Characterisation of Australian Opals

A thesis submitted for the award of Ph.D.

by

Leslie Dean Brown, BSc. (Mat. Sci.) Hon 1

University of Technology, Sydney 8 March, 2005.

STATUTORY DECLARATION

I hereby declare that this submission is my own work and that to the best of my knowledge and belief, it contains no material previously published or written by another person (nor material to which to a certain extent has been excepted for the award of any other degree or diploma of the university or other institute of higher learning), except where due acknowledgment is made.

Leslie Brown

Production Note: Signature removed prior to publication.

ACKNOWLEDGMENTS

This is dedicated to...

ssoc. Prof. Abhi Ray; for your unwavering support and encouragement, I am eternally grateful. This single paragraph of appreciation remains inadequate, as the assistance you provided made the entire thesis possible.

and

Dr. Paul Thomas; I will forever appreciate your guidance and your devotion towards this research – especially in the last couple of years, for some much needed motivation and enthusiasm.

I sincerely thank you both for being so approachable and so considerate. By sharing your esteemed knowledge so willingly, you have nurtured my writing skills, enabling me to communicate my ideas effectively.

> ...if I had any other supervisors I am sure I would have quit.

I would also like to thank the following people:

Ashwini Sharma and Norman Pearson at GEMOC, Macquarie University, for their help with the Laser Ablation ICPMS.

Kathryn Prince and staff at SIMS microanalysis unit at ANSTO.

Gary Lee and Kamali Kannangara, NMR

Jean-Pierre Gerbois, for his assistance with the thermal analysis instrumentation.

Richard Wuhrer and Matthew Phillips at the Microstructural Analysis Unit, for assistance with SEM.

Chris McCrea at Particle and Surface Science Laboratories, for the ultramicroporosity analyses.

Anthony Smallwood, for several helpful discussions and supplying many of the opal samples investigated.

The opal miners at Lightning Ridge, who also graciously donated many samples from their own personal collections.

Mum, Dad and Michelle; thanks for all the support.

TABLE OF CONTENTS

STATUTORY DECLARATION	II
ACKNOWLEDGMENTS	III
TABLE OF CONTENTS	v
LIST OF FIGURES	XVI
LIST OF TABLES	XXV
LIST OF EQUATIONS	XXVII
GLOSSARY OF TERMINOLOGY	XXVIII
ABSTRACT 1. RATIONALE AND OBJECTIVES 1.1. AUSTRALIAN OPAL RESEARCH	XXXII 1 2
1.2. FORMATION OF BANDED OPALS	3
1.3. WATER CONTENT AND MICROSTRUCTURE	4
1.4. THESIS STRUCTURE	5
2.1. THE HISTORY OF OPAL	7 8
2.1.1. Australian opai 2.2. CHEMICAL COMPOSITION	8 9
 2.3. MICROSTRUCTURE OF OPAL-AG 2.3.1. Play of colour 2.3.2. Potch and common opals 2.3.3. Stacking sequences of spheres 2.3.4. Voids 	10 10 12 13
2.3.4. Volus 2.3.5. Primary spheres	14
2.4. MICROSTRUCTURE OF OPAL-CT	16
2.5. MORPHOLOGY OF OPAL	17

v

2.5.1. Opal-A	19
2.5.1.1. Opal-AG	20
2.5.1.2. Opal-AN	21
2.5.2. Opal-C and opal-CT	21
2.5.2.1. Degree of crystallinity	25
2.5.2.2. Ratio of cristobalite and tridymite in opal-CT	26
2.5.3. Infrared Spectroscopy	26
2.6. NATURE OF WATER	29
2.6.1. Molecular water	29
2.6.1.1. Non hydrogen-bonded	30
2.6.1.2. Hydrogen-bonded	31
2.6.2. Chemically bound silanol groups	32
2.6.2.1. Single and twin hydroxyl groups	32
2.6.2.2. Inferences concerning the genesis of opal	33
2.6.2.3. High Pressure	33
2.6.2.4. Other IR studies	34
2.6.2.5. Small Angle Neutron Scattering (SANS)	34
2.7. RAMAN SPECTROSCOPY	35
2.8. ATOMIC FORCE MICROSCOPY	35
2.9. PHOTONIC CRYSTALS	36
3. MECHANISMS OF OPAL FORMATIO	ON 37
3.1. INTRODUCTION	38
3.2. OPAL-AG FORMATION	38
3.2.1. Geological environment associated with	
sedimentary opals	39
3.2.2. SiO ₂ solubility	40
3.2.2. SiO ₂ solubility 3.2.3. SiO ₂ nucleation	40 43
 3.2.2. SiO₂ solubility 3.2.3. SiO₂ nucleation 3.2.3.1. Presence of electrolytes during nucleation 	40 43 <i>43</i>
 3.2.2. SiO₂ solubility 3.2.3. SiO₂ nucleation 3.2.3.1. Presence of electrolytes during nucleation 3.2.4. Particle formation and polymerisation 	40 43 <i>43</i> 44
 3.2.2. SiO₂ solubility 3.2.3. SiO₂ nucleation 3.2.3.1. Presence of electrolytes during nucleation 3.2.4. Particle formation and polymerisation 3.2.5. Gels and precipitates 	40 43 <i>43</i> 44 47
 3.2.2. SiO₂ solubility 3.2.3. SiO₂ nucleation 3.2.3.1. Presence of electrolytes during nucleation 3.2.4. Particle formation and polymerisation 3.2.5. Gels and precipitates 3.2.6. Ostwald ripening mechanism 	40 43 <i>43</i> 44 47 49

