability guess that the chosen urn is Urn I would have to be 50%: this is
because at the start of each period the chosen urn is picked randomly afresh. This Draw 0
probability guess has been printed into the answer booklet for you.

This is an individual choice experiment: your choices have no influence on the winnings of
other participants, and similarly the choices of other participants have no influence on your
winnings. If you have any question, please raise your hand until an experimenter comes close
to you, and then ask with a low voice. This may be a good time to ask questions, but feel free
to raise your hand to ask questions at any time.

For Draws 1 through Draw 15 inclusive:

1. first, the experimenter draws a ball from the chosen urn and announces whether it
is white or orange; please write the ball colour on the answer sheet, in the line
corresponding to the correct period and draw; the experimenter then puts the ball
back into the chosen urn; ,

2. second, you have to answer the following question: "how likely is it that the
chosen urn is Urn I? (R.emember, Urn 1 is the urn with 7 white and 3 orange
balls). Please choose a. probability over the range 0% (definitely not) to 100%
(definitely certain)"; please put your guess in the line in the answer booklet
corresponding to the correct period and draw.

At the end of the period the experimenter hides the chosen urn again behind the screen. If you
are in periods I through 5, you should move on to the answer sheet for the following period.



Stage 1 Payment Table

25

Payment = 25 - 25 x (guess - correct probability)2

Error Stage 1 Payment
0010
1%
2%
3%
4%
5%
6%
7%
8%
9%
10%
11%
12%
13%
14%
15%
16%
17%
18%
19%
20%
21%
22%
23%
24%
25%
26%
27%
28%
29%
30%
31%
32%
33%

25
25

24.99
24.98
24.96
24.94
24.91
24.88
24.84
24.8

24.75
24.7
24.64
24.58
24.51
24.44
24.36
2428
24.19
24.1
24

23.9
23.79
23.68
23.56
23.44
23.31
23.18
23.04
22.9

22.75
22.6
22.44
22.28

Error Stage I Payment
34%
35%
36%
37%
38%
39%
40%
41%
42%
43%
44%
45%
46%
47%
48%
49%
50%
51%
52%
53%
54%
55%
56%
57%
58%
59%
60%
61%
62%
63%
64%
65%
66%
67%

22.11
21.94
21.76
21.58
21.39
21.2
21

20.8
20.59
20.38
20.16
19.94
19.71
19.48
19.24

19
18.75
18.5
18.24
17.98
17.71
17.44
17.16
16.88
16.59
16.3
16

15.7
15.39
15.08
14.76
14.44
14.11
13.78

Answer Booklet: Content of the Sheet for Each Period

26

How likely is it that the chosen urn is Urn I? (Remember, Urn I is the urn with 7 white and 3
orange balls). Please choose a probability over the range 0% (definitely not) to 100%
(definitely certain). Write down your answer in the Probability Guess colunm.

Error Stage I Payment

Do not change probability guesses corresponding to previous draws. If you do, you are liable
to to be expelled from the experiment, and forfeit all winnings (including the participation
fee).

68%
69%
70%
71%
72%
73%
74%
75%
76%
77%
78%
79%
80%
81%
82%
83%
84%
85%
86%
87%
88%
89%
90%
91%
92%
93%
94%
95%
96%
97%
98%
99%
100%

13.44
13.1

12.75
12.4
12.04
11.68
11.31
10.94
10.56
10.18
9.79
9.4
9

8.6
8.19
7.78
7.36
6.94
6.51
6.08
5.64
5.2

4.75
4.3
3.84
3.38
2.91
2.44
1.96
1.48
0.99
0.5
o

If you discover that you have put your guesses in the wrong place (say, the wrong page or
wrong row), please raise your hand.

Draw JiiiiiiIiiiI Your Probability Guess

0 50%
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Instructions for 0.6 Condition

These were identical to those for the 0.7 condition, except that 'six balls' ('6 balls') were
replaced for 'seven balls' ('7 balls'), and 'four balls' ('4 balls') for 'three place' ('3 balls').

Appendix B. Computation of mean sum of squares error and robustness
analysis.

When the experimenter draws a .ball, write down the colour of the drawn ball in the middle
column (if you find it convenient,' you can just write W for white and 0 for orange).

The mean sum of squares error (MSE) is equal to the sum of squares error (SSE)
divided by the number of relevant datapoints. There are two procedures to
compute the MSE.
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MSE by observation. It is possible to compute, in relation to each observation,
the mean squared difference between prediction and observation. Then, in
relation to each subject making a prediction ptctual in round i and to each
corresponding theoretical prediction p/heory, it is possible to compute:
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n obviously depends on the experimental sample under consideration; it is
always equal to 90 in the full sample and to 60 in the experienced sample, but
these numbers can be slightly lower in the restricted samples. MSE by
observation provides the natural measure in relation to which to estimate sign
tests.

In addition, if this procedure is used to run F tests for the ratio of MSE values,
we find increased support for Hypothesis 1. However, these F tests are
substantively incorrect, because independence across observations in the same
period does not hold, spuriously enhancing the significance of all the F ratios.

MSE by period. It is possible to compute, in relation to each period, the mean
squared difference between predictions and observations. The relevant test
statistic, in relation to each subject, here is

where q is equal to the number of periods in the sample, i.e. either 6 (in the full
sample and the restricted sample) or 4 (in the experienced and the experienced
restricted sample), whereas r is normally equal to 15, i.e. to the number of
rounds per period, which is usually the same regardless of the period. However,
in the restricted samples, on occasion r can be less than 15 in specific periods.

It is possible to run sign tests using MSE values by period rather than by
observation. The results are shown in Table 5, and essentially mirror those if
MSE by observation is used (Table 3), as discussed in the main text.

