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Abstract 

A continuous fixed−bed study was carried out utilising a breakthrough biosorbent, 

specifically multi−metal binding biosorbent (MMBB) for removing cadmium, copper, 

lead and zinc. The effect of operating conditions, i.e. influent flow rate, metal 

concentration and bed depth was investigated at pH 5.5±0.1 for a synthetic wastewater 

sample. Results confirmed that the total amount of metal adsorption declined with 

increasing influent flow rate and also rose when each metal concentration also 

increased. The maximum biosorption capacities of 38.25, 63.37, 108.12 and 35.23 mg/g 

for Cd, Cu, Pb and Zn, respectively, were achieved at 31 cm bed height, 10 mL/min 

flow rate and 20 mg/L initial concentration. The Thomas model better described the 

whole dynamic behaviour of the column rather than the Dose Response and Yoon–

Nelson models. Finally, desorption studies indicated that metal−loaded biosorbent could 



  

 

be used after three consecutive sorption, desorption and regeneration cycles by applying 

a semi−simulated real wastewater. 

Keywords: Breakthrough curve, Fixed−bed column, Heavy metal, Lignocellulosic 

waste, Modelling 

1. Introduction 

As a consequence of global industrialisation and extensive use of machines in many 

industries, heavy metal pollution of the environment has now become a chronic 

worldwide problem and major threat to human health. Heavy metal ions such as 

cadmium, lead, zinc, nickel, copper, mercury and chromium or their compounds are 

now recognised as serious toxic pollutants due to their non−biodegradability and 

constant presence in the food chain. 

 In recent decades, the annual global release of heavy metal reached 22,000 tons (metric 

tons) for cadmium, 939,000 tons for copper, 783,000 tons for lead and 1,350,000 tons 

for zinc (Ansari et al., 2014). Therefore, it is very urgent to treat industrial wastewater 

effluents, before they are discharged into the environment.It is essential that such action 

is in accordance with effective health and environmental regulations developed for 

various bodies of water (Shanmugaprakash and Sivakumar, 2015,Kalavathy and 

Miranda, 2010). To remediate heavy metal polluted effluents, a wide range of 

physicochemical/biological treatment technologies are currently employed in various 

industries (e.g. chemical precipitation, extraction, ion−exchange, filtration, reverse 

osmosis, membrane bioreactor and electrochemical techniques). Nonetheless, these 

existing methods are not effective enough in low concentrations and might be very 

expensive as a result of high chemical reagent and energy requirements, as well as the 

disposal problem of toxic secondary sludge (Montazer−Rahmati et al., 2011; Aksu et 



  

 

al., 2007). Recently, attention has focused on cheap agro−industrial wastes and 

by−products such as biosorbents (Bhatnagar et al., 2015; Bhatnagar and Sillanpaa, 

2010). Although numerous studies on biosorption of heavy metals in batch systems 

have been published, in order to evaluate the feasibility of biosorption processes for real 

world applications, continuous biosorption studies in packed bed columns would be 

more useful (Bhatnagar et al., 2015). Additionally, a large volume of wastewater can be 

continuously treated using a defined quantity of adsorbent in the column. Reuse of 

biosorbent is also possible which makes the treatment process cheaper and more 

sustainable (Aksu et al., 2007). 

This study’s main aim was to examine chemically modified multi−metal binding 

biosorbent (MMBB) in a packed bed column. Its biosorptive potential for removing 

heavy metals in batch system has been documented in previous studies (Abdolali et al., 

2016; Abdolali et al., 2015). In the present work, the influences of bed height, flow rate 

and initial concentration on packed bed reactors performance have been investigated 

and the possibility of regeneration and reuse studied.  To evaluate the ability and 

applicability of MMBB in a real life situation, the MMBB packed−bed column was 

applied to a real wastewater. Moreover, Thomas, Dose Response and Bed Depth 

Service Time (BDST) models were applied for experimental data to simulate the 

breakthrough curves and to find the column capacity in order to predict the scale−up of 

a unit plant. 

2. Material and methods 

2.1 Synthetic water and real wastewater 

The synthetic stock solutions containing Cd, Cu, Pb and Zn were prepared by dissolving 

cadmium, copper, lead and zinc nitrate salt, Cd(NO3)2·4H2O, Cu3(NO)2·3H2O, 



  

 

Pb(NO3)2 and Zn(NO3)2·6H2O in Milli−Q water. All the reagents used for analysis were 

of analytical reagent grade from Scharlau (Spain) and Chem−Supply Pty 

Ltd (Australia).  Concerning the removal of any inaccuracies in metal concentration, all 

stock solutions with metal concentrations of 3000mg/L were examined by MP−AES to 

correct their concentration for use in experiments with the required amounts. 

The real wastewater employed in this study was the primary effluent, downstream of the 

Malabar WWTP sedimentation tanks collected from Sydney WaterPlant, NSW, 

Australia. Prior to the adsorption test, the sewage was settled for 24 h, filtered using a 

150 m sieve, and used for column adsorption tests without any pH alterations. The 

concentrations of Cd, Cu, Pb and Zn and major quality parameters of the solutions 

before and after passing through the column were determined according to standard 

procedures. Since the concentrations of Cd, Cu, Pb and Zn were very low, an 

appropriate amount of metallic nitrate salts were added to provide the desired initial 

concentrations for each metal ion which was 20 mg/L. It is necessary to mention that 

this concentration was applied firstly as to be close to those values from industrial 

electroplating processes (Long et al., 2014; Bulgariu and Bulgariu, 2016) and secondly, 

in order to compare the breakthrough curves obtained from synthetic solution with the 

ones of the semi−simulated real wastewater in similar conditions. 