3.2.7. Sedimentation and solidification	52
3.2.8. Purity of the sol (cationic sol purification)	52
3.2.9. Ordered arrangements of spheres with two sizes	53
3.2.9.1. Mechanisms responsible for bimodal size	
distributions	53
3.2.10. Bacterial model of opal formation	55
3.2.11. Banded opal-AG	56
3.3. OPAL-CT FORMATION	56
3.3.1. Fluid Inclusion studies	57
3.4. OTHER IMPORTANT MECHANISMS	58
3.4.1. Silica diagenesis	58
3.4.1.1. Effect of temperature and other constituents	59
3.4.2. Silica transport and accumulation	60
3.4.3. Incorporation of Elements	62
3.4.3.1. Aluminium in opal	62
3.4.3.2. Coordination of aluminium at various pH values	62
3.4.3.3. Literature concerning aluminium substitution in	
opal	63
3.4.3.4. Relationship between silica solubility and Al	
content	64
3.4.3.5. Magnesium in opal	64
3.4.3.6. Carbon in opal	65
4. THERMAL AND NITROGEN	
ADSORPTION ANALYSIS	67
4.1. INTRODUCTION	68
4.1.1. Thermogravimetric Analysis	68
4.1.2. Thermomechanical Analysis (TMA)	68
4.1.3. Differential Thermal Analysis and Differential	
Scanning Calorimetry	68
4.1.4. Thermal behaviour of opal	69
4.1.5. DTA-TGA	70

4.1.5.1. Structural Inversions	73
4.1.5.2. High Temperature Crystallisation	74
4.1.6. Water content determined by thermal analysis	74
4.1.6.1. Silanol Water	75
4.1.7. TMA	77
4.1.7.1. Libyan Desert Glass (LDG)	77
4.1.8. Sintering	79
4.1.9. Low-temperature DTA	79
4.1.10. Other studies concerning microstructure	80
4.1.11. Nitrogen adsorption studies	80
4.1.12. Objectives	81
4.2. EXPERIMENTAL	82
4.2.1. Australian opal fields	82
4.2.2. Sample Acquisition	83
4.2.2.1. Opal mining	83
4.2.3. TMA	84
4.2.3.1. Sample Dimensions	85
4.2.3.2. Sample preparation	85
4.2.3.3. Heating rate	85
4.2.4. TGA	86
4.2.4.1. Sample Preparation and Dimensions	86
4.2.4.2. Calculation of the rate of weight loss	87
4.2.5. Nitrogen Adsorption	87
4.2.5.1. Sample Details.	88
4.3. RESULTS	89
4.3.1. Thermomechanical Analysis	89
4.3.1.1. Transition Temperature	89
4.3.1.2. Thermal Expansion	92
4.3.2. Thermogravimetric Analysis	93
4.3.3. Nitrogen Adsorption	95
4.3.3.1. Total porosity and SSA	95
4.3.3.2. Pore size distribution	97
	viii

4.4. DISCUSSION	97
4.4.1. Thermomechanical Analysis	97
4.4.1.1. Thermal expansion	97
4.4.1.2. Transition temperature	97
4.4.1.3. Sintering	98
4.4.1.4. Shrinkage/Contraction	100
4.4.1.5. Contraction after the Transition Temperature	100
4.4.1.6. Speculations on low-temperature sintering	101
4.4.1.7. Double Inflection of Thermal Expansion	
Coefficient	102
4.4.1.8. Theoretical Considerations	103
4.4.2. Thermogravimetric Analysis	104
4.4.2.1. TMA and TGA correlations	106
4.4.2.2. Geminal and Vicinal Silanol Groups	107
4.4.3. Effect of chemical composition on thermal	
behaviour	107
4.4.3.1. Sintering	107
4.4.4. Sphere size and distribution	107
4.4.5. Porosity and permeability	108
4.4.5.1. Interstitial silica / Coalescing of spheres	108
4.4.5.2. Pore size distribution	110
4.4.5.3. Precious opals	112
4.4.6. Surface and internal silanol groups	112
4.5. CONCLUSIONS	115
4.5.1. TMA	115
4.5.1.1. Thermal expansion	115
4.5.1.2. Transition temperature	115
4.5.2. TGA	115
4.5.3. Nitrogen adsorption	116
5. LASER-ABLATION INDUCTIVELY	
COUPLED MASS-SPECTROMETRY	117
5.1. INTRODUCTION	118

5.1.1. Chemical composition of potch and precious	
opals	118
5.1.2. Opal-genesis models	119
5.1.2.1. Bacterial model	120
5.1.3. Previous trace element studies	120
5.1.3.1. Transition metals	121
5.1.4. Banded opal literature	122
5.1.5. Objectives	123
5.2. EXPERIMENTAL	124
5.2.1. Sample details	124
5.2.2. Sample preparation	126
5.2.2.1. Errors	126
5.2.3. Mass spectrometry experimental methods	127
5.2.4. Standardisation	127
5.2.5. Elemental Analyses	128
5.3. RESULTS	129
5.3.1. Alkali and alkaline-earth elements	137
5.3.1.1. Calcium	137
5.3.1.2. Magnesium	138
5.3.1.3. Potassium	138
5.3.1.4. Sodium	138
5.3.2. Aluminium	139
5.3.3. Transition metals	140
5.3.3.1. Fe and Mn	141
5.3.4. Rare-earth elements	141
5.4. DISCUSSION	142
5.4.1. Colourant ions	142
5.4.1.1. Laporte's selection criteria	142
5.4.2. Banded opals	144
5.4.2.1. Play of colour	144
5.4.2.2. Opacity	144

