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GLOSSARY OF TERMINOLOGY 
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Aggregation 

Aluminium silicate 
Aluminosilicate 
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Coagulation 
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Co-coagulation 

Colloidal system 

Common opal 

a.-Cristobalite 

Critical coagulant 
concentration (c.c.c.) 

Cryptocrysta Iii ne 

CSA 
CTE 

Decrepitation 

Collect into a mass; accumulate in a disorderly way. 
A term used for all the ways in which colloidal 
particles are linked together. This includes gelling, 
coagulation and flocculation. 
Octahedrally coordinated aluminium within silica. 
Tetrahedrally coordinated aluminium within silica. 
Body Centred Cubic stacking sequence. 
Primary particles accreting around a nucleus to form 
a much larger secondary particle. 
Fully dehydrated precipitate of a sol or gel. 
Particles that come together into relatively close-
packed clumps as a result of the inability of a 
colloidal system to maintain its dispersed sate. This is 
usually an irreversible process. 
An aggregate of colloidal particles having a relatively 
tight, dense structure. A coagulum cannot easily be 
distinguished from a floe. 
The process of eliminating the negative radius of 
curvature at the point where spheres contact each 
other (similar to sintering, but at low temperatures). 
See heterocoagulation. 
A system which contains a dispersed phase, which is 
finely divided and distributed evenly throughout a 
medium (the continuous phase). The particle size is 
just larger than that of a true molecular solution but 
less than a coarse suspension. Usually it is between 
lnm and lµm. 
A type of opal that is not associated with precious 
opal. 
A crystalline phase in which the silica tetrahedra of 
adjacent silicate sheets occur in the 'trans' structural 
arrangement. 
The specific concentration of coagulant required to 
initiate rapid coagulation of all colloids in a sol. 
A crystalline substance that contains crystallites 
which are too small to be observable with the 
microscope. 
Chemical Shift Anisotropy. 
Coefficient of Thermal Expansion. 
When a mineral, such as opal, "breaks up" (fractures) 
on heating. 
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(IEP) 
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Microcrystalline 

Energy Dispersive X-Ray Spectroscopy. 
The variation in electrical potential that is generated 
at various distances from a charged surface. 
Electron Paramagnetic Spectroscopy / Electron Spin 
Resonance. 
Face Centred Cubic stacking sequence. 
Particles linked together by bridges of the flocculating 
agent that are sufficiently long so that the 
aggregated structure remains relatively open and 
voluminous. A floe cannot easily be distinguished 
from a coagulate. 
The process of forming floes. 
Full Width of a peak at Half its Maximum height. 
Particles which are linked together in branched chains 
that fill the whole volume of the original sol so that 
there is no increase in the concentration of the 
dispersed phase in any macroscopic region in the 
medium. A gel can easily be distinguished from a floe 
or a coagulate. 
Process of forming a gel. 
Twin hydroxyls (Q2 resonance). 
Hexagonal close-packed stacking sequence. 
The simultaneous coagulation of two oppositely 
charged colloids. 
See monodisperse. 
High-Resolution Transmission Electron Microscopy. 
"water loving" 
See monodisperse. 
pH of zero~ potential, interpreted as the point of zero 
charge at the shear plane. The IEP is not necessarily 
the ZPC. 
Laser Ablation Inductively-Coupled-Plasma Mass 
Spectrometry. 
Libyan Desert Glass. 
A type of gel where the colloids are sterically but not 
dynamically separated by layers of liquid. 
Pores with a diameter greater than 2000A. 
Pores with a diameter between 20 and 2000A. 
To exist in a state which is not thermodynamically 
stable. 
A crystalline substance in which the crystallites are 

xxix 



Micro pores 

Monodisperse 

Monosilicic acid 

MRJ 

Network colloid 

NMR 
Octahedral 
aluminium 
Opal-A 
Opal-AG 

Opal-AN 

Opal-C 

Opal-CT 

Paracrystalline 

Poe 

Polydisperse 

Polysilicic acid 
(oligomers) 
Potch 
Precious opal 

RCP 

RF 

RMS 

SANS 

Sedimentation 

resolvable in the standard optical petrographic 
microscope. 
Pores with a diameter less than 20A. 
A colloidal system containing particles of uniform 
dimensions. 
Si(OH)4 
Maximally Random Jammed structure; state that 
m1mm1ses disorder among all statistically 
homogeneous and isotropic jammed structures. 
Systems that contain two inter-penetrating networks. 
Technically speaking, opal-AG is a network colloid. 
Nuclear Magnetic Resonance spectroscopy. 
Aluminium atoms in a six-fold co-ordination. 
Sometimes this is written as Al0 or VIAi. 
Amorphous opal. 
Amorphous opal, with a colloidal microstructure. 
Amorphous opal with a glassy, network-like 
structure. 
Paracrystalline opal with a predominantly cristobalite 
molecular structure. 
Paracrystalline opal containing both cristobalite and 
tridymite stacking sequences, but still predominantly 
amorphous. 
A term which implies partial ordering in a disordered 
matrix, while still constituting a continuous network. 
Play of colour. 
A colloidal system that contains particles of various 
sizes. 
Si02 polymers with molecular weights up to about 
100,000. 
Opal that lacks a play of colour. 
Opal that displays a play of colour. 
Random Close-packing; the maximum density that a 
large, random collection of spheres can attain = 0.64. 
Radio Frequency. 
Root Mean Square, a statistical measure of the 
magnitude of a varying quantity. Also referred to as 
the quadratic mean. 
Small Angle Neutron Scattering 
Natural process of microscopic solid particles (usually 
in a fluid phase) falling to the bottom of a container 
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SEM 

Shear plane 

Silano! 