2.2 Preparation of adsorbents  

The biosorbent was a combination of tea waste (TW), maple leaves (ML) and mandarin 

peel (MP) with weight ratio of 3, 2 and 1, respectively. These biosorbents displayed 

better biosorptive capacity for cadmium, copper, lead and zinc among a group of 

low−cost and very available lignocellulosic wastes and by−products. According to 

previous studies (Abdolali et al., 2015, 2016), all biosorbents were dried separately in 



  

 

oven (Labec Laboratory Equipment Pty Ltd., Australia) over night. Having ground, 

sieved (RETSCH AS-200, Germany) and then kept in desiccator prior to use. For 

chemical modification, pretreatment with the mixture of 250 mL NaOH (0.5M) and 250 

mL CaCl2 (1.5M) solutions in 500mL ethanol showed better performance.  10 g of each 

biosorbent was soaked in 1 L of mentioned mixture thoroughly shaken (150 rpm) for 24 

hr at room temperature of 23oC. Afterwards, all materials were filtered and rinsed several 

times with distilled water to remove any free chemicals until the neutral pH to be 

obtained and dried in oven over night.  

2.3 Continuous biosorption experiments 

The continuous sorption of Cd(II), Cu(II), Pb(II) and Zn(II)by MMBB was done in a 

mini glass column100 cm long and an inner radius of 22 mm. 5, 10, 15 g of biosorbent 

(particle size distribution=425−600 μm) mixture were uniformly packed into the 

column with respective bed height of 9.5, 21 and 31cm. A disk with a 150 m pore was 

constructed on the bottom of the glass column to support the biosorbent and also 

prevent any loss. The column was first filled with glass beads (~5cm) at the bottom. It 

was then packed with 2 g glass wool (about 2 cm), modified MMBB, 2 g of glass wool 

and this was followed by another layer of glass beads (~5 cm) for an even liquid flow 

across the column’s cross−sectional area. The glass wool prevented venting of MMBB 

accompanied by effluent.The column was packed with a defined amount of MMBB (5, 

10, 15 g) to achieve the desired bed height. Once the columns were filled, the 

biosorbent beds were fully immersed by distilled water, and then the bed was left to 

swell to ensure complete air bubbles expulsion. Following this the column was 

compacted by gravity. The fixed bed’s packing was kept at a constant density. To 

ensure consistent packing porosity, the column was packed at varied bed heights using a 



  

 

constant bulk density of MMBB which was determined from the packing bulk density 

in a 0.5 m high column. 

Column leaching experiments were conducted at room temperature, and the leaching 

rate was maintained at 10, 20 and 30 mL/min. In other word, the superficial velocity (v) 

also called hydraulic loading rate (HLR) was kept at 1.578 m3/m2.h, 3.156 m3/m2.h and 

4.734 m3/m2.h. The metal solutions were fed into the top of the column from a 20 L 

storage tank using a mechanical pump. The feed solution containing various heavy 

metal concentrations (10, 20, 30 mg/L) passed through the column in a downward 

direction at different flow rates (10, 20, and 30 mL/min) or HLR of 1.578 m3/m2.h, 

3.156 m3/m2.h and 4.734 m3/m2.h.  

The top of the column was connected to a peristaltic pump (Masterflex® Console Drive, 

Model No. 77521−47, Cole−Parmer Instrument Company) using a silicone tube to 

obtain a constant steady downward flow. These experimental parameter values were 

selected to be as close as possible to those derived from industrial electroplating 

processes which have been used by other researchers.A stream of synthetic or 

semi−simulated real wastewater was pumped through the column. 10 mL samples were 

collected at predefined time intervals to: firstly, assess the residual concentration of 

metals; and secondly, determine the retained amount of heavy metal by Microwave 

Plasma−Atomic Emission Spectrometer, MP−AES (Agilent Technologies, USA). In 

order to ensure the formation of a complete breakthrough curve, each experiment was 

run for approximately 10 hr. The samples were taken at 15 min intervals in the first 4 hr 

and then at 30min intervals for the rest of the experiment. 

One of the most important factors in measuring the feasibility of a biosorbent in a real 

and practical application is the performance of biosorption process in a continuous fixed 



  

 

bed column. In fact, the results from batch studies only present the biosorption 

equilibrium and kinetics (Shanmugaprakash and Sivakumar, 2015).Therefore, in order 

to predict the performance of MMBB to remove Cd(II), Cu(II), Pb(II) and Zn(II) ions in 

the continuous mode, the experiments were carried out in a continuous reactor. The 

performance of the fixedbedcolumn was studied by varying the efficiency of the flow 

rate, influent concentration and bed height. 

Based on the results obtained from batch studies (Abdolali et al., 2015), metal 

adsorption onto modified MMBB was strongly pH dependent and the optimum pH 

value was observed at 5.5±0.1. Thus in the continuous mode experiments, the pH value 

of the synthetic solution was adjusted to 5.5±0.1. The municipal wastewater collected 

from Sydney Water was not contaminated by Cd, Cu, Pb and Zn, and therefore an 

appropriate amountof metallic nitrate salts were added to provide the desired initial 

concentrations of 20 mg/L of each metal ion. The pH of this semi−simulated real 

wastewater was 5.9±0.1, and no change in pH value was required for the actual 

application of modified MMBB in a fixedbed column.  

2.4 Continuous desorption experiments  

 The desorption study in batch experiments showed that 0.1 M HCl (5g/L) was the best 

desorption agent (Abdolali et al., 2015). Prior to conducting the desorption test, the 

metal−loaded fixed−bed column was thoroughly washed with a large amount of 

distilled water for 30 min (20 mL/min) to eliminate unbound heavy metal ions. After 

each desorption cycle by passing 0.1 M HCl (10 mg/L), the column was washed with 

distilled water for 30 min (20 mL/min) in order to eliminate the rest of the acid placed 

in the bed. Then 1 M CaCl2 solution with flow rate of 10 mL/min passed through the 

column to regenerate the used biosorbent. The column was followed by rinsing again 



  

 

using distilled water for 30 min (20 mL/min) and then run for another biosorption cycle 

(10 mL/min). 

2.5 Calculations 

The column capacity, qc (mg), for a given inlet concentration and flow rate is equal to 

the area under the plot of the adsorbed metal concentration, where Ci and Ce (mg/L) are 

the influent and effluent metal ion concentrations, respectively, versus time (min) and is 

calculated as follows (Martín−Lara et al., 2016): 

         (1) 

        (2) 

where Q is the flow rate (mL/min), A is the area under the breakthrough curve and t 

(min) could be ttotal, tsat or tb that represent the total flow time, the saturation or 

exhaustion time (Ce/Ci=90%), or the breakthrough time (Ce/Ci=10%), respectively (for 

more calculations, see Supplementary Material A). 