5.4.3. Porosity	145
5.4.3.1. Effect of salt concentration and pH	145
5.4.3.2. Infilling of voids by additional silica	146
5.4.4. Charge neutralisation	147
5.4.4.1. Sedimentation model for potch opal	147
5.4.4.2. Charge neutralisation sequence	149
5.4.4.3. Presence of cation impurities at the core of	
colloids	150
5.4.5. Solution depletion mechanism - sol purification	150
5.4.6. Sedimentation model for banded opal	151
5.4.6.1. Potch opal formation - further considerations	153
5.4.6.2. Deposition sequence	153
5.4.7. Origin of polyvalent cations	154
5.4.7.1. Impurities arrived at a later stage	154
5.4.7.2. Impurities were always present	155
5.4.8. Cationic valence	155
5.4.8.1. Ion-specific ability to control coagulation	156
5.4.8.2. Critical coagulant concentration	157
5.4.8.3. Hofmeister series	157
5.4.9. Counter-ions	157
5.4.9.1. Preferential accommodation of specific cations	158
5.4.10. Monodisperse colloid growth	159
5.4.11. Microbial model of opal genesis	159
5.5. CONCLUSIONS	160
6. SECONDARY ION MASS	
SPECTROMETRY	161
6.1. INTRODUCTION	162
6.1.1. Theoretical simulations of ordered and	
disordered sphere packing	162
6.1.2. Order-disorder phase transitions	163
6.1.2.1. Implications for opal formation	165
6.1.3. Intrusion of larger or smaller spheres	166

xi

6.1.3.1. Theoretical	166
6.1.3.2. Experimental	166
6.1.3.3. Trickle Stratification	167
6.1.3.4. Terminal Velocity	167
6.1.4. Other observations	168
6.1.5. Synthetic opal	168
6.1.5.1. Separation into visibly different bands	168
6.1.6. Liesegang phenomenon	169
6.1.7. Chemical composition of banded opal	171
6.1.7.1. Chemical composition of banded LDG	171
6.1.8. Objectives	171
6.2. EXPERIMENTAL	175
6.2.1. Secondary Ion Mass Spectrometry (SIMS)	175
6.2.1.1. SIMS operational principles	175
6.2.2. Instrumental parameters	176
6.2.2.1. Individual spot analyses	176
6.2.2.2. Linescans	177
6.2.3. Sample details	178
6.2.3.1. Sample LR1	178
6.2.3.2. Samples LR2 and LR3	178
6.2.3.3. Sample LR4	179
6.2.3.4. Sample LR5 and LR6	179
6.2.3.5. Sample LR7	179
6.2.3.6. Sample LR15	179
6.2.3.7. Sample A2	179
6.2.3.8. Sample LRT3	179
6.2.3.9. CP2	180
6.2.4. Experimental procedure	180
6.2.4.1. Sample Preparation	180
6.2.4.2. Normalisation of signal intensity data	180
6.2.4.3. Standardisation	181
6.2.4.4. Positioning the linescans	181
6.2.5. Errors	181

6.3. RESULTS - INDIVIDUAL SPOT ANALYSES	183
6.3.1.1. Calculation of average signal intensity values	183
6.3.1.2. Uniformity of depth profile signal intensity	186
6.3.2. LR1	188
6.3.3. LR2	189
6.3.4. LR3	189
6.3.5. LR4	190
6.4. RESULTS - LINESCANS	191
6.4.1. Sample LR5	191
6.4.2. Sample LR6	193
6.4.3. Sample LR7	193
6.4.4. Sample LRT3	194
6.4.5. Sample A2	195
6.4.5.1. Potassium	197
6.4.5.2. Barium	197
6.4.5.3. Titanium	198
6.4.5.4. Iron	199
6.5. DISCUSSION	201
6.5.1. Individual spot analyses:	201
6.5.1.1. Grey 'reaction zone'	201
6.5.1.2. Erratic behavior of certain elemental depth	
profiles	202
6.5.1.3. Uneven distribution of trace elements	203
6.5.2. Line-scans:	204
6.5.2.1. Interfacial width	204
6.5.2.2. Behaviour of monovalent ions	204
6.5.2.3. Ion specificity / Hydration spheres	205
6.5.2.4. Sample A2	205
6.5.3. Disorder by means other than charge	
neutralisation	206
6.5.4. Existence of primary spheres	206
6.5.5. Alternate hypothesis for observed ring structure	208
	xiii

6.6. CONCLUSIONS	212
7. NUCLEAR MAGNETIC RESONANCE 7.1. INTRODUCTION	214 215
7.1.1. Nuclear Magnetic Resonance (NMR)	
Spectroscopy	215
7.1.1.1. Free-induction decay (FID)	216
7.1.1.2. Chemical Shift Anisotropy (CSA)	217
7.1.1.3. Magic Angle Spinning (MAS)	218
7.1.1.4. Proton Cross Polarisation	219
7.1.2. Relaxation time, T_1	220
7.1.2.1. Dipole-Dipole Interactions	220
7.1.2.2. Paramagnetic relaxation	220
7.1.2.3. Saturation	221
7.1.3. Silica tetrahedra notations	221
7.1.4. ²⁹ Si NMR of opals (single pulse)	221
7.1.4.1. Coordination of silica tetrahedra	223
7.1.4.2. Silanol groups	223
7.1.4.3. Bond angles	223
7.1.4.4. Other NMR studies of opal	224
7.1.4.5. Relaxation times	226
7.1.5. ²⁹ Si NMR of opals (proton cross polarisation)	226
7.1.6. Objectives	230
7.2. EXPERIMENTAL	231
7.2.1. Sample Preparation	231
7.2.1.1. Errors	231
7.2.1.2. Thermally aged specimen	232
7.2.2. ²⁹ Si NMR acquisition parameters	232
7.2.2.1. Tuning and matching procedure; MAS	
optimisation	232
7.2.2.2. Single pulse	233
7.2.2.3. Proton cross polarisation	233
7.2.3. ²⁷ AI NMR	233