Silica 

Siloxane 
SIMS 

Sol 

SSA 

Stern layer 

Tectosilicate 

Tetrahedral 
aluminium 
TGA 
TMA 

Transition 
temperature 

a-Tridymite 

Vicinal sllanol 
XAS 

Xerogel 

XRD 

Zeta (<:) potential 

ZPC 

due to the force of gravity. 
Scanning Electron Microscopy. 

A very thin region just outside the stern layer, where 
the viscosity effects change rapidly. 
Si-OH bond 
Silica occurs in a variety of polymorphs, such as: 
cristobalite, tridymite, chalcedony, amorphous silica, 
opal and quartz. 
Si-0-Si bond 
Secondary Ion Mass Spectrometry. 
A solid dispersion of small particles in a liquid 
medium. See "colloidal system". 
Specific Surface Area 
A small space separating the ionic atmosphere near 
an interface, the diffuse double layer, from the steric 
"wall" of the charged plane just adjacent to the 
interface. Ions in the stern layer remain with the 
surface. 
Fully polymerised (or condensed) silica, where each 
of the four corners of the silica tetrahedra are 
connected to other tetrahedra (Silicon in the Q4 

configuration). 
Aluminium atoms in a four-fold co-ordination. 
Sometimes this is written as Alt or IV Al. 
Thermogravimetric Analysis. 
Thermomechanical Analysis. 
The temperature at which the opal changes from a 
positive to a negative thermal expansion coefficient 
(the point where the thermal expansion coefficient 
equals zero). 
A crystalline phase in which the silica tetrahedra of 
adjacent silicate sheets occur in the 'cis' structural 
arrangement. 
Single hydroxyl (Q3 resonance). 
X-Ray Absorption Spectroscopy 
A gel in which the micelles are in direct contact with 
each other. 
X-Ray Diffraction. 
Potential at the shear plane. Also referred to as the 
electrokinetic potential. 
Point of Zero Charge. 
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ABSTRACT 
Australia is the world's largest producer of precious opals, contributing 

more than $1 billion per annum to the GDP. However, to date little 
fundamental research has been carried out on banded opals, which are 
potentially the most valuable of all opal varieties. Opal is also Australia's 
national gemstone; yet for such an important resource, it is surprising that 
the mechanisms of opal formation remain in dispute, in particular for 
banded opals. The focus of this study is to understand the formation of opal 
by investigating the chemistry and microstructure of banded and non-
banded opals. Opals from several regions of Australia (Coober Pedy, 
Lightning Ridge, Andamooka and Tintenbar), in addition to opals from 
Mexico, were thus investigated in detail using a range of techniques. 

Evaluation of the trace element chemistry of opals was carried out by 
employing a combination of experimental techniques, including Laser 
Ablation Inductively Coupled Mass Spectrometry (LA-ICPMS) and Secondary 
Ion Mass Spectrometry (SIMS). Darker-coloured bands contained 
significantly higher concentrations of certain transition elements (Ti, V, Co, 
Ni, Cu, Zn and Y) and rare-earth elements (La, Ce) than the 
lighter-coloured bands. The concentrations of other elements (Mg, Ca, Al, 
Fe and Mn) were in most cases found to be similar between bands. Some 
elements (Ti, Cr, Cu, Zn, Co and Zr) were found to be distributed more 
heterogeneously than others (Na, Ca, Mg, K, Al and Fe). Based on this 
evidence, a solution depletion model was proposed to explain the formation 
of banded opals, involving the charge-neutralisation of silica colloids by 
highly-charged transition metal cations. 

The microstructural characteristics of several Australian opal-AG 
(amorphous, gel-like opal) specimens were studied using a number of 
experimental techniques such as porosity measurement, thermomechanical 
analysis (TMA) and thermogravimetric analysis (TGA). An initial expansion 
followed by contraction was observed in TMA. The temperature at which this 
'transition' occurred ranged from 200 to 400°C and was found to be region 
dependent. TGA revealed that the temperature range, from 215 to 350°C, 
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over which the maximum rate of dehydration occurred, was again region 
dependent, consistent with the TMA data. A dehydroxylation-sintering 
mechanism was proposed to account for these results. Porosity 
measurement yielded a greater degree of porosity in the opaque white 
samples than the transparent ones; the additional voids consequently 
scatter light internally, rendering the opal opaque. 

29Si NMR and 27 Al NMR experiments were undertaken to characterise 
the relative disorder, silanol content and the coordination state of Al within 
opal-AG and opal-CT (cristobalite-tridymite opal). The comparison of 29Si 
NMR spectra demonstrated that opal-CT samples contained a higher 
proportion of both geminal (Q2) and vicinal silanol groups (Q3) than 
opal-AG. This result was attributed to the large internal surface area of 
opal-CT compared to that of opal-AG. Since Al was found to exist in a 
tetrahedral coordination within the opal structure, incorporation of Al 
occurred through substitution of Si during the period of colloidal growth. As 

the concentration of Al in banded opals was similar, the colloids within each 
band are considered to have formed at similar times. 
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