The elution efficiency (%E) can be obtained by dividing the amount of metal desorbed 

by the amount of metal adsorbed in the previous biosorption stage and the amount of 

metal remaining on the biosorbent following desorption. As a result, the efficiency 

removing metal ions was determined for each cycle using the following equations: 

        (3) 

          (4) 

         (5) 

where qe,d is g of desorbed metal per g of adsorbent and M is the total mass of the 

biosorbent in the column.  In the first cycle the adsorbent is free of heavy metal ions 

(qi=0), but in the consecutive cycles qi (mg/g) is different from zero, as the desorbing 



  

 

agent was not completely efficient. Hence, some heavy metal ions were retainedat the 

adsorbent binding sites (Martín−Lara et al.,2016). 

2.6 Fixed bed biosorption process analysis and modelling 

In continuous biosorption systems, the concentration profiles in the liquid and adsorbent 

phases vary in both space and time. The mathematical and quantitative modelling 

approaches are applied for design and optimization of fixed−bed columns. 

Consequently, from the perspective of process modelling, the dynamic behaviour of a 

fixed−bed column can be described in terms of the effluent concentration−time profile, 

i.e. the breakthrough curves (Chu, 2004). Several models have been applied to predict 

the breakthrough performance, calculate the column kinetic constants and evaluate the 

fixed−bed columns’ adsorption capacity (Cruz−Olivares et al., 2013). 

Thomas model (Th) 

        (6) 

where kTh is the Thomas rate constant (mL/ mg min) and qTh is the maximum adsorption 

capacity for heavy metal ions (mg/g). 

Dose Response model (DR) 

         (7) 

where a is a constant and qD−R is the maximum adsorption capacity for heavy metal ions 

(mg/g) calculated by the Dose Response model. 

Yoon–Nelson model (YN) 

        (8) 

where kY−N is the Yoon–Nelson proportionality constant (1/min) and  is the time 

required for retaining 50% of the initial adsorbate (min). 



  

 

Bed Depth Service Time (BDST) model 

        (9) 

where NBDST is the biosorption capacity (mg/L), v is the linear flow velocity of metal 

solution through the bed (cm/h), kBDST is the adsorption rate constant that describes the 

mass transfer from the liquid to the solid phase (L/mg h), and L is the bed height (cm). 

3. Results and discussion 

The breakthrough curve showed the relative concentrations (Ct/Ci) on the y−axis versus 

time (t in min) on the x−axis. The column studies were conducted at the optimum pH 

value of 5.5±0.1 (from theprevious batch system studies (Abdolali et al., 2016; Abdolali 

et al., 2015) for synthetic solutions to be representative of environmentally relevant 

conditions. The pH value of real wastewater did not change after adding the heavy 

metal salts because it was 5.9±0.1 and above the optimal pH. All the breakthrough 

curves followed the typical S−shape curve for column operation as the ratio of the 

effluent concentration at time t (Ct) to the influent concentration (Ci) versus time or 

throughput volume.The breakthrough curve’s shape is determined by the shape of the 

equilibrium isotherm and any individual transport process can change it (Long et al., 

2014). The most efficient adsorption performance will be obtained when the shape of 

the breakthrough curve is as sharp as possible (Chu, 2004). Results show that the 

adsorption of each metal ion onto the biomass surface strongly depended on the flow 

rate (Acheampong et al., 2013; Cruz−Olivares et al., 2013; Aksu et al., 2007). Initially 

each metal ion was rapidly adsorbed on the biomass due to the high availability of 

active sites. In consequence, the metal ions were captured around or inside the cells; 

meanwhile the effluent from the bottom of the bed was almost free of solute. As the 



  

 

solution continued to flow, due to the gradual occupancy of the available active sites, 

the uptake became less effective and, accordingly, the outlet concentration started to 

increase until the saturation point was reached or at least until the outlet concentration 

was 90% of inlet concentration. 

3.1 Effect of flow rate 

The breakthrough curves at three different flow rates (10, 20 and 30 mL/min; HLR of 

1.578 m3/m2.h, 3.156 m3/m2.h and 4.734 m3/m2.h) are shown in Figure 1. The bed 

height was constant at 21 cm and the initial metal concentration at 20 mg/L. An increase 

in the flow rate reduced the volume of effluent treated before the bed became saturated 

and decreased the service time of the bed and vice versa. The slower flow rate provides 

more residence time for mass transfer into the pores, subsequently allowing metals ions 

to access more active sites within the adsorbent.Consequently better adsorption capacity 

was achieved. Increasing the flow rate increased the steepness of the breakthrough 

curves. Also, the breakpoint time as well as saturation occurred faster with a higher flow 

rate. In other words, by increasing the flow rate the external film diffusion mass transfer 

resistance decreases, culminating in fast saturation and early breakthrough time. 

Moreover, with a decrease in linear flow rate, the intra−particle diffusion becomes more 

effective due to longer residence time. An increase in the contact time between 

metal−containing solution and the biosorbent in a packed−bed column at lower influent 

flow rates explained this result. The best performance was obtained at the lowest flow 

rate. Generally, the column’s removal efficiency fell when the flow rate increased, and 

the mass transfer zone decreased when the flow rate ebbed (Riazi et al., 2016). The 

biosorption capacity in a flow rate of 10 mL/min was 23.72, 43.32, 54.53 and 19.36 

mg/g for Cd, Cu, Pb and Zn, respectively, which was higher than the other two flow 



  

 

rates of 20 and 30 mL/min.These findings agree with those documented in another 

study (Acheampong et al., 2013). 