,

7.2.4. Deconvolution	234
7.3. RESULTS	235
7.3.1. ²⁹ Si NMR – single pulse	235
7.3.1.1. Further investigation of Tintenbar sample (opal-	
CT)	235
7.3.1.2. Peak deconvolution	236
7.3.2. ²⁹ Si NMR – Proton cross-polarisation	238
7.3.2.1. Reduction in contact time experiments	239
7.3.2.2. Peak deconvolution	240
7.3.2.3. Ageing of Tintenbar sample	241
7.3.3. ²⁷ AI NMR	242
7.4. DISCUSSION	243
7.4.1. ²⁹ Si NMR - single pulse	243
7.4.2. ²⁹ Si NMR - Cross Polarisation	243
7.4.2.1. Q ² resonance assignment	244
7.4.2.2. Deconvolution of spectra	245
7.4.2.3. Bond Angles	245
7.4.3. Tintenbar and Mexican opal-CT samples	246
7.4.3.1. High proportion of Q ³ units	246
7.4.3.2. Thermal ageing experiment	247
7.4.3.3. Opal-CT comparisons	247
7.4.3.4. Internal surface area of opal-CT	248
7.4.3.5. Inferences about opal-CT structure and	
formation	248
7.4.3.6. Model for volcanic opal-CT precipitation	250
7.4.3.7. S/N ratios of opal-CT samples	251
7.4.4. Theoretical Surface Area	252
7.4.5. ²⁷ AI NMR	252
7.4.5.1. pH of solution	253
7.5. CONCLUSIONS	255
8. CONCLUSIONS	256
REFERENCES	261

xv

LIST OF FIGURES

Figure 2-1: SEM micrograph of the ordered sphere arrangement of a synthetic opal-A structure containing monodisperse silica spheres. From Heaney et al. (1994).....11 Figure 2-2: SEM microstructure of opal displaying spheres arranged in an ordered FCC manner. The fracture plane is oriented diagonally across the image and slopes down to the bottom right hand corner. 14 Figure 2-3: The presumed primary and secondary sphere arrangement of opal-AG, as proposed by Darragh et al. (1976).....16 Figure 2-4: SEM micrograph of opal-CT lepispheres. From Hinman Figure 2-5: SEM micrograph of opal-CT blades. From Bermanec et al. Figure 2-6: XRD of silica polymorphs and opals. Curve A: synthetic α cristobalite. Curve B: Opal-C. Curves C to F: Opal-CT. Curves G and H: Opal-A. Peaks marked Q are due to quartz; those marked T are Figure 2-7: Top to bottom: XRD spectra of opal-AN, opal-AG and silica glas. From Smith (1998)......20 Figure 2-8: Top to bottom: XRD spectra of opal-AG, opal-CT and opal-C. From Smith (1998).....23 Figure 2-9: Tridymite stacking fault (cis) in a cristobalite sequence (trans), Each tetrahedron represents one SiO₄ group. From Graetsch et al. (1994)......24 Figure 2-10: Infrared spectra of various silica polymorphs and opals. $T_o = tridymite; SG = silica glass; AG = opal-AG; AN = opal-AN; CT =$ opal-CT; C = opal-C; and C_0 = cristobalite. From Graetsch et al. Figure 2-11: Model of water incorporation in opal-AG. From Langer Figure 2-12: IR spectra showing H₂O and OH combination bands.

From Langer and Flörke (1974)
Figure 2-13: Left: single (or vicinal) hydroxyls. Right: twin (or
geminal) hydroxyl groups. From Thompson (1965)
Figure 3-1: Silica solubilities of various silica polymorphs vs.
temperature. From Kastner et al. (1977)
Figure 3-2: Silica solubility at various pH and temperature values.
From Dove and Rimstidt (1994)42
Figure 3-3: Silica species present at various pH values. From Dietzel
(2000)
Figure 3-4: Models of (A) cyclic trisilicic acid, and (B) cubic octasilicic
acid. (C) and (D) are theoretical colloidal particles formed by
condensing monomer to form closed rings with one surrounding layer
of silica bearing silanol groups. Spheres represent oxygen atoms;
black dots, hydrogen atoms. From Iler (1979)44
Figure 3-5: Effect of pH on sol stability. From Iler (1979)
Figure 3-6: The fundamental distinction between a gel and a
precipitate. From Iler (1979)47
Figure 3-7: Flocculation aided by the presence of an alkali element (in
this case, Na). From Iler (1979)
Figure 3-8: Initial stages in the formation of a sol or gel network.
From Iler (1979)
Figure 3-9: SiO ₂ solubility vs. radius of curvature. From Iler (1979).
Figure 3-10: Effect of Ostwald ripening on the quantity and size of an
initially Gaussian population of gibbsite crystals with an average size
of 1000Å, using an interfacial energy of 350 mJ/m ² . From Steefel and
Van Cappellen (1990)51
Figure 3-11: Ordered arrangements of bimodal sphere distribution.
From Sanders (1980)54
Figure 3-12: Potential energy curve for interaction between two
monodisperse silica spheres in the presence of salts of bi- and
trivalent cations. From Kalinin et al. (1998)55 xvii