(Insert Table 5 about here)

There is stronger evidence for Hypothesis I than ifMSE by observation is used:
in Table 5 lEN and lEe always outperform RE at P = 0.002 or better. lEN and lEe
also still outperform AE, whereas the evidence on RE vs. AE remains mixed.
lEN outperforms lEe at the P < 0.07 level or better.
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Figure I. Example ofIE dynamics (for a < I).

a.<1 a e o e c

IE, RE=a lE=8
RE=b

Critical region
reached

IE,RE=C

The example assumes that parcels of information having values above c (where
a < b < c) flow in sequentially. The IE (a < I) agent sticks with her IE = a belief
until the rejection region is reached. When the rejection region is reached, she
switches to the RE belief c.
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Figure 2. Histograms of a values for IE.
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Figure 3. Goodness of fit ofbelieffonnation models: mean squared error.
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Mean sum of square error (MSE) values are computed by period (see Appendix
B).
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Figure 4. Full sample mean choices and predictions: examples.
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Figure 5. a estimates by experimental period.
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Table 1. Goodness of fit of expectational models.

Full Sample
SSE RE lEe lEN AE

RE 754.606 1.000 1.685*** 1.744*** 0.724
lEe 447.907 0.594 1.000 1.035 0.430

lEN 432.810 0.574 0.966 1.000 0.415
AE 1041.742 1.381** 2.326*** 2.407*** 1.000
Experienced Sample

SSE RE lEe lEN AE
RE 514.228 1.000 1.904*** 2.111*** 0.834
lEe 270.045 0.525 1.000 1.108 0.438

lEN 243.646 0.474 0.902 1.000 0.395
AE 616.705 1.199 2.284*** 2.531*** 1.000
Restricted Sample

SSE RE lEe lEN AE
RE 714.673 1.000 1.698*** 1.803*** 0.719
lEe 420.789 0.589 1.000 1.061 0.423

lEN 396.434 0.555 0.942 1.000 0.399
AE 994.479 1.392** 2.363*** 2.509*** 1.000
Experienced Restricted Sample

SSE RE lEe lEN AE
RE 502.767 1.000 1.84*** 2.128*** 0.844
lEe 273.247 0.543 1.000 1.156 0.459

lEN 236.310 0.470 0.865 1.000 0.397
AE 595.631 1.185 2.18*** 2.521*** 1.000

Figure 7. Computer simulations with 20% IE agents.
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Figure 8. Computer simulation with 80% IE agents.
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The first data column contains the sum-of-squares error (SSE) in relation to each expectation
model. The values in the 2nd to 5th column are equal to F = a I b, where a is the mean SSE
(MSE) corresponding to the row expectation model and b is the mean SSE (MSE)
corresponding to the column expectation model. MSE values are computed by period: see
Appendix B. ** : significant at the 0.01 level; ***: significant at the 0.001 level.

y

Pearsonr Spearman p
MSE RE lEe lEN RE lEe

lEe 0.88*** 0.798***

lEN 0.897*** 0.994*** 0.883*** 0.965***
AE 0.369* 0.64*** 0.634*** 0.086 0.374*

Table 2. Correlation matrix between mean square errors.

0.342*

p Correlation coefficients between row and column mean sum-of-squares error. *: significant at
the 0.05 level; **: significant at the 0.01 level; •.•.•.: significant at the 0.001 level.
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Table 3. Goodness of fit of expectational models using sign tests.

Full Sample Experienced Sample

x y MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tail P MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tail P
lEe lEN 2 17 18 0 1 20 16 0
lEe RE 14 23 0 0 16 21 0 0

lEe AE 26 0 11 0.021 23 0 14 0.188

lEN RE 26 11 0 0 25 12 0 0

lEN AE 26 0 11 0.021 23 0 14 0.188

RE AE 24 0 13 0.1 22 0 15 0.324

Restricted Sample Restricted Experienced Sample

x y MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tail P MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tailP
lEe lEN 1 17 19 0 1 20 16 0
lEe RE 14 23 0 0 15 22 0 0
lEe AE 26 0 11 0.021 23 0 14 0.188

lEN RE 26 11 0 0 25 12 0 0
lEN AE 26 0 11 0.021 23 0 14 0.188

RE AE 24 0 13 0.1 22 0 15 0324

MSE: mean sum of squares error (computed by observation: see Appendix B; Table 5 contains the corresponding analysis
in relation to MSE by period). P values are approximated to three decimal places.
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Table 3. Further sign tests of the goodness of fit of expectational models.

Full Sample Experienced Sample

x y MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tail P MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) P
IEe IEN 7 13 17 0.064 4 17 16 J12
IEe RE 13 23 1 0.002 15 21 1 0.001
IEe AE 28 0 9 0.003 27 0 10 0.009

lEN RE 27 7 3 0 26 9 2 0
lEN AE 28 0 9 0.003 26 0 11 0.021

RE AE 25 0 12 0.049 21 0 16 0.511
Restricted Sample Restricted Experienced Sample

x y MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(x»MSE(y) 2-tail P MSE(x)<MSE(y) MSE(x)=MSE(y) MSE(X»MSE(y) 2-tailP
lEe ~ 6 14 17 0.035 4 17 16' 0.012
lEe RE 13 23 1 0.002 14 22 1 0.001
lEe AE 28 0 9 0.003 27 0 10 0.009
1Etl RE 26 8 3 0 26 9 2 0
lEN AE 28 0 9 0.003 26 0 11 0.021
RE AE 25 0 12 0.049 21 0 16 0.511

MSE: mean sum of squares error by period P values are approximated to three decimal places.