Figure 1 

3.2 Effect of bed depth  

Figure 2 presents the breakthrough curves of Cd(II), Cu(II), Pb(II) and Zn(II) 

biosorption onto MMBB obtained at various bed depths with a metal concentration of 

20 mg/L and a constant flow rate of 10 mL/min (HLR of 1.578 m3/m2.h). Three bed 

depths of 9.5, 21 and 31 cm, corresponding to 5, 10 and 15 g dry weight of MMBB, 

respectively, were investigated. The breakthrough curves (Figure 2) indicate that the 

breakthrough time and exhaustion (or saturation) time increased remarkably with an 

increase in bed depth from 9.5 to 31 cm. Breakthrough occurred at 77, 48, 32 and 45 

min for 9.5 cm and 172, 180, 150 and 105 min for 31 cm bed height within Cd, Cu, Pb 

and Zn biosorption, respectively. A similar raising pattern can be obtainedfor saturation 

time. This was attributed to the more adsorbent−specific surface and more available 

metal binding sites at higher bed height, which meant that consequently the total 

adsorbed metal ions increased. Moreover, an increase in the bed depth resulted in a wide 

mass transfer zone, which made the breakthrough curves moderately steeper. In fact 

when the bed depth increased, the diffusion mass transfer predominated in comparison 

with the axial dispersion phenomenon. For that reason, an enormous increase in the 

breakthrough time was observed. As Riazi et al. (2016) and Acheampong et al. (2013) 

reported for better performance of a fixed−bed column, the biosorbent’s higher bed 

height would be more desirable if more active binding sites are to be provided. 

Figure 2 

3.3 Effect of inlet metal concentration 



  

 

The effect of initial concentration on the breakthrough curves is shown in Figure 3, 

using a bed depth of 21 cm at a flow rate of 10 mL/min (HLR of 1.578 m3/m2.h).  The 

breakthrough curves of Cd2+, Cu2+, Pb2+ and Zn2+ were obtained from variations in the 

metal concentrationin the column influent with time. As can be seen in Figure 3 the 

shape and gradient of the breakthrough curves changed significantly with an increase in 

metal concentration. The higher influent metal concentration resulted in the faster 

breakthrough and saturation and as a consequence the sharper breakthrough curves 

shifted to the left. This earlier exhaustion might be a result of two things: firstly, greater 

concentration gradient; and secondly, smaller mass transfer resistance at a higher metal 

concentration. The breakthrough times were 281.6, 279.2, 171.0 and 221.6 min for Cd, 

Cu, Pb and Zn, respectively, using an influent metal concentration of 10 mg/L. When 

the influent metal concentration was increased to 30 mg/L, breakthrough took place in 

about 127.5, 158.3, 94.1 and 125 min for Cd, Cu, Pb and Zn, respectively.  

As presumed, an increase in inlet metal concentration (10 to 30 mg/L) gave an earlier 

saturation time from 510 to 225, 420 to 250, 277.5 to 165 and 430 to 195 for Cd, Cu, Pb 

and Zn, respectively. These results demonstrated that the diffusion process of metal 

removal is highly concentration dependent (Bennani et al., 2015). Due to higher influent 

concentrations, higher driving force for mass transfer and larger concentration gradient 

was expected. In addition, a decrease in the diffusion coefficient or mass transfer 

coefficient led to a lower concentration gradient and a slower mass transport of heavy 

metal ions from the film layer to the adsorbent’s surface. These results confirmed that 

the change of initial concentration as a driving force affects the saturation rate, 

breakthrough time and adsorption zone length (Chen et al., 2012;Baral et al., 2009; 

Aksu et al., 2007).The dynamic adsorption capacities of cadmium, copper, lead and zinc 



  

 

raised from 13.04, 28.90, 32.73 and 11.73mg/g to 35.96, 47.51, 81.92 and 33.05mg/g, 

respectively, by elevating the inlet metal concentration from 10 to 30 mg/L. 

Figure 3 

3.4 Breakthrough curve modelling  

Table 1 lists the calculated parameters of Thomas, Yoon–Nelson and Dose Response 

models derived from the experimental data when initial influent concentration, flow rate 

and bed depth were varied. The best results for adsorption capacity were obtained at a 

flow rate of 10 mL/min (HLR of 1.578 m3/m2.h) and height of the bed of 31 cm. All 

parameters and the models’ correlation coefficient values were generated by MATLAB 

nonlinear curve fitting tools. The correlation coefficient values indicate a proper 

agreement between the experimental and column data generated using the models 

(Table 1). From Table 1, for Thomas and Dose Response models the values of the 

calculated adsorption capacity increased as initial concentration rose.This is because at a 

higher concentration, mass transfer is enhanced due to themass gradient’s higher driving 

force, and led to an improvement in the adsorption capacity. Where external and 

internal mass diffusion steps are not the limiting steps, Thomas and Dose Response 

models are suitable for describing the adsorption processes (Cruz−Olivares et al., 

2013).Moreover, the values of maximum biosorption capacities calculated from fitting 

the experimental data to Thomas and Dose Response models were also very similar.The 

results showed that the Yoon–Nelson model less adequately matches the experimental 

data (the values of R2). The time required to reach 50% of the retention decreaseswhen 

the inlet concentration increased, due to rapid saturation in the higher concentration.  

Table 1 



  

 

3.4.1 Comparative study 

From Table 1, the highest metal adsorption capacities of modified MMBB at the 

exhaustion times were 38.25, 63.37, 108.12 and 35.23 mg/g for Cd, Cu, Pb and Zn, 

respectively. The maximum biosorption capacity values were achieved for a bed height 

of 31 cm, flow rate of 10 mL/min (HLR of 1.578 m3/m2.hn) and initial metal 

concentration of 20 mg/L, particle size of 425−600 m, and influent pH of 5.5. 

Biosorption capacity of Pb was the highest in comparison to those of other metals due to 

better affinity towards biosorbents. This phenomenon can be confirmed by calculating 

the Langmuir parameter of bL representing this attraction.  In addition, thermodynamic 

study revealed that except for zinc, calculated S° values for cadmium, copper and lead 

were positive, reflecting the increased randomness at the solid/solution interface during 

sorption. It also indicates an affinity of the sorbent towards Cd, Cu and Pb ions 

(Abdolali et al., 2016; Abdolali et al., 2015). Biosorption capacities of some biosorbents 

with reference to Cd(II), Cu(II), Pb(II) and Zn(II) removal in a packed−bed column 

study are summarised in Table 2. As observed, the biosorption capacity of modified 

MMBB is comparable with the reported biosorption capacities. It is, however, too 

difficult to conclude which adsorbent performed better since experimental operating 

conditions were completely different. 