Figure 3-13: Transport of silica from regions of low solubility (positive radius of curvature) to regions of lower solubility (high negative radius of curvature). From Iler (1979)......61 Figure 3-14: Predicted ratio of Al^t in Al, at 25°C and 100°C. From Merino et al. (1989)......63 Figure 3-15: Flocculation of negatively charged silica particles in a sol by positively charged hydroxyl complexes. From Iler (1979)......65 Figure 4-1: DTA curves of amorphous opals. Legend; a: milky precious opal (Coober Pedy, South Australia), b: colourless hyalite (Melbourne, Victoria), c: opaque white opal (locality unknown), d: milky precious opal replacing wood (White Cliffs, New South Wales), e: siliceous sinter (Whakarewarewa, New Zealand), f: Diatomite (Victoria, Australia) From Segnit et al. (1965)......71 Figure 4-2: DTA curves of 'crystalline' opals (opal-CT). Legend; a: cristobalite, b: Mexican fire opal (Guanjuato), c: green common opal (Washington, USA), d: creamy coloured opal (Angaston, South Australia), e: transparent wood opal (Lake Eyre, South Australia), f: Dark brown opal (Sunbury, Victoria), g: white opal replacing wood (Berwick, Victoria), h: milky wood opal (Lake Eyre, South Australia), i: grey opal (Yinnar, Victoria), j: brown opal (Glengower, Victoria), k: yellow brown opal (locality unknown), I: brown opal (Riddell, Victoria). From Segnit et al. (1965).....72 Figure 4-3: High temperature silica phase transformations. From Richerson (1992)......74 Figure 4-4: TMA curves of Libyan Desert Glass (1); potch opal (2); Figure 4-5: Mining Regions of Australia. The White Cliffs opal field is located at point 11, in the North Western corner of New South Wales. Figure 4-6: Thermal expansion curves of various Andamooka Figure 4-7: Thermal expansion curves of various Coober Pedy

samples91
Figure 4-8: Weight loss curve and rate of weight loss curves for an
Andamooka sample. The maximum rate of weight loss occurs at
~350°C94
Figure 4-9: Weight loss curve and rate of weight loss curves for a
Coober Pedy sample. The maximum rate of weight loss occurs
suddenly at 220°C95
Figure 4-10: Normal Andamooka opal-AG (top) and Andamooka
opal-AG after completion of TGA run at 1200°C (bottom). Note the
change in the shape of the voids in the heat-treated sample; the
spherical nature of the voids is indicative of sintering
Figure 4-11: Deconvolution of the rate of weight loss curve for
Coober Pedy opal sample 106
Figure 4-12: SEM micrograph showing non-spherical colloidal
structures. This requires an optimal etching time
Figure 4-13: Effect of radius of curvature on the spacing of adsorbed
water groups. From Iler (1979) 111
Figure 4-14: Effect of radius of curvature on the spacing of adsorbed
water groups. From Iler (1979) 111
Figure 4-15: Surface area lost to nitrogen adsorption; areas
inaccessible to nitrogen molecules are marked 'b'. From Iler (1979).
Figure 4-16: Adsorbed water on a silica surface. From Dove and
Rimstidt (1994)114
Figure 5-1: Left to right; LR1, LR2, LR3 AND LR4 125
Figure 5-2: Left to right; LR5, LR6 and LR7 125
Figure 5-3: Clockwise, from left; LR9, LR15, A1, A2, and CP9 125
Figure 5-4: Elemental profile of Lightning Ridge sample LR1; relative
elemental abundance between brown and transparent bands 134
Figure 5-5: Elemental profile of Lightning Ridge sample LR13; relative
elemental abundance between grey and violet bands
Figure 5-6: Elemental profile of Lightning Ridge sample LR14; relative xix

Figure 5-7: Elemental profile of Andamooka sample A2; relative Figure 5-8: Elemental profile of Lightning Ridge sample LR5; relative elemental abundance between grey and honey-coloured bands.... 136 Figure 5-9: Concentration of Na, K, Mg, Ca, Ba, Al and Zr for all Figure 5-10: Elemental profile of sample LR7; relative elemental abundance between grey band and adjacent band with red play-of-Figure 5-11: Elemental abundance of Ti, Cu, Y, La and Ce for all Figure 5-12: Elemental abundance of V, Co, Ni and Zn for all bands Figure 5-13: The stern layer (assuming the charge on the surface is Figure 5-14: Interaction between two double layers; the two overlapping curves result in a higher electrical charge. From Figure 5-15: First stage in the formation of a banded opal: The negative surface charge of the silica colloids results in mutual repulsion. The dispersion of colloids forms a metastable silica sol. Note: polydisperse colloids are shown with an exaggerated size Figure 5-16: Second stage in the formation of a banded opal: In the presence of impurities, a large fraction of the silica colloids are charge-neutralised by the adsorption of highly charged cations (Ti⁴⁺, Y^{6+}). This leads to rapid sedimentation and the formation of a layer consisting of disordered, polydisperse spheres. These cations accumulate in the coagulated layer, purifying the remaining sol. .. 152 Figure 5-17: Third stage in the formation of a banded opal: Ostwald ripening progresses in the remaining colloids. Slow removal of water

then allows the spheres to settle very slowly. This results in the deposition of monodisperse spheres into an ordered layer on top of Figure 6-1: SEM micrograph showing a region of close-packed ordered stacking sequence in the centre and a disordered stacking sequence in the top left. Three ordered domains can clearly be seen in the figure; a large one at the centre; another one at the right; and Figure 6-2: Changes of potential energy curves for interaction between two monodisperse silica spheres with increasing concentration of salts of bi- and trivalent cations in the system (from Figure 6-3: Concentration profile of the electrolyte vs. distance. C_{AO} is Figure 6-4: Sample LR3; exhibiting the extremely well-defined Figure 6-5: Detail of interfacial region of Sample LR1. Note the fluidlike appearance of the interfacial region between the two bands... 173 Figure 6-6: Depth profile for the element Ca contained within sample Figure 6-7: Depth profile for the elements Ti and Fe contained within Figure 6-8: Depth profile for the elements Ti and Mg contained within brown band of sample LR1......187 Figure 6-9: Depth profile for the element Cr contained within sample Figure 6-10: Graphical representation of the abundance of elements at each spot in sample LR1. 188 Figure 6-11: Graphical representation of the abundance of elements at each spot in sample LR3. 190 Figure 6-12: Sample LR5; Linescans 2 and 3. The linescans have been superimposed onto one graph. The honey-coloured band is in xxi

