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Abstract The risk encountered in many environmental problems appears to ex-
hibit special “two-sided” characteristics. For instance, in a given area
and in a given period, farmers do not want to see too much or too little
rainfall. They hope for rainfall that is in some given interval. We formu-
late and solve this problem with the help of a “two-sided loss function”
that depends on the above range. Even in financial portfolio optimiza-
tion a loss and a gain are “two sides of a coin”, so it is desirable to
deal with them in a manner that reflects an investor’s relative concern.
Consequently, in this paper, we define Type I risk: “the loss is too big”
and Type II risk: “the gain is too small”. Ideally, we would want to
minimize the two risks simultaneously. However, this may be impossi-
ble and hence we try to balance these two kinds of risk. Namely, we
tolerate certain amount of one risk when minimizing the other. The
latter problem is formulated as a suitable optimization problem and
illustrated with a numerical example.
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Introduction
The risk encountered in many environmental problems appears to

exhibit special “two-sided” characteristics. The “fundamental security”
in an environmental problem may be a variable such as a rainfall or
a temperature. For instance, in a given area and in a given period,
farmers do not want to see too much or too little rainfall. They hope
for rainfall that is in some given interval. Similarly, we often hope that
the temperature is neither too high nor too low. We formulate and solve
this problem with the help of a “two-sided loss function” that depends
on the above range.

In financial mathematics, there is an extensive literature discussing
the risk of a financial portfolio using the value-at-risk concept, see [3–5,
14–18]. However, these authors consider only the “one-sided” risk using
the return of the portfolio. We argue that - even in financial context - a
loss and a gain are “two sides of a coin”, so it is desirable to differentiate
between the loss and the gain of a portfolio and deal with them in a
manner that reflects an investor’s relative concern about loss and gain.
This is because different people have different attitudes toward a loss
and a gain. Thus, it might be useful to provide models that trade-off
the aversion to these two types of risk. Trying to minimize these kinds
of risks is somewhat different from minimizing conditional value-at-risk
using the usual loss or gain function (as is done in, for instance, [14, 15]).

Based on the above discussion, we define Type I risk: “the loss is too
big” and Type II risk: “the gain is too small”. Ideally, we would want to
minimize the two risks simultaneously. However, this may be impossible
and hence we try to balance these two kinds of risk. Namely, we tolerate
certain amount of one risk when minimizing the other. In the financial
context, investors can then suitably choose parameters according to their
own attitude towards the loss and gain risk.

The paper is organized as follows: we provide a new loss function
for the two-sided problem such as rainfall or temperature. Using the
new loss function together with conditional value-at-risk, we show how
to formulate such a risk in Section 1. In Section 2 we introduce two
types of risk associated with the new loss and gain function. We suggest
a way to balance a loss and a gain in a more general case. We also
provide a criterion for users to choose parameters in these problems. Fi-
nally, in Section 3, together with the portfolio problem, we put forward
the concept and some properties of conditional value-at-risk and condi-
tional value-of-gain with the new loss and gain functions respectively.
All proofs are provided in Section 4.
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1. Two-sided risk
Risks in environmental problems are different from financial market

risk in some aspects. For example, in the rainfall problem, too much
rain or too little rain are both undesirable. Too much rain will lead to a
flood, whereas too little rain will lead to a drought. A similar problem
arises with temperature. We do not want the temperature in a location
to be too high or too low. In this section we introduce one natural
formulation of this “two-sided risk” problem.

Let a random variable (r.v.,for short) X denote the rainfall in a lo-
cation during some specific period. Let us suppose, for instance, that
farmers in this location hope that the rainfall in this season is in the
interval [ν1, ν2]. That is, exceeding ν2 or being lower than ν1 are both
risky in some sense. We shall call [ν1, ν2] the riskless interval.

Let X1 := max{ν1 − X, 0} define the lower risk random variable.
Obviously, as X falls below ν1, X1 increases above 0. Since, insufficient
rain is undesirable, so are large values of X1. Similarly, we define X2 :=
max{X − ν2, 0} as the upper risk random variable. Again, as X raises
above ν2, the r.v. X2 increases above 0. Therefore, the smaller are the
values of both X1 and X2, the better is the result for our risk sensitive
farmers. Figure 7.1 illustrates this situation.
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Figure 7.1. Two-sided risk.

It follows immediately that

P{X /∈ [ν1, ν2]} = P{X < ν1}+P{X > ν2} = P{X1 > 0}+P{X2 > 0}.
While the above probability of an undesirable event is an entity that

we would like to be “small”, in practical situations, it could well be that
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the event {X1 > 0} is relatively more, or less, undesirable than the event
{X2 > 0} (for instance, some crops may withstand drought better than
excessive moisture). To capture this, unequal, concern about the lower
and upper risks we now introduce a single two-sided risk function (also
called loss function) parameterized by γ ∈ [0, 1]:

h(X, γ, ν1, ν2) = γX1+(1−γ)X2 = γ max{ν1−X, 0}+(1−γ) max{X−ν2, 0}.
Here, γ captures the relative importance of lower risk versus the upper
risk.

Note that, if we assume the distribution of X is F (x), namely F (x) =
P (X ≤ x), then the distribution function of h(X, γ, ν1, ν2) is:

H(x, γ, ν1, ν2) = P (h(X, γ, ν1, ν2) ≤ x) = F

(
ν2 +

x

1 − γ

)
−F

(
ν1 −

x

γ

)
.

Given γ, ν1 and ν2, it is now easy to see h(X, γ, ν1, ν2) is a convex
function in X. It is also clear that the function h(X, γ, ν1, ν2) is non-
negative everywhere in its domain. Since here we use nonnegative num-
bers to describe the risk, we can now use the loss function h(X, γ, ν1, ν2)
in place of the “portfolio f(x, y)” in [15]. Similarly to [15] we now define
value-at-risk (VaR) and conditional value-at-risk (CVaR) based on this
two-sided risk function as follows.