Table 2 

3.4.2 Scale−−−−up study 

The BDST model was derived from the equation described by Adams–Bohart, but was 

modified by Hutchins (Izquierdo et al., 2010). It is one of the most widely used models 

that describes heavy metal adsorption in a fixed−bed column. BDST is a simple model 

able to predict the relationship between the depth and service time in terms of metal 



  

 

concentration and biosorption parameters. The model is based on physically measuring 

the capacity of the bed at different breakthrough values, i.e. 10%, 30%, 60% and 90%. 

It ignores the intra−particle mass transfer resistance and neglects the external film 

resistance. As a result, the adsorbate is directly adsorbed onto the biosorbent surface.  

According to the BET analysis MMBB has a specific surface area of 1.3 m2/g with an 

average pore diameter of 5.55 nm. The atomic radius of cadmium, copper, lead and zinc 

is 0.230, 0.140, 0.202 and 0.139 nm, respectively. Then the sorption process can take 

place on the surface and inside the pores. Iso−concentration lines for removing Cd, Cu, 

Pb and Zn ions in a fixed bed at Ct/Ci= 10%, 30%, 60% and 90% were determined (see 

Supplementary Material B). As presented in Table 3, a consistent increase in slopes and 

a subsequent increase in the corresponding dynamic sorption capacity, NBDST, were 

observed for Ct/Ci ratios of 10–90%. Apart from this the rate constant, kBDST, outlined 

the rate of solute transfer from the fluid phase to the solid phase. The kBDST value 

declined at higher Ct/Ci ratio due to progressive binding sites saturation during heavy 

metal removal. Moreover, at 50% breakthrough, Ct/Ci=2, therefore reducing the 

logarithmic term of the BDST equation to zero with a good correlation coefficient, 

suggested the BDST model’s conformity with the sorption of Cd, Cu, Pb and Zn by 

modified MMBB. The critical bed depth, Lcritical, is calculated by setting t=0 and Ct=Cb. 

The critical bed depths of Cd, Cu, Pb and Zn adsorption were 8.64, 1.90, 3.21 and 7.43 

cm, respectively. This value presents the minimum theoretical bed height of the 

adsorbent in a packed−bed column which is sufficient such that the effluent 

concentration at t=0 will not exceed the breakthrough concentration, Cb. In addition the 

calculated depth of the adsorption zone for all metals was about 19 cm and the Empty 

Bed Contact Time (EBCT) was 8.0 min. The data obtained from laboratory is used as 



  

 

the basis for designing a pilot scale and full or industrial scale adsorption column (see 

Supplementary Material B). One of the most important design parameters is bed depth 

for a specific adsorption service time. 

Table 3 

3.5 Applicability of modified MMBB packed−−−−bed column in treating a real 

wastewater 

The purpose of the biosorption process is to remove pollutants from industrial 

wastewater effluents which regularly contain other anions and cations rather than 

specified heavy metal ions. For this reason, continuous biosorption process experiments 

were also done under identical experimental conditions utilising a semi−simulated 

wastewater as the column feed. All the laboratory experiments were conducted in 

accordance with national and institutional guidelines for the protection of human 

subjects and animal welfare.  

As mentioned before, the real wastewater used in this study was the primary effluent, 

downstream of the Malabar WWTP sedimentation tanks collected from Sydney Water 

Plant NSW, Australia. Prior to the adsorption test the sewage was settled for 24 h, 

filtered using a 150 m sieve, and used for column adsorption tests without any pH 

alterations.  

The municipal wastewater composition was determined as follows: pH 7.37±0.1, 

salinity 0.45‰, turbidity 83.5 NTUs, electrical conductivity 863 S/cm,total dissolved 

solids (TDS) 567 mg/L, total suspended solids (TSS) 97 mg/L, ammonium 62 mg/L, 

nitrate 3.45 mg/L, orthophosphate 5.4 mg/L, total organic carbon (TOC) 21.55 mg/L, 

chemical oxygen demand (COD) 246 mg/L, chloride 118.32 mg/L, calcium 28.62 

mg/L, magnesium 9.67 mg/L, iron 0.29 mg/L, copper 0.2 mg/L, lead 0.35 mg/L, 



  

 

manganese 0.05 mg/L, nickel 0.03 mg/L. Furthermore the zinc and cadmium were 

undetectable. Obviouslythe concentration of heavy metals was negligible in municipal 

wastewater. Hence an appropriate amount of metallic nitrate salts was added to provide 

the desired initial concentrations of 20 mg/L of each metal ion. The concentrations of 

Cd, Cu, Pb and Zn and major quality parameters of the solutions before and after 

passing through the column were determined according to standard procedures. 

The results presented in Figure4 indicate that the modified MMBB packed−bed column 

removed more than 90% of Cd(II), Cu(II), Pb(II) and Zn(II) ions from 3227, 2617, 1714 

and 2019 mL municipal wastewater in 322, 261, 171 and 201 minutes, respectively. 

From Figure 4, the breakthrough time and the dynamic biosorption capacity of 

cadmium, copper, lead and zinc eliminated from the municipal wastewater were quite 

similar to those from the synthetic solution. Moreover, by using a column packed with 

only 10 g of modified MMBB, the levels of copper, lead and zinc concentrations in the 

effluent were within the recommended standard discharge limit of heavy metal ions 

(about 5, 10 and 10 mg/L, respectively). Cadmium has been identified as the major 

heavy metal of concern which needs to be remedied using another treatment method. As 

a result of successful metal removal by modified MMBB column, the effect of 

co−existing ions in the municipal wastewater on the continuous adsorption process 

could be negligible. It is also proven that modified MMBB can remove heavy metal 

ions from real municipal wastewater in the dynamic adsorption system.However, if 

behaviour in batch reactors is compared to performance in a fixed bed column utilising 

the same operating conditions, biosorption capacities of copper and lead are higher 

when the biosorption process is carried out in a fixed bed column. According to Gupta 

et al. (2004), because a large concentration gradient continuously presents at the 



  

 

interface zone as the metal solution passes through the column, a higher column 

capacity can be obtained whereas the concentration gradient decreases with time in 

batch experiments. 