the middle of the graph, and the grey band is effectively on the left
and right of the x-axis
Figure 6-13: Sample LR5; Linescan 4. The grey band is on the left,
and the honey band is on the right 192
Figure 6-14: Sample LR7; Linescan 2. The grey band is on the left,
and the poc band is on the right 194
Figure 6-15: Sample LRT3; Linescans 1 and 2. The poc band is in the
centre, and darker bands are on the left and right
Figure 6-16: Sample A2; Linescans 1 and 2, for elements Na and K.
The clear band is in the centre, and grey bands are on the left and
right
Figure 6-17: Sample A2; Linescans 1 and 2, for elements Mg, Fe and
Ba. The clear band is in the centre, and grey bands are on the left
and right
Figure 6-18: Distribution of K for several linescans across the
interface of sample A2 197
Figure 6-19: Trend of Ba across the interface of sample A2 198
Figure 6-20: Profile of various isotopes of Ti across the interface of
sample A2 199
Figure 6-21: Profile of various isotopes of Fe across the interface of
sample A2
Figure 6-22: Possible existence of clay inclusions in the structure of
sample LRT3
Figure 6-23: High magnification SEM micrograph. No primary spheres
are evident 207
Figure 6-24: SEM micrograph of opal showing ring structure 208
Figure 6-25: SEM micrograph of opal showing selective reaction
between HF and silica. Some half-etched spheres are present with
outer skin intact and others with etched cores
Figure 7-1: Basic components of an NMR spectrometer. From Field
and Sternhall (1989) 216
Figure 7-2: Fourier transformation of a single FID with exponential
XXII

.

decay and a time constant of T_2^* . This gives rise to a Lorentzian lineshape whose FWHM is $1/\pi T_2^*$ hertz. From Field and Sternhall Figure 7-3: NMR spectra of various SiO2 polymorphs. From de Jong Figure 7-4: ²⁹Si NMR spectra of various silica polymorphs, including ordered low-cristobalite (L- C_0) and ordered MX tridymite (L3- T_0). LDG = Libyan Desert Glass. Spectra are displaced vertically for clarity. From Graetsch et al. (1990)...... 225 Figure 7-5: Relative enhancement of Q³ resonance of an opal-AG sample with reduced contact times. Curve a = no cross polarisation. Curve b = contact time of 1ms. Curve c = contact time of 4ms. From Adams et al. (1991)...... 227 Figure 7-6: Plot of ²⁹Si CP/MAS NMR amplitudes as a function of contact time. Circles: data for -109.3 ppm resonance. Triangles: data for -99.8 ppm resonance. Squares: data for -90.6 ppm resonance. From Maciel and Sindorf (1980)...... 228 Figure 7-7: Proton Cross Polarisation ²⁹Si NMR spectra of various types of opal, each scaled to equal height at the -110 ppm resonance. From Graetsch et al. (1994)...... 229 Figure 7-8 Cross Polarisation NMR spectrum of Nevada opal (opal-CT) Figure 7-9: ²⁹Si NMR Bloch decay results of opal-AG from Coober Pedy (top) and Mexican opal-CT (below). The Q⁴ resonance is centred at -111.8 ppm for opal-AG and -111.9 ppm for opal-CT...... 235 Figure 7-10: ²⁹Si NMR Bloch decay results of un-aged (top) and aged (bottom) opal from Tintenbar; the resonance present at -102.5 ppm Figure 7-11: A single-pulse ²⁹Si NMR spectrum of an un-aged opal sample from Coober Pedy (top). The curve below it is a theoretical curve resulting from the superposition of the two Gaussian peaks

LIST OF TABLES

Table 2-1: Concentration ranges of various elements of nine black
opals from NSW. From McOrist et al. (1994)9
Table 2-2: IR absorption peak assignments
Table 2-3: Typical water content (%) of the various water fractions
contained within opal. From Langer and Flörke (1974), Graetsch et al.
(1987, 1985), Adams et al. (1991), Flörke et al. (1991), and Esenli et
al. (2001)
Table 3-1: Densities of common silica polymorphs. From Landmesser
(1995)
Table 4-1: General appearance of the samples used in TMA, TGA and
N_2 adsorption analyses84
Table 4-2: Transition temperatures of opals from various localities. 90
Table 4-3: Maximum Dehydration Temperatures and total water
contents of various opals93
Table 4-4: Total porosity, SSA and pore sizes for various opal
samples. ¹ Data from Segnit et al. (1965). ² Data from Bustillo et al.
(1993). ³ Data from Graetsch et al. (1985). ⁴ Data from Zabelin
(1968). 5 Data from Khimicheva et al. (1991)
Table 5-1: Sample details; LR=Lightning Ridge, CP=Coober Pedy,
A=Andamooka
Table 5-2: Average elemental concentration for each opal band
(ppm)
Table 5-3: Standard deviation (1 σ) of the average elemental
concentration for each opal band (ppm)131
Table 5-4: Minimum detection limit (ppb) for each element within an
opal band 132
Table 5-5: Ratio of elemental abundance between dark and light
bands for banded samples 133
Table 5-6: Division factors for Figure 5-4 to Figure 5-8
Table 5-7: Order of effectiveness of ion charge in coagulating colloidal

suspensions, calculated by using Equation 5-1	56
Table 6-1: Signal intensities for each of the elements for samples	
LR1, LR2, LR3 and LR418	34
Table 6-2: Standard deviation (%) of signal intensity for each of the	
elements	35
Table 6-3: Ratio of signal intensity between dark and light bands for	
each of the elements18	35
Table 7-1: ¹ H cross polarisation ²⁹ Si NMR Resonance peak positions	
for opal-AG and opal-CT 23	38
Table 7-2: ²⁷ Al NMR resonance positions for various types of opals	
and localities24	12