For a given distribution or given data sample of X and the con-
fidence level α, we can obtain the VaR (ζα(X, γ, ν1, ν2)) and CVaR
(φα(X, γ, ν1, ν2)) of h(X, γ, ν1, ν2) as follows:

φα(X, γ, ν1, ν2) = min
ζ

Fα(ζ, X, γ, ν1, ν2),

where Fα(ζ, X, γ, ν1, ν2) = ζ + 1
1−αE[h(X, γ, ν1, ν2) − ζ]+, and

ζα(X, γ, ν1, ν2) ∈ argminζFα(ζ, X, γ, ν1, ν2).

In fact, value-at-risk is the maximal loss the farmer will face with the
confidence level α ∈ [0, 1] and conditional value-at-risk is the mean loss
in the (1 − α) worst case of the two-sided risk function h(X, γ, ν1, ν2).

Figure 7.2 below portrays the essence of these concepts in the case
where the distribution function of h(X, γ, ν1, ν2) is continuous. Note that
the shaded area is on the right (rather than left) tail of the distribution
because large values of our two-sided risk function are undesirable.

Based on these definitions, some limit properties of ζα(X, γ, ν1, ν2)
and φα(X, γ, ν1, ν2) follow immediately:

lim
α→0

ζα(X, γ, ν1, ν2) = 0, lim
α→0

φα(X, γ, ν1, ν2) = E[h(X, γ, ν1, ν2)];

lim
α→1

ζα(X, γ, ν1, ν2) = lim
α→1

φα(X, γ, ν1, ν2) = sup
X

h(X, γ, ν1, ν2).
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Figure 7.2. α−VaR (ζα) and α−CVaR (φα).

Two-sided risk as an optimization problem
Assume we obtain a sample of observations of X denoted by x1, x2, · · · , xN .

After specifying γ, ν1 and ν2, using the method provided in [15] we can
state the following mathematical programming problem.

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

uk

subject to

mk ≥ 0, mk − γ(ν1 − xk) ≥ 0, k = 1, · · · , N ;

nk ≥ 0, nk − (1 − γ)(xk − ν2) ≥ 0, k = 1, · · · , N ;

uk ≥ 0, uk − mk − nk + ζ ≥ 0, k = 1, · · · , N,

where ζ; u1, u2, · · · , uN ; m1, m2, · · · , mN ; n1, n2, · · · , nN are the decision
variables of this optimization problem.

The optimal objective value of this mathematical program constitutes
an estimate - based on the sample - of the conditional value-at-risk of
the two-sided risk function h(X, γ, ν1, ν2). Furthermore, the ζ∗α entry of
an optimal solution is an estimate of value-at-risk corresponding to this
CVaR.

To explain how the above mathematical program arises, we note that
after obtaining the sample x1, x2, . . . , xN from the r.v. X, the sample
mean 1

N

∑N
k=1[h(xk, γ, ν1, ν2)−ζ]+ approximates the nonnegative devia-

tion of the loss from ζ, that is, E[h(X, γ, ν1, ν2)−ζ]+. Hence, we can use
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following function to approximate the function Fα(ζ, X, γ, ν1, ν2) defined
above:

F̃α(ζ, X, γ, ν1, ν2) = ζ +
1

N(1 − α)

N∑
k=1

[h(xk, γ, ν1, ν2) − ζ]+ =

ζ +
1

N(1 − α)

N∑
k=1

[γ max{ν1 − xk, 0} + (1 − γ) max{xk − ν2, 0} − ζ]+.

Thus, instead of minimizing Fα(ζ, X, γ, ν1, ν2), we try to minimize
F̃α(ζ, X, γ, ν1, ν2):

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

[γ max{ν1−xk, 0}+(1−γ) max{xk −ν2, 0}−ζ]+.

In terms of auxiliary real variables uk, mk and nk, for k = 1, · · · , N ,
after setting uk = [γ max{ν1 − xk, 0} + (1 − γ) max{xk − ν2, 0} − ζ]+,
mk = γ max{ν1 −xk, 0} and nk = (1−γ) max{xk −ν2, 0}, the preceding
is equivalent to minimizing the linear expression

min
ζ

ζ +
1

N(1 − α)

N∑
k=1

uk

subject to the linear constrains as follows:

mk ≥ 0, mk − γ(ν1 − xk) ≥ 0, k = 1, · · · , N ;

nk ≥ 0, nk − (1 − γ)(xk − ν2) ≥ 0, k = 1, · · · , N ;

uk ≥ 0, uk − mk − nk + ζ ≥ 0, k = 1, · · · , N.

Note that the above linear constraints can be obtained from properties
of the function [x]+ = max{x, 0}.

Numerical examples
In the first example we generated 1000 observations with log normal

distribution N(1, 2), namely, log X ∼ N(1, 2), and set ν1 = 15, ν2 =
50, γ = 0.5. We obtained ζ0.95 = 62.93 and ζ0.99 = 225.50. If we choose
ν1 = 0.3, ν2 = 250, we will know that ζ0.95 = 0.28.

For instance, this means that with probability 0.95, the two-sided risk
associated with our hypothetical rainfall r.v. X satisfies

P{h(X, .5, 15, 50) ≤ 62.93)} = P{.5X1 + .5X2 ≤ 62.93)} ≥ 0.95.
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Figure 7.3. Density function of Extreme(1,2).

In the next example we will see how the parameter γ influences this
problem. Here we use the asymmetric extreme distribution: X ∼ Ex-
treme(1,2), see Figure 7.3.

Again, we obtained N = 1, 000 observations for which maxxi =
16.33, min xi = −3.25, range = 19.59. We chose α = 0.9, then the
following results were obtained from the optimization problem above:

ζα(X, 0.7, 10, 15) = 7.48, ζα(X, 0.3, 10, 15) = 3.21;

ζα(X, 0.7, 1, 15) = 1.18, ζα(X, 0.3, 1, 15) = 0.52.