Figure 4 

3.6 Continuous sorption and desorption experiments 

Regeneration of metal−loaded adsorbent, subsequent reuse of the biosorbent and 

recovery of adsorbate (if possible) would make the wastewater treatment process 

economically feasible, reasonable and sustainable (Jain et al., 2013; Naddafi et al., 

2007). The main factors for choosing suitable eluents and regenerating agents are the 

type of biosorbent and the biosorption mechanism (Bhatnagar et al., 2015). 

In batch studies, desorption of Cd, Cu, Pb and Zn ions was evaluated by applying 

different desorbing agents and the best eluent was hydrochloric acid The results showed 

that 0.1 M HCl effectively desorbed 96.33%, 99.93%, 76.26% and 91.93%, 

respectively, for cadmium, copper, lead and zinc. The spent adsorbent was regenerated 

by 1 M CaCl2. Calcium chloride can increase the stability and reusability of MMBB and 

repairing the damage caused by the desorbing agents. It can also remove the excess 

protons after each elution and thereby provide new binding sites. This observed 

mechanical stability and stiffness of the modified MMBB make it suitable for fixed bed 

column applications (Abdolali et al., 2015). Thus the reusability of modified MMBB for 

removing heavy metal from real wastewater was conducted using 0.1 M HCl (10 

mL/min) within three successive cycles of alternating sorption and desorption in a 

continuous system, supplemented by a solution of cadmium, copper, lead and zinc. The 

influent concentration of each metal was adjusted to 20 mg/L for each metal. 



  

 

The desorption of Cd(II), Cu(II), Pb(II) and Zn(II) from loaded modified MMBB took 

place rapidly. Actually, the breakthrough curves of these three cycles showed 

notangiblechange for three adsorption times especially in the first three cycles. A 

negligible loss in bed height and mass of modified MMBB was observed after three 

cycles, and the obtained results for biosorption and desorption are presented in 

Supplementary Material B. For the first adsorption step, the breakthrough of Cd(II), 

Cu(II), Pb(II) and Zn(II) was 82.4, 75, 51.6 and 83.8 min, while the exhaustion taking 

place was 423, 261.7, 171.4 and 201.7 min, also respectively. For the third time, the 

breakthrough time achieved was 55, 56.2, 42.3 and 53.6 min and exhaustion time 

occurred at 270, 231, 157.5 and 186.4 min. After three cycles of sorption, desorption 

and regeneration, there was a modest decline in the metal uptake at the exhaustion times 

which were 49.94, 50.76, 56.38 and 53.87% for Cd, Cu, Pb and Zn, respectively. It 

means the regenerated modified MMBB was still able to remove heavy metal ions even 

after the third cycle with moderately similar removal efficiency (Table 4). Nonetheless a 

decrease in the total amount of heavy metal removal was probably due to possible 

biosorbent damage. 

Table 4 also shows that some heavy metal ions are irreversibly bound to the surface of 

modified MMBB. The desorption efficiency amounts decreased when the number of 

cycles rose from 48.08, 47.61, 57.37 and 45.88% in the first cycle to 22.80, 23.69, 34.44 

and 23.80% in the third cycle for Cd, Cu, Pb and Zn. Biosorption and desorption 

efficiency progressively decreased, as the biosorption and desorption cycles continued 

as reported by Bulgariu and Bulgariu (2016). 

Figure 5 indicates the desorption curves obtained for Cd, Cu, Pb and Zn. These 

unsymmetrical−shaped desorption curves are very similar. The initial metal 



  

 

concentration increase is followed by a flatter reduction in that within the first 30 min, 

the maximum concentration peak was achieved for all heavy metal ions in the first 10 

min. The advantage of applying acidic eluent with a higher desorption rate was reported 

by Martín−Lara et al. (2016). Moreover, from these desorption profiles, the maximum 

concentration peak, Cp (mg/L), in which the eluted metal concentration reached to its 

maximum value at the time of tp (min) can be measured. The peak information provides 

a clue to the elution rate. 

Figure 5 and Table 4 

4. Conclusions 

Although all of the predictive models explained the dynamic behaviour of the 

breakthrough curves fairly well, the Thomas model strongly correlated the experimental 

data, as deduced from the statistical calculated parameters (i.e. R2>0.99). Furthermore, 

the BDST model was utilised successfully for the evaluation of the column’s 

performance. The results obtained from column regeneration demonstrated that reusing 

the modified MMBB is feasible. This study also indicated that modified MMBB could 

serve as a viable low−cost potential biosorbent for the removal of Cd(II), Cu(II), Pb(II) 

and Zn(II) ions from aqueous solution in a continuous column mode. 
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Figure Caption: 

Figure 1 Effect of influent flow rate on the breakthrough curve of Cd, Cu, Pb and Zn adsorption 

onto modified MMBB (pH 5.5±0.1, bed heights = 21 cm, influent metal concentration = 20 

mg/L, particle size =425-600 m, room temperature = 23oC) 

Figure 2 Effect of bed height (MMBB weight= 5, 10 and 15 gr) on the breakthrough curve of 

Cd, Cu, Pb and Zn adsorption onto modified MMBB (pH 5.5±0.1, influent flow rate = 10 

mL/min or HLR = 1.578 m3/m2.h , influent metal concentration = 20 mg/L, particle size = 425-

600 m, room temperature = 23oC ) 

Figure 3 Effect of influent metal concentration on the breakthrough curve of Cd, Cu, Pb and Zn 

adsorption onto modified MBB (pH 5.5±0.1, bed heights = 21 cm, influent flow rate = 10 L/min 

or HLR = 1.578 m3/m2.h, particle size = 425-600 m, room temperature = 23oC) 

Figure 4 Breakthrough curves of Cd, Cu, Pb and Zn adsorption onto modified MMBB from 

synthetic and semi-simulated municipal wastewater (bed heights = 21 cm, influent flow rate = 

10 mL/min or HLR =1.578 m3/m2.h, influent each metal concentration = 20 mg/L, particle size 

= 425-600 m, room temperature = 23oC) 

Figure 5 Desorption kinetic of Cd, Cu, Pb and Zn adsorbed on modified MMBB (10 g , 

desorption solution = 0.1 M HCl, flow rate = 10 mL/min or HLR = 1.578 m3/m2.h) 

 
 



  

 

 