LIST OF EQUATIONS

Equation 2-1: Relationship between maximum wavelength of
diffracted light observed vs. diameter of spheres. From Sanders
(1968) and Darragh and Perdrix (1975)12
Equation 3-1:
Equation 3-2:
Equation 3-3:
Equation 4-1:99
Equation 5-1: Relationship between the ionic charge and the critical
concentration of electrolyte required for rapid coagulation
Equation 6-1: Attraction energy164
Equation 6-2: Repulsion energy164
Equation 6-3: From Serdobintseva et al. (1999)
Equation 6-4:
Equation 6-5: For particles falling in a viscous fluid under their own
weight, the frictional force can be equated to the gravitational force.
v_s = particle's settling velocity; r = particle radius; g = force of
gravity; $\eta = viscosity$; ρ_p and ρ_f are the density of the particles and
fluid, respectively167
Equation 6-6: Jablczinsky's spacing law; P equals the spacing
coefficient, i is the number of each band. From Büki et al. (1995). 170
Equation 6-7:
Equation 7-1:
Equation 7-2:

GLOSSARY OF TERMINOLOGY

Agglomeration	Collect into a mass; accumulate in a disorderly way.
Aggregation	A term used for all the ways in which colloidal particles are linked together. This includes gelling, coagulation and flocculation.
Aluminium silicate	Octahedrally coordinated aluminium within silica.
Aluminosilicate	Tetrahedrally coordinated aluminium within silica.
BCC	Body Centred Cubic stacking sequence.
Coacervate	Primary particles accreting around a nucleus to form a much larger secondary particle.
Coagel	Fully dehydrated precipitate of a sol or gel.
Coagulation	Particles that come together into relatively close- packed clumps as a result of the inability of a colloidal system to maintain its dispersed sate. This is usually an irreversible process.
Coagulum	An aggregate of colloidal particles having a relatively tight, dense structure. A coagulum cannot easily be distinguished from a floc.
Coalesce	The process of eliminating the negative radius of curvature at the point where spheres contact each other (similar to sintering, but at low temperatures).
Co-coagulation	See heterocoagulation.
Colloidal system	A system which contains a dispersed phase, which is finely divided and distributed evenly throughout a medium (the continuous phase). The particle size is just larger than that of a true molecular solution but less than a coarse suspension. Usually it is between 1nm and 1µm.
Common opal	A type of opal that is not associated with precious opal.
α-Cristobalite	A crystalline phase in which the silica tetrahedra of adjacent silicate sheets occur in the 'trans' structural arrangement.
Critical coagulant concentration (c.c.c.)	The specific concentration of coagulant required to initiate rapid coagulation of all colloids in a sol.
Cryptocrystalline	A crystalline substance that contains crystallites which are too small to be observable with the microscope.
CSA	Chemical Shift Anisotropy.
CTE	Coefficient of Thermal Expansion.
Decrepitation	When a mineral, such as opal, "breaks up" (fractures) on heating.

/

EDX	Energy Dispersive X-Ray Spectroscopy.
Electrical double layer	The variation in electrical potential that is generated at various distances from a charged surface.
EPS/ESR	Electron Paramagnetic Spectroscopy / Electron Spin Resonance.
FCC	Face Centred Cubic stacking sequence.
Floc	Particles linked together by bridges of the flocculating agent that are sufficiently long so that the aggregated structure remains relatively open and voluminous. A floc cannot easily be distinguished from a coagulate.
Flocculation	The process of forming flocs.
FWHM	Full Width of a peak at Half its Maximum height.
Gel	Particles which are linked together in branched chains that fill the whole volume of the original sol so that there is no increase in the concentration of the dispersed phase in any macroscopic region in the medium. A gel can easily be distinguished from a floc or a coagulate.
Gelling	Process of forming a gel.
Geminal silanol	Twin hydroxyls (Q ² resonance).
НСР	Hexagonal close-packed stacking sequence.
Heterocoagulation	The simultaneous coagulation of two oppositely charged colloids.
Homodisperse	See monodisperse.
HRTEM	High-Resolution Transmission Electron Microscopy.
Hydrophilic	"water loving"
Isodisperse	See monodisperse.
Isoelectric point (IEP)	pH of zero ζ potential, interpreted as the point of zero charge at the shear plane. The IEP is not necessarily the ZPC.
LA-ICPMS	Laser Ablation Inductively-Coupled-Plasma Mass Spectrometry.
LDG	Libyan Desert Glass.
Lyogel	A type of gel where the colloids are sterically but not dynamically separated by layers of liquid.
Macropores	Pores with a diameter greater than 2000Å.
Mesopores	Pores with a diameter between 20 and 2000Å.
Metastable	To exist in a state which is not thermodynamically stable.
Microcrystalline	A crystalline substance in which the crystallites are