Take ζα(X, 0.7, 10, 15) = 7.48 as an example to explain the meaning of
value-at-risk here. As before, the following inequality holds:

P (h(X, 0.7, 10, 15) ≤ 7.48) = P{.7X1 + .3X2 ≤ 7.48)} ≥ 0.9.

This means that our, unequally weighted, two-sided risk of missing the
rainfall interval [10, 15] is less than 7.48 with probability 0.9. Similarly,

P (h(X, 0.3, 10, 15) ≤ 3.21) = P{.3X1 + .7X2 ≤ 3.21)} ≥ 0.9.

We can see that, in this instance, the VaR drops sharply as we place less
weight on the lower risk X1.

This shows that the weight γ plays an important role. However, its in-
fluence is interconnected with the size and location of the interval [ν1, ν2]
in the domain of the density function of this asymmetric distribution.
From Figure 7.4 we see that VaR can both decrease or increase as γ
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Figure 7.4. Relationship between ζα for fixed α and γ for different intervals.

increases, depending on the exact specification of the riskless interval.
For instance, as a function of γ, VaR could be concave, convex, linear,
or nonlinear.

Of course, with γ and the riskless interval held fixed, VaR and CVaR
exhibit the usual dependence on the percentile parameter α. For in-
stance, in the above, with fixed γ = 0.3, ν1 = 10, ν2 = 15, we observe
the relationship between ζα, φα and α that is displayed in Figure 7.5.
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2. Two types of risk
Recall that, X1 was defined as the part of X that is lower than ν1,

and X2 as the part of X that exceeds ν2. In the environmental problems
that motivated the preceding section it was natural to aim to minimize
X1 and X2 simultaneously. Hence, a convex combination of X1 and X2

was a good choice for that purpose.
However, there are some applications (e.g., the standard financial re-

turn) where we have a different requirement with respect to X1 and X2.
For example, we may want X1 (a loss below ν1 threshold) to be small
and X2 (a gain above ν2 threshold) to be large. In such a case, we re-
quire a different analysis of the two tails of the underlying probability
distribution. In what follows, we discuss this problem in the special case
where ν1 = ν2 = 0. The analysis in the general, ν1 �= ν2, case can be
performed in an analogous manner.

Thus, as before, we begin by considering X1 = max{−X, 0} and
X2 = max{X, 0}, where X1, X2 are negative part and positive part of
X respectively. In a typical financial market, X1, X2 will, respectively,
represent the loss and the gain resulting from an investment. However,
in this case, we clearly want X1 to be small whereas X2 to be large.

Unlike the discussion in Section 1, it will be convenient to deal with the
above as two separate, yet interrelated, aspects of the underlying port-
folio optimization problem. The essential observation is that in many
(most?) situations, investments that increase a probability of a large
gain may also increase a probability of large loss. In this sense, the
problem is reminiscent of the classical problem of Type I and II errors
in Statistics.

Type I and Type II risk
Following the above motivation we define the risk associated with

large values of X1 as Type I risk, and the risk associated with small
values of X2 as Type II risk.

We note that the above formulation of Type I risk is similar to already
standard concepts (e.g., see [16]). In particular, we now briefly recall
definitions of VaR and CVaR on X1. More detailed discussion together
with some financial applications will be given in Section 3.

Mathematically, we treat above random variables (r.v.’s) as functions
X : Ω → R that belong to the linear space L2 = L2(Ω,F , P ), that is,
(measurable) functions for which the mean and variance exist.

We denote by Ψ1(·) on R the distribution function of X1 as follows:

Ψ1(ζ) = P{X1 ≤ ζ}.
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Definition 7.1 The value-at-risk (VaR) of the loss X1 associated with
a confidence level α is the functional ζα : L2 → (−∞,∞):

ζα(X) := inf{ζ|P{X1 ≤ ζ} ≥ α} = inf{ζ|Ψ1(ζ) ≥ α},

which shows the maximal loss the investor will face with the confidence
level α. That is, ζα(X) is the maximal amount of loss that will be in-
curred with probability at least α. However, with probability 1 − α, the
loss will be greater than ζα(X), so we will define:

Definition 7.2 Conditional value-at-risk (CV aR) is the functional φα :
L2 → (−∞,∞):

φα(X) = mean of the α − tail distribution of X1,

where the distribution in question is the one with distribution function
Ψ1,α(ζ) defined by

Ψ1,α(ζ) =
{

0, ζ < ζα(X),
(Ψ1(ζ) − α)/(1 − α), ζ ≥ ζα(X).

Since X1 = max{−X, 0} is a convex function of X, φα(X) defined
above is a convex function of X as well.

Similarly, let us denote by Ψ2(·) on R the distribution function of X2

as follows:
Ψ2(ξ) = P{X2 ≤ ξ}.

Definition 7.3 The value-of-gain (VoG) of the gain X2 associated with
a assurance level β is the functional ξβ : L2 → (−∞,∞):

ξβ(X) = sup{ξ|P{X2 > ξ} ≥ β} = sup{ξ|1 − Ψ2(ξ) ≥ β},

which shows the minimum gain the investor can achieve with a specified
assurance level β. That is, ξβ(X) is the minimal amount of gain that
will be incurred with probability at least β. However, with probability
1 − β, the gain will be less than ξβ(X), so we will define:

Definition 7.4 Conditional value-of-gain (CVoG) is the functional ψβ :
L2 → (−∞,∞):

ψβ(X) = mean of the β − left tail distribution of X2,

where the distribution in question is the one with distribution function
Ψ2,β(·) defined by

Ψ2,β(x) =
{

Ψ(x)/(1 − β), x ≤ ξβ(X),
1, x > ξβ(X).
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Figure 7.6. β−VoG (ξβ) and β−CVoG (ψβ).

Figure 7.6 portrays the essence of these concepts and you could see the
differences between CVoG and CVaR.

One of the important properties of conditional value-of-gain, ψβ(X),
concave in X, will be proved in Section 3 together with some financial
applications.

Two problems and properties of parameters
Investors who want to minimize Type I risk will try to minimize CVaR,

and those who want to minimize Type II risk will try to maximize CVoG.
However, one of these types of risk will tend to stay high when the other
one is minimized. In addition, some parties may want to minimize a
combination of Type I and Type II risks. Our discussion below indicates
one reasonable approach to these important and difficult problems.

Basically, we are assuming that by choosing a “portfolio” (defined
formally in the next section) an investor can select the r.v. X from a
family of r.v.’s with known probability distributions. Hence, an “optimal
portfolio” may involve solving the following two problems:

Problem I

min
X

φα(X) (minimize the CVaR loss)

Subject to:

ψβ(X) ≥ τ. (guarantee a CVoG gain level of τ)

Since Conditional Value of Gain, ψβ(X) is a concave function of X, for
any real number τ the set {X : ψβ(X) ≥ τ} is a convex set. Hence, the
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above optimization problem is a convex problem, that is, in principle,
suitable for fast numerical solution.

Problem II

max
X

ψβ(X), (maximize the CVoG gain)

Subject to:

φα(X) ≤ v. (tolerable CVaR risk level v)

Since −ψβ(X) is a convex function of the decision variable x and the
set {X : φα(X) ≤ v} is a convex set, above problem is also a convex
problem.

In above problems, we have four parameters in total. Those are con-
fidence level α, assurance level β, Type I risk tolerance v and gain target
τ . Selection of values of these parameters constitutes a characterization
of the investor’s attitudes towards the “loss versus gain dilemma”. How-
ever, an intelligent investor will want to select these values on the basis
of their interrelationship that are, ultimately, influenced by the proba-
bility distribution function of the asset X. The analysis below, should
enable such an investor to make an informed decision.

Firstly, we assume that we have chosen and fixed α and β, and in
this case, we want to choose τ and v so that above two problems are
meaningful and interesting. We shall require following notations:

τ∗(β) := max
X

ψβ(X), v∗(α) := min
X

φα(X),

and we shall denote the optimal objective function value of Problems I
and II by

Z1(α, β, τ), Z2(α, β, v),

respectively. Select X∗(α) ∈ argminφα(X) and let ψβ(X∗(α)) = τ∗(β, α),
then we have following lemma.

Ideally, an investor would want a portfolio that is an optimal solution
to both Problems I and II. However, in order to achieve this, some ad-
justments to the target τ (respectively, tolerance level v) maybe needed.

Lemma 7.5 (1) If (α, β) ∈ {(α, β)|τ∗(β, α)} = τ ∗(β)}, then we can
choose τ ≤ τ ∗(β), and for any such τ, Z1(α, β, τ) = v∗(α).

(2) If (α, β) ∈ {(α, β)|τ∗(β, α) < τ∗(β)}, then a choice of
τ ∈ (τ∗(β, α), τ∗(β)] yields Z1(α, β, τ) > v∗(α).

The first case in the Lemma corresponds to the ideal situation since
we obtain the maximum gain while at the same time we minimize our
risk of loss. However, when the second case occurs, namely the strict
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inequality holds, perhaps, the best we can do is to choose our gain target
level τ in that kind of interval. Of course, we will face a greater risk of
loss when we do this.

For Problem II, we can obtain similar conditions for choosing the risk
tolerance v. As before, we define the notation: X∗(β) ∈ argmaxψβ(X),
and let v∗(α, β) = φα(X∗(β)), then the following lemma follows imme-
diately:

Lemma 7.6 (1) If (α, β) ∈ {(α, β)|v∗(α) = v∗(α, β)}, then we can choose
v ≥ v∗(α), and for any such v, Z2(α, β, v) = τ∗(β).

(2) If (α, β) ∈ {(α, β)|v∗(α) < v∗(α, β)}, then a choice of
v ∈ [v∗(α), v∗(α, β)) yields Z2(α, β, v) < τ∗(β).

The first case of this lemma corresponds to the ideal situation where
we attain minimum risk of loss while maximizing our gain. But, when the
second case happens, that means the risk of loss has not been minimized.
We can improve it while trying to maximize our gain but, of course, we
will sacrifice part of the gain.

In fact, combining the analysis of Problem I with that of II, we obtain
the following equation:

{(α, β)|τ∗(β, α) = τ ∗(β)} =

{(α, β)| {argminXφα(X)}
⋂

{argmaxXψβ(X)} �= ∅} =

{(α, β)|v∗(α) = v∗(α, β)}.
What we are interested in now is the set

{(α, β)| {argminXφα(X)}
⋂

{argmaxXψβ(X)} �= ∅}.

From an investor’s point of view, the larger this set is, the better. We
experimented with different distributions of X and obtained a range of
results. For a symmetric distribution, e.g. normal distribution, it is easy
to find parameters µ, σ that permit the above set to be large. However,
for asymmetric distributions, it is harder to do so.

In fact, generally speaking, if we denote the distribution function of
X by F (x), then the distributions of X1, X2 are (1 − F (−x))Ix≥0 and
F (x)Ix≥0, respectively. We observe their typical graphs in Figure 7.7.

The next lemma shows that the non-overlapping feature in the left
panel of Figure 7.7 always occurs in the case of a symmetric underlying
distribution of X.
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Figure 7.7. Distribution function of the loss and gain, when X is a normal distribu-
tion on the left and an extreme distribution on the right.

Lemma 7.7 (symmetric property) Assume X is a symmetric random
variable with the distribution function F (x). By symmetric with respect
to µ, F (µ + x) + F (µ − x) = 1. Then if µ �= 0, F (x) �= 1 − F (−x), in
fact, F (x) < 1 − F (−x), when µ > 0; F (x) > 1 − F (−x), when µ < 0
and F (x) = 1 − F (−x), when µ = 0.

However, after calculating some examples, we found that for asym-
metric distributions it is hard to find α, β such that {argminXφα(X)} ∩
{argmaxXψβ(X)} �= ∅.
Remark: We note that definitions of optimality for Problems I and
II could be generalised to “ε-optimality”, ε > 0 and (typically) very
small. This is because, in practice, investors would be satisfied with
portfolios that are only slightly sub-optimal. All of the previous analysis
generalizes to this situation in a natural way. For details we refer the
reader to Boda’s thesis [8].

3. Financial interpretation
In this section, we explicitly apply the analysis of Type I and Type

II risk to the portfolio optimization problem and interpret the results.
Therefore we concentrate on financial analysis and related optimization
algorithms.

Loss function, gain function and Type I risk
We now apply the general concepts of two types of risk to a spe-

cific portfolio optimization problem and derive methods to optimize and
balance Type I and Type II risks.

Let vector Y = (Y1, · · · , Ym)T be the random return on m stocks.
We define a portfolio to be an m-vector x = (x1, · · · , xm)T such that
xT e = 1, x ≥ 0. We also define the random loss function and a gain
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function, induced by the portfolio x = (x1, · · · , xm)T as follows:

l(x, Y ) = max{−xT Y, 0}, g(x, Y ) = max{xT Y, 0}.

Note that we are not assuming that the distribution of Yj ’s is symmetric.
For a portfolio, we believe it is a loss if it is negative, otherwise it is a gain.
For the loss function l(x, Y ), we define value-at-risk (VaR) similarly to
Definition 7.1 or, equivalently, [15].

Namely, for each x, we denote by L(x, ·) on R the distribution function
of l(x, Y ) as follows:

L(x, ζ) = PY {l(x, Y ) ≤ ζ}.

Next, choose and fix a confidence level α ∈ [0, 1]. The α-VaR of the
loss associated with a portfolio x, and the loss function l(x, Y ) is the
value:

ζα(x) = min{ζ|L(x, ζ) ≥ α},
which shows the maximal loss the investor will face with the confidence
level α.

Further, we recall that the conditional value-at-risk (CVaR) was de-
fined as:

φα(x) = mean of the α − tail distribution of Z = l(x, Y ),

where the distribution in question is the one with distribution function
Lα(x, ·) defined by

Lα(x, ζ) =
{

0, ζ < ζα(x),
(L(x, ζ) − α)/(1 − α), ζ ≥ ζα(x).

Analogously to the analysis in [15] we use l(x, Y ) = max{−xT Y, 0} in
place of f(x, Y ) to define VaR and CVaR. Note that l(x, Y ) is convex
with x, so if we let

Fα(x, ζ) = ζ +
1

1 − α
E{[l(x, Y ) − ζ]+},

then following conclusions will hold, by the same arguments as those
given in [15].

Theorem 7.8 As a function of ζ ∈ R, Fα(x, ζ) is finite and convex
(hence continuous), with

φα(x) = min
ζ

Fα(x, ζ),
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and moreover,
ζα(x) ∈ argminζFα(x, ζ).

In particular, one always has:

ζα(x) ∈ argminζFα(x, ζ), φα(x) = Fα(x, ζα(x)),

Corollary 7.9 The conditional value-at-risk, φα(x), is convex with
respect to x. Indeed, in this case Fα(x, ζ) is jointly convex in (x, ζ).

Theorem 7.10 Minimizing φa(x) with respect to x ∈ X is equivalent
to minimizing Fα(x, ζ) over all (x, ζ) ∈ X × R, in the sense that

min
x∈X

φα(x) = min
(x,ζ)∈X×R

Fα(x, ζ)

where moreover,

(x∗, ζ∗) ∈ argmin(x,ζ)∈X×RFα(x, ζ) ⇐⇒

x∗ ∈ argminx∈Xφα(x), ζ∗ ∈ argminζ∈RFα(x∗, ζ).

One kind of approximation of Fα(x, ζ) obtained by sampling the prob-
ability distribution of Y . So a sample set y1, · · · , yN of observations of
Y yields the approximation function

F̃α(x, ζ) = ζ +
1

N(1 − α)

N∑
k=1

max{max{−xT yk, 0} − ζ, 0}.

Because here l(x, yk) = max{−xT yk, 0} is a non-smooth function of
x, the formulation of the problem min(x,ζ) F̃α(x, ζ) in [15] should be
changed to the following linear programming problem:

min ζ +
1

N(1 − α)

N∑
k=1

uk

Subject to:
x ≥ 0, xTe = 1;

lk ≥ 0, lk + xT yk ≥ 0, k = 1, · · · , N ;

uk ≥ 0, lk − ζ − uk ≤ 0, k = 1, · · · , N.

Similarly to arguments in [14], VaR and CVaR corresponding to l(x, Y )
can be approximated by the optimizer and the optimal objective function
value of the above linear programming problem. Of course, the quality
of this approximation increases with the sample size N .
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Type II risk
Whereas the preceding analysis of Type I risk was completely analo-

gous to that in [14], when considering properties of Type II risk a few,
natural, adjustments need to be made when considering the problem
of minimizing the risk associated with the new gain function g(x, Y ) =
max{xT Y, 0} failing to take sufficiently large values.

Concept of conditional value-of-gain. For each x, the distri-
bution function of g(x, Y ) is defined by: G(x, ξ) = PY {g(x, Y ) ≤ ξ}.
Choose and fix β ∈ [0, 1], the investor’s assurance level.

Definition 7.11 The value-of-gain (VoG) associated with a portfolio x
and g(x, Y ) is the value:

ξβ(x) = sup{ξ|PY {g(x, Y ) > ξ} ≥ β} = sup{ξ|1 − G(x, ξ) ≥ β},

which shows the minimum gain the investor can achieve with a specified
assurance level β.

However, with probability 1 − β, the gain will be less than ξβ(x), so
the following definition is now natural.

Definition 7.12 Conditional value-of-gain (CVoG):

ψβ(x) = mean of the β − left tail distribution of Z = g(x, Y ),

where the distribution in question is the one with distribution function
Gβ(x, ·) defined by

Gβ(x, ξ) =
{

G(x, ξ)/(1 − β), ξ ≤ ξβ(x),
1, ξ > ξβ(x).

The fact that the distribution function of Z = g(x, Y ) need not be
continuous necessitates the following two additional definitions.

Definition 7.13 The β− CVoG+ (“upper” β− CVoG) of the gain as-
sociated with a decision x is the value:

ψ+
β (x) = E{g(x, Y )|g(x, Y ) ≤ ξβ(x)},

whereas the β− CVoG− (“lower” β− CVoG) of the gain is the value:

ψ−
β (x) = E{g(x, Y )|g(x, Y ) < ξβ(x)}.
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It is important to differentiate between the cases where the upper and
lower conditional values-of-gain coincide, or differ. This is done in the
following proposition that is proved in Section 4.

Proposition 7.14 (Basic CVoG relations). If there is no probability
atom at ξβ(x), one simply has:

ψ−
β (x) = ψβ(x) = ψ+

β (x).

If a probability atom does exist at ξβ(x), one has:

ψ−
β (x) < ψβ(x) = ψ+

β (x),when G(x, ξβ(x)) = 1 − β,

or on the other hand,

ψβ(x) = ψ+
β (x),when G(x, ξβ(x)) = 0,

(with ψ−
β (x) then being ill defined). But in all the remaining cases, we

have
0 < G(x, ξβ(x)) < 1 − β,

and one has the strict inequality

ψ−
β (x) < ψβ(x) < ψ+

β (x).

The next proposition (also proved in Section 4) shows that ψβ(x) =
mean of the β− left tail distribution of Z = g(x, Y ) can be expressed as
convex combination of value-of-gain and the upper conditional value-of-
gain.

Proposition 7.15 (CVoG as a weighted average). Let λβ(x) be the
probability assigned to the gain amount z = ξβ(x) by the β− left tail
distribution, namely

λβ(x) = G(x, ξβ(x))/(1 − β) ∈ [0, 1].

If G(x, ξβ(x)) > 0, so there is a positive probability of a gain less than
ξβ(x), then

ψβ(x) = λβ(x)ψ+
β (x) + [1 − λβ(x)]ξβ(x),

with λβ(x) < 1. However, if G(x, ξβ(x)) = 0, ξβ(x) is the lowest gain
that can occur (and thus λβ(x) = 0 but ψ−

β (x) is ill defined), then

ψβ(x) = ξβ(x).
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For a gain function in finance, following [15], we can easily derive
some useful properties of CVoG as a measure of risk with significant
advantages over VoG. For a discrete distribution and a “scenario case”,
the following results will illustrate a method to estimate VoG and CVoG
from historical data.

Proposition 7.16 (CVoG for scenario models). Suppose the probabil-
ity measure P is concentrated on finitely many points yk of Y , so that
for each x ∈ X the distribution of the gain Z = g(x, Y ) is likewise con-
centrated on finitely many points, and G(x, ·) is a step function with
jumps at those points. Fixing x, let those corresponding gain points
zk := g(x, yk) be ordered as z1 < z2 < · · · < zN , with the probability of
zk being pk > 0. For any fixed assurance level β ∈ [0, 1], let kβ be the
unique index such that

kβ∑
k=1

pk ≤ 1 − β <

kβ+1∑
k=1

pk.

The β−VoG of the gain is given by

ξβ(x) = zkβ
,

whereas the β−CVoG of the gain is given by

ψβ(x) =
1

1 − β

⎡
⎣ kβ∑

k=1

pkzk +

⎛
⎝1 − β −

kβ∑
k=1

pk

⎞
⎠ zkβ

⎤
⎦ .

Furthermore, in this situation the weight from Proposition 7.15 is given
by

λβ(x) =
1

1 − β

kβ∑
k=1

pk.

Corollary 7.17 (Lowest gain). In the notation of Proposition 7.16, if
z1 is the lowest point with probability p1 > 1 − β, then ψβ(x) = ξβ(x) =
z1.

Maximization rule and coherence. We can define the function

Hβ(x, ξ) := ξ − 1
1 − β

E{[g(x, Y ) − ξ]−}

that enables us to determine CVoG and VoG from solutions of an appro-
priate optimization problem formulated in the next theorem. The proof
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(given in Section 4) is inspired by the line of argument used to prove
somewhat similar results in [14, 15].

Theorem 7.18 As a function of ξ ∈ R, Hβ(x, ξ) is finite and concave
(hence continuous), with

ψβ(x) = max
ξ

Hβ(x, ξ),

and moreover,
ξβ(x) ∈ argmaxξHβ(x, ξ).

In particular, one always has:

ψβ(x) = Hβ(x, ξβ(x)).

Corollary 7.19 (Concavity of CVoG) If g(x, y) is convex with respect
to x, then ψβ(x) is concave with respect to x. Indeed, in this case
Hβ(x, ξ) is jointly concave in (x, ξ).

Theorem 7.20 Maximizing ψβ(x) with respect to x ∈ X is equivalent
to maximizing Hβ(x, ξ) over all (x, ξ) ∈ X × R, in the sense that

max
x∈X

ψβ(x) = max
(x,ξ)∈X×R

Hβ(x, ξ).

Moreover,
(x∗, ξ∗) ∈ argmax(x,ξ)∈X×RHβ(x, ξ) ⇐⇒

x∗ ∈ argmaxx∈Xψβ(x), ζ∗ ∈ argmaxζ∈RHβ(x∗, ξ).

It is also possible, and interesting, to optimize an arbitrary portfolio
performance function subject to a number of gain-assurance level con-
straints. This is summarized in the next theorem.

Theorem 7.21 (Gain-shaping with CVoG) Let g be any objective func-
tion chosen on X. For any selection of assurance levels βi and corre-
sponding target levels τi, i = 1, · · · , l, the problem

minimize g(x) over x ∈ X satisfying ψβi(x) ≥ τi for i = 1, · · · , l,

is equivalent to the problem

minimize g(x) over (x, ξ1, · · · , ξl) ∈ X ×R× · · · × R

satisfying Hβi(x, ξi) ≥ τi, for i = 1, · · · , l.
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Indeed, (x∗, ξ∗1 , · · · , ξ∗l ) solves the second problem if and only if x∗ solves
the first problem and the inequalities Hβi(x

∗, ξ∗i ) ≥ τi, hold for i =
1, · · · , l.

Moreover one then has ψβi(x
∗) ≥ τi for every i, and actually ψβi(x

∗) =
τi for each i such that Hβi(x

∗, ξ∗i ) = τi (i.e., those that correspond to ac-
tive CVoG constraints).

Based on Theorem 7.18, we can construct the following approximat-
ing algorithm for maximizing the CVoG. We assume that Yk’s are i.i.d
distributed according to p(y), and a sample of observations from p(y) is
denoted by y1, y2, · · · , yN . Maximizing CVoG can then be approximated
by the following mathematical programming problem:

max ξ − 1
N(1 − β)

N∑
k=1

uk

subject to
x ≥ 0, xTe = 1;

uk ≥ 0, g(x, yk) − ξ + uk ≥ 0, k = 1, · · · , N.

However, since g(x, yk) = max{xT yk, 0} is not a smooth function of
x, the above mathematical programming problem is not in a directly
tractable form. Hence, we introduce 0 − 1 integer variables for each
sample point to change the above mathematical programming problem
to one that can be solved using mixed integer programming method as
follows:

max ξ − 1
N(1 − β)

N∑
k=1

uk

subject to
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ lk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − lk = xT y, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N,

where, M is a suitably chosen large number. Of course, when the sample
size N is large, this means that the computational effort required to solve
the above optimality can be prohibitively difficult. Nonetheless, there
are now many heuristics for solving large scale integer programming
problems.
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Table 7.1. Portfolio mean return m

Instrument Mean return

S&P 0.0101110
Gov.bond 0.0043532
Small cap 0.0137058

Table 7.2. Portfolio variance-covariance matrix V

S&P Gov.bond Small cap

S&P 0.00324625 0.00022983 0.00420395
Gov.bond 0.00022983 0.00049937 0.00019247
Small cap 0.00420395 0.00019247 0.00764097

Examples. Here we use the data from [14] to calculate VaR, CVaR
and VoG, CVoG using our new loss and gain function. The data are as
follows:

We assume the return of three stocks satisfy a multivariate normal dis-
tribution N(m, V ). The mean vector and variance-covariance matrix are
shown in Table 7.1 and Table 7.2 respectively. We can use these param-
eters to generate samples that satisfy multivariate normal distribution
and then use the samples and the above constructions and mathematical
programs to calculate VaR, VoG and optimize CVaR and CVoG.

The calculated VaR, optimized CVaR and the optimal portfolio cor-
responding to different confidence levels α and the sample size of 10, 000
are shown in Table 7.3. The calculated VoG, optimized CVoG and the
optimal portfolio corresponding to different assurance levels β and the
sample size of 1, 000 are shown in Table 7.4.

Table 7.3. Results of Minimizing Type I risk (minimizing CVaR) using the new loss
function

α Sample Size S&P Gov.bond Small cap VaR CVaR

0.90 10000 0.0784 0.9215 0 0.0193 0.0233
0.95 10000 0.0741 0.9258 0 0.0321 0.0413
0.99 10000 0.0924 0.9075 0 0.0479 0.0532

The results are as might be expected. In particular, we note that when
optimizing the portfolio with respect Type I risk, we find that zero weight
is allocated to “Small cap”, a small weight to “S&P” and a large weight
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Table 7.4. Results of Minimizing Type II risk (maximizing CVoG) using the new
gain function

β Sample Size S&P Gov.bond Small cap VoG CVoG

0.33 1000 0 0 1 0.0919 0.0210
0.4 1000 0 0 1 0.0575 0.0098
0.6 1000 0.0951 0 0.9048 0.0219 0.0024

to “Gov. bond”. This merely reflects the fact that government bonds
have a variance that is very close to zero, followed by “S&P”, followed
by “Small cap”. Correspondingly, when optimizing the portfolio with
respect to Type II risk, we find that zero weight is allocated to “Gov.
bond”, and very large weights are allocated to “Small cap”. This reflects
the fact that the mean return of “Small cap” is the highest while the
government bonds have the lowest mean return.

Balancing two types of risks
Returning to the discussion of Section 2, we will continue to consider

two problems associated with our loss and gain functions. Since we
have seen that an investor who focuses on just Type I risk will obtain
very different results to those that would be obtained if Type II risk
were of the main concern. However, most investors will be sensitive -
albeit, in varying degrees - to both types of risk. Hence, the challenge
is to formulate a portfolio optimization problem that captures these
dual concerns. Here, we will give two possible formulations of this “risk
balancing problem” and illustrate them with an example based on the
above data.

Two problems. Basically, we want to solve the following problems:
Problem I

min
x

φα(x), (minimize the CVaR loss)

Subject to:

ψβ(x) ≥ τ. (guarantee a CVoG target level of τ).

Since conditional value-of-gain, ψβ(x) is a concave function of x, the
set {x : ψβ(x) ≥ τ} for any real number τ is a convex set. Hence, the
above Problem I is a convex programming problem that is, in principle,
suitable for fast numerical solution.
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Problem II

max
x

ψβ(x), (maximize the CVoG gain)

Subject to:

φα(x) ≤ v. (tolerable CVaR risk level v)

Since −ψβ(x) is a convex function of the decision variable x and the set
{x : φα(x) ≤ v} is a convex set, the above problem is also a convex
programming problem.

According to our Theorem 7.21 and Theorem 16 in [15], if we have
observations of returns yk, k = 1, · · · , N generated by the distribution
p(y), then we can change the above two problems to the following Mixed
Integer Programming (MIP) problems:

Problem I’

min ζ +
1

N(1 − α)

N∑
k=1

ηk

Subject to:
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ fk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − fk − xT yk = 0, k = 1, · · · , N ;

ηk ≥ 0, fk − ζ − ηk ≤ 0, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N ;

ξ − 1
N(1 − β)

N∑
k=1

uk ≥ τ ;

where, M is a suitably chosen large number.
Problem II’

max ξ − 1
N(1 − β)

N∑
k=1

uk

Subject to:
x ≥ 0, xTe = 1;

nk ∈ {0, 1}, 0 ≤ gk ≤ nkM, 0 ≤ fk ≤ (1 − nk)M, k = 1, · · · , N ;

gk − fk − xT yk = 0, k = 1, · · · , N ;

uk ≥ 0, gk − ξ + uk ≥ 0, k = 1, · · · , N ;

ηk ≥ 0, fk − ζ − ηk ≤ 0, k = 1, · · · , N ;
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ζ +
1

N(1 − α)

N∑
k=1

ηk ≤ v;

where, M is a suitably chosen large number.
From above, it is easy to see that if we chose α, β, τ and v, we can

use the above two optimization problems to calculate two optimized
portfolios that capture a given investor’s attitude to Type I and Type
II risks.

Examples. We still use the data in Table 7.1 and Table 7.2. We let
α = 0.9, β = 0.6 be fixed. Using a sample size of 1000, we first calculate
the maximal conditional value-of-gain, τ ∗(β) = τ∗(0.6) = 0.0024 and the
minimal conditional value-at-risk v∗(α) = v∗(0.9) = 0.0233. Then, we
choose τ ≤ τ ∗(0.6) and v ≥ v∗(0.9) and solve the preceding two mixed
integer programming problems. We obtain the following results.

Table 7.5. Results of Problem I

τ Sample Size S&P Gov.bond Small cap Z1(0.9, 0.6, τ)

0.001 1000 0.0809 0.9190 0 0.0249
0.0015 1000 0.0902 0.9097 0 0.0257
0.002 1000 0.2160 0.5468 0.2371 0.0626
0.0023 1000 0.3597 0.2655 0.3746 0.0955

From Table 7.5 we can see that, Z1(α, β, τ) is very close to v∗(α) when
our target level τ is very small, that means low requirement for the gain
will yield low risk and vice versa.

Table 7.6. Results of Problem II

v Sample Size S&P Gov.bond Small cap Z2(0.9, 0.6, v)

0.024 1000 0.0697 0.9302 0 0.0003
0.030 1000 0.0576 0.8566 0.0857 0.0016
0.060 1000 0.2046 0.5691 0.2262 0.0019
0.1 1000 0.3791 0.2276 0.3931 0.0023

We can see that Z2(α, β, v) is close to τ ∗(β) when our risk tolerance v
is large from Table 7.6, that shows the relaxation of the risk requirement
will lead to a larger gain and vice versa.
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4. Proofs
In this section, we will provide proofs of each lemma, proposition,

theorem and corollary in above sections.
Proof of Lemma 7.5: If (α, β) ∈ {(α, β)|τ∗(β, α)} = τ ∗(β)}, then

ψβ(X∗(α)) = τ∗(β, α) = τ∗(β) = maxX ψβ(X). So X∗(α) ∈ argmaxX

ψβ(X), that means for any X ∈ L2, we can’t find one such that ψβ(X) >
τ∗(β), so we should choose τ ≤ τ ∗(β), however based on the above
relationship, there exists at least one X that will minimize φα(X) and
maximize ψβ(X) simultaneously, so in this case, Z1(α, β, τ) = v∗(α).

In another case when (α, β) ∈ {(α, β)|τ∗(β, α) < τ∗(β)}, that means
we will obtain a lower gain τ∗(β, α) when we try to minimize the risk
φα(X), but we can’t obtain a gain that will exceed τ ∗(β), reasonably,
we will choose τ ∈ (τ∗(β, α), τ∗(β)], however for this τ , there won’t exist
X ∈ argminXφα(X) such that ψβ(X) ≥ τ , this will yield a higher risk,
that is Z1(α, β, τ) > v∗(α). �

Proof of Lemma 7.6: Similarly to the proof of Lemma 7.5, we can
prove Lemma 7.6. �

Proof of Lemma 7.7: Since F (µ + x) + F (µ − x) = 1, so F (x) =
F (µ−µ + x) = F (µ− (µ−x)) = 1−F (µ + (µ−x)) = 1−F (2µ−x). It
is easy to use the above relationship to prove the lemma together with
the monotonicity of the distribution function F (x). �

Proof of Proposition 7.14: We define:

β−(x) = G(x, ξβ(x)−), β+(x) = G(x, ξβ(x)+).

In comparison with the definition of ψβ(x) in Definition 7.12, ψ−
β (x) is

the mean of the gain distribution associated with

G−
β (x, ξ) =

{
G(x, ξ)/(1 − β−(x)), ξ ≤ ξβ(x),

1, ξ > ξβ(x),

whereas the ψ+