Figure 1 Effect of influent flow rate on the breakthrough curve of Cd, Cu, Pb and Zn adsorption 
onto modified MMBB (pH 5.5±0.1, bed heights = 21 cm, influent metal concentration = 20 

mg/L, particle size =425-600 m, room temperature = 23oC) 
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Figure 2 Effect of bed height (MMBB weight= 5, 10 and 15 gr) on the breakthrough curve of 
Cd, Cu, Pb and Zn adsorption onto modified MMBB (pH 5.5±0.1, influent flow rate = 10 

mL/min or HLR = 1.578 m3/m2.h, influent metal concentration = 20 mg/L, particle size = 425-
600 m, room temperature = 23oC) 
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Figure 3 Effect of influent metal concentration on the breakthrough curve of Cd, Cu, Pb and Zn 
adsorption onto modified MBB (pH 5.5±0.1, bed heights = 21 cm, influent flow rate = 10 L/min 

or HLR = 1.578 m3/m2.h, particle size = 425-600 m, room temperature = 23oC) 
 

 

 
 

Figure 4 Breakthrough curves of Cd, Cu, Pb and Zn adsorption onto modified MMBB from 
synthetic and semi-simulated municipal wastewater (bed heights = 21 cm, influent flow rate = 
10 mL/min or HLR = 1.578 m3/m2.h, influent each metal concentration = 20 mg/L, particle 

size = 425-600 m, room temperature = 23oC) 
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Figure 5 Desorption kinetic of Cd, Cu, Pb and Zn adsorbed on modified MMBB (10 g , 
desorption solution = 0.1 M HCl, flow rate = 10 mL/min or HLR = 1.578 m3/m2.h) 
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Table 1 Thomas, Yoon-Nelson and Dose Response model constants for Cd, Cu, Pb and 

Zn adsorption onto modified MMBB column (pH 5.5±0.1, particle size = 425-600 m, 

room temperature) 

Table 2 Dynamic adsorption capacity of cadmium, copper, lead and zinc onto different 

adsorbents 

Table 3 Parameters predicted from the BDST model for biosorption of Cd, Cu, Pb and Zn on 

MMBB (5, 10 and 15 g or 9.5, 21 and 31 cm) in a fixed-bed column 

Table 4 Desorption parameters for three cycles of biosorption and desorption cycles with semi-

simulated municipal wastewater 



  

 

Table 1 Thomas, Yoon-Nelson and Dose Response model constants for Cd, Cu, Pb and Zn adsorption onto modified MMBB column (pH 
5.5±0.1, particle size = 425-600 m, room temperature) 
Metal Conditions   Thomas  Yoon-Nelson  Dose Response 

 Q Bed height Ci q  kTh qTh R2  kY-N  R2  a qD-R R2 

Cd 10 21 20 23.72  0.485 23.66 0.991  0.016 210.7 0.971  3.128 23.53 0.989 

 20 21 20 12.43  0.572 12.36 0.998  0.023 155.2 0.987  3.271 11.95 0.991 

 30 21 20 4.55  0.768 4.52 0.994  0.034 127.8 0.993  4.393 4.46 0.988 

 10 21 10 13.04  1.358 13.03 0.999  0.027 282.4 0.986  3.768 12.81 0.988 

 10 21 30 35.96  0.483 35.93 0.996  0.025 130.9 0.996  3.265 34.74 0.985 

 10 9.5 20 14.10  1.921 14.03 0.992  0.038 101.6 0.987  3.941 13.61 0.984 

 10 31 20 38.25  0.238 38.07 0.994  0.029 283.2 0.990  4.575 37.76 0.989 

Cu 10 21 20 43.32  0.615 43.18 0.994  0.025 210.6 0.991  4.962 42.43 0.991 

 20 21 20 24.30  0.751 24.23 0.996  0.029 178.6 0.992  5.334 24.03 0.990 

 30 21 20 14.42  1.191 14.38 0.995  0.036 128.0 0.994  5.328 14.14 0.989 

 10 21 10 28.90  2.123 28.88 0.999  0.033 279.5 0.985  5.656 28.38 0.993 

 10 21 30 47.51  0.879 47.46 0.997  0.026 158.2 0.997  4.081 46.99 0.993 

 10 9.5 20 28.25  1.525 28.03 0.992  0.034 142.7 0.985  4.222 27.26 0.990 

 10 31 20 63.37  0.773 63.14 0.991  0.038 321.7 0.988  4.668 63.27 0.992 

Pb 10 21 20 54.53  0.749 54.48 0.996  0.032 126.1 0.985  3.739 54.25 0.995 



  

 

Metal Conditions   Thomas  Yoon-Nelson  Dose Response 

 Q Bed height Ci q  kTh qTh R2  kY-N  R2  a qD-R R2 

 20 21 20 27.74  0.988 27.64 0.993  0.039 95.9 0.989  3.686 26.91 0.991 

 30 21 20 12.67  1.549 12.54 0.994  0.045 79.9 0.993  3.543 11.78 0.991 

 10 21 10 32.73  0.871 32.61 0.995  0.032 174.1 0.986  5.722 32.41 0.992 

 10 21 30 81.92  0.168 81.87 0.992  0.037 196.2 0.991  5.799 81.19 0.990 

 10 9.5 20 19.02  2.36 17.88 0.992  0.047 89.4 0.984  4.074 17.84 0.992 

 10 31 20 108.12  0.295 107.27 0.991  0.026 186.3 0.990  4.418 103.64 0.989 

Zn 10 21 20 19.36  0.542 19.18 0.993  0.033 178.6 0.982  5.572 19.24 0.987 

 20 21 20 10.95  0.855 10.89 0.998  0.034 136.7 0.986  4.431 10.33 0.988 

 30 21 20 3.68  1.710 3.50 0.993  0.032 105.9 0.972  3.134 3.60 0.987 

 10 21 10 11.73  1.684 11.56 0.993  0.035 218.6 0.984  4.401 11.54 0.991 

 10 21 30 33.05  0.068 32.93 0.997  0.032 123.1 0.987  3.905 32.47 0.992 

 10 9.5 20 16.32  2.263 16.25 0.997  0.045 81.23 0.985  3.492 15.55 0.989 

 10 31 20 35.23  0.153 35.15 0.995  0.041 256.3 0.989  5.132 34.79 0.987 

Notation:  bed depth (cm); Q, flow rate (mL/min); Ci, influent metal concentration (mg/L); q, adsorption capacity (mg/g); kTh, Thomas model rate 
constant (mL/mg min), qTh, Thomas sorption capacity (mg/g); kY-N, Yoon-Nelson model rate constant (1/min); , the time required for 50% 
breakthrough (min), a is a constant and qD-R is Dose Response model adsorption capacity of heavy metal ions (mg/g) 
 



  

 

Table 2 Dynamic adsorption capacity of cadmium, copper, lead and zinc onto different adsorbents 
Adsorbent/adsorbate 
 

Ci 
(mg/L) 

Bed depth 
(cm) 

Q  
(mL/min) 

qTh 

(mg/g) 
qexp 

(mg/g) 
Reference 
 

Pongamia oil cake /Zn 100 15 5 49.7 84.2 Shanmugaprakash and Sivakumar, 2015 

Citrus Maxima peel/Cd 300 2 3 144 - Chao et al., 2014 

Citrus Maxima peel/Cu 300 2 3 98.1 - Chao et al., 2014 

Citrus Maxima peel/Pb 300 2 3 173 - Chao et al., 2014 

Passion fruit shell/Cd 300 2 3 55.8 - Chao et al., 2014 

Passion fruit shell /Cu 300 2 3 36.3 - Chao et al., 2014 

Passion fruit shell /Pb 300 2 3 59.4 - Chao et al., 2014 

Sugarcane bagasse/Cd 300 2 3 26.7 - Chao et al., 2014 

Sugarcane bagasse /Cu 300 2 3 22.2 - Chao et al., 2014 

Sugarcane bagasse /Pb 300 2 3 31.8 - Chao et al., 2014 

Agaricus bisporus/Pb 35 2 3 67.7 67 Long et al., 2014 

Allspice residue/ Pb 15 15 20 14.3 16.2 Cruz-Olivares et al., 2013 

Allspice residue/ Pb 25 15 20 13.4 15.9 Cruz-Olivares et al., 2013 

Sunflower waste/Cd 10 30 1 - 23.6 Jain et al., 2013 

Coconut shell/Cu 10 20 10 53.5 7.2 Acheampong et al., 2013 

Wheat straw/Cd 100 50 300 12.13 16.9 Muhamad et al., 2010 

 
  



  

 

Table 3 Parameters predicted from the BDST model for biosorption of Cd, Cu, Pb and Zn on 
MMBB (5, 10 and 15 g or 9.5, 21 and 31 cm) in a fixed-bed column 

Metal 
 

Breakpoint 
(%) 

Slope 
(hr/cm) 

Intercept 
(hr) 

NBDST 
(mg/L) 

KBDST 

(L/mg h) 
MTZ 
(cm) 

L critical 

(cm) 
R2 

Cd 10 0.073 0.631 51.63 0.167 6.23 8.64 0.992 

 30 0.09 0.676 63.65 0.060 12.44  0.995 

 60 0.102 1.359 72.14 0.014 18.92  0.991 

Cu 10 0.102 -0.194 74.39 0.528 6.74 1.90 0.998 

 30 0.118 0.229 86.06 0.172 14.19  0.999 

 60 0.153 0.072 111.59 0.262 19.06  0.994 

Pb 10 0.091 -0.292 66.99 0.347 7.19 3.21 0.992 

 30 0.126 0.17 92.75 0.230 13.19  0.999 

 60 0.147 0.077 108.21 0.243 18.82  0.999 

Zn 10 0.046 0.342 32.00 0.314 6.22 7.43 0.993 

 30 0.063 0.525 43.83 0.079 12.84  0.998 

 60 0.079 0.923 54.96 0.021 18.66  0.998 

 



  

 

Table 4 Desorption parameters for three cycles of biosorption and desorption cycles with semi-
simulated municipal wastewater 

Meta
l 

Cycl
e 

tb 
(min
) 

tsat 

(min
) 

qi 
(mg/g
) 

qc(mg/g
) 

qe,d 

(mg/g
) 

%R %E 
tp 
(min
) 

Cp 
(mg/L
) 

CFp 

Cd 1 82.4 423 0 9.58 4.61 
47.9
0 

48.0
8 9 

157.9
4 8.08 

 2 65 322.
7 

4.97 9.82 4.13 49.1
2 

27.9
4 

9 129.1
6 

6.61 

 3 55 270 5.69 9.90 3.57 49.9
4 

22.8
0 

7 111.3
5 

5.70 

Cu 1 75 
261.
7 0 9.66 4.60 

48.3
0 

47.6
1 9 

139.8
2 7.05 

 2 60 235 5.06 9.94 4.08 49.6
9 

27.2
2 

10 124.3
3 

6.27 

 3 56.2 231 5.85 10.15 3.79 
50.7
6 

23.6
9 9 117.6 5.93 

Pb 1 51.6 
171.
4 0 11.21 6.43 

56.0
4 

57.3
7 8 

223.4
0 

10.9
9 

 2 48 
166.
2 

4.78 11.23 5.98 
56.1
4 

37.3
8 

12 
211.4
2 

10.4
0 

 3 42.3 157.
5 5.24 11.28 5.69 56.3

8 
34.4
4 11 182.6

7 8.99 

Zn 1 83.8 
201.
7 

0 10.44 4.79 
52.2
0 

45.8
8 

15 
139.0
7 

6.63 

 2 63.7 195 5.65 10.70 4.38 
53.5
0 

26.7
9 

14 
117.6
1 

5.61 

 3 53.6 186.
4 6.32 10.77 4.07 53.8

7 
23.8
0 18 109.8

2 5.23 

 
 
  



  

 

Highlights 

• Dynamic behaviour of the column was described by S-shaped breakthrough 

curves. 

• Several models were applied to simulate the continuous biosorption. 

• Thomas and Dose Response models suitable for breakthrough prediction. 

• Desorption study indicated that metal-loaded modified MMBB could be eluted 

by HCl. 

• Applicability of biosorbent was tested using semi-simulated wastewater. 

 

 

 