	resolvable in the standard optical petrographic microscope.
Micropores	Pores with a diameter less than 20Å.
Monodisperse	A colloidal system containing particles of uniform dimensions.
Monosilicic acid	Si(OH)₄
MRJ	Maximally Random Jammed structure; state that minimises disorder among all statistically homogeneous and isotropic jammed structures.
Network colloid	Systems that contain two inter-penetrating networks. Technically speaking, opal-AG is a network colloid.
NMR	Nuclear Magnetic Resonance spectroscopy.
Octahedral aluminium	Aluminium atoms in a six-fold co-ordination. Sometimes this is written as AI° or ^{VI} AI.
Opal-A	Amorphous opal.
Opal-AG	Amorphous opal, with a colloidal microstructure.
Opal-AN	Amorphous opal with a glassy, network-like structure.
Opal-C	Paracrystalline opal with a predominantly cristobalite molecular structure.
Opal-CT	Paracrystalline opal containing both cristobalite and tridymite stacking sequences, but still predominantly amorphous.
Paracrystalline	A term which implies partial ordering in a disordered matrix, while still constituting a continuous network.
Рос	Play of colour.
Polydisperse	A colloidal system that contains particles of various sizes.
Polysilicic acid (oligomers)	SiO_2 polymers with molecular weights up to about 100,000.
Potch	Opal that lacks a play of colour.
Precious opal	Opal that displays a play of colour.
RCP	Random Close-packing; the maximum density that a large, random collection of spheres can attain = 0.64 .
RF	Radio Frequency.
RMS	Root Mean Square, a statistical measure of the magnitude of a varying quantity. Also referred to as the quadratic mean.
SANS	Small Angle Neutron Scattering
Sedimentation	Natural process of microscopic solid particles (usually in a fluid phase) falling to the bottom of a container

	due to the force of gravity.
SEM	Scanning Electron Microscopy.
Shear plane	A very thin region just outside the stern layer, where the viscosity effects change rapidly.
Silanol	Si-OH bond
Silica	Silica occurs in a variety of polymorphs, such as: cristobalite, tridymite, chalcedony, amorphous silica, opal and quartz.
Siloxane	Si-O-Si bond
SIMS	Secondary Ion Mass Spectrometry.
Sol	A solid dispersion of small particles in a liquid medium. See "colloidal system".
SSA	Specific Surface Area
Stern layer	A small space separating the ionic atmosphere near an interface, the diffuse double layer, from the steric "wall" of the charged plane just adjacent to the interface. Ions in the stern layer remain with the surface.
Tectosilicate	Fully polymerised (or condensed) silica, where each of the four corners of the silica tetrahedra are connected to other tetrahedra (Silicon in the Q^4 configuration).
Tetrahedral aluminium	Aluminium atoms in a four-fold co-ordination. Sometimes this is written as Al ^t or ^{IV} AI.
TGA	Thermogravimetric Analysis.
ТМА	Thermomechanical Analysis.
Transition temperature	The temperature at which the opal changes from a positive to a negative thermal expansion coefficient (the point where the thermal expansion coefficient equals zero).
α-Tridymite	A crystalline phase in which the silica tetrahedra of adjacent silicate sheets occur in the 'cis' structural arrangement.
Vicinal silanol	Single hydroxyl (Q ³ resonance).
XAS	X-Ray Absorption Spectroscopy
Xerogel	A gel in which the micelles are in direct contact with each other.
XRD	X-Ray Diffraction.
Zeta (ζ) potential	Potential at the shear plane. Also referred to as the electrokinetic potential.
ZPC	Point of Zero Charge.

ABSTRACT

Australia is the world's largest producer of precious opals, contributing more than \$1 billion per annum to the GDP. However, to date little fundamental research has been carried out on banded opals, which are potentially the most valuable of all opal varieties. Opal is also Australia's national gemstone; yet for such an important resource, it is surprising that the mechanisms of opal formation remain in dispute, in particular for banded opals. The focus of this study is to understand the formation of opal by investigating the chemistry and microstructure of banded and nonbanded opals. Opals from several regions of Australia (Coober Pedy, Lightning Ridge, Andamooka and Tintenbar), in addition to opals from Mexico, were thus investigated in detail using a range of techniques.

Evaluation of the trace element chemistry of opals was carried out by employing a combination of experimental techniques, including Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICPMS) and Secondary Ion Mass Spectrometry (SIMS). Darker-coloured bands contained significantly higher concentrations of certain transition elements (Ti, V, Co, Ni, Cu, Zn and Y) and rare-earth elements (La, Ce) than the lighter-coloured bands. The concentrations of other elements (Mg, Ca, Al, Fe and Mn) were in most cases found to be similar between bands. Some elements (Ti, Cr, Cu, Zn, Co and Zr) were found to be distributed more heterogeneously than others (Na, Ca, Mg, K, Al and Fe). Based on this evidence, a solution depletion model was proposed to explain the formation of banded opals, involving the charge-neutralisation of silica colloids by highly-charged transition metal cations.

The microstructural characteristics of several Australian opal-AG (amorphous, gel-like opal) specimens were studied using a number of experimental techniques such as porosity measurement, thermomechanical analysis (TMA) and thermogravimetric analysis (TGA). An initial expansion followed by contraction was observed in TMA. The temperature at which this 'transition' occurred ranged from 200 to 400°C and was found to be region dependent. TGA revealed that the temperature range, from 215 to 350°C,

over which the maximum rate of dehydration occurred, was again region dependent, consistent with the TMA data. A dehydroxylation-sintering mechanism was proposed to account for these results. Porosity measurement yielded a greater degree of porosity in the opaque white samples than the transparent ones; the additional voids consequently scatter light internally, rendering the opal opaque.

²⁹Si NMR and ²⁷Al NMR experiments were undertaken to characterise the relative disorder, silanol content and the coordination state of Al within opal-AG and opal-CT (cristobalite-tridymite opal). The comparison of ²⁹Si NMR spectra demonstrated that opal-CT samples contained a higher proportion of both geminal (Q²) and vicinal silanol groups (Q³) than opal-AG. This result was attributed to the large internal surface area of opal-CT compared to that of opal-AG. Since Al was found to exist in a tetrahedral coordination within the opal structure, incorporation of Al occurred through substitution of Si during the period of colloidal growth. As the concentration of Al in banded opals was similar, the colloids within each band are considered to have formed at similar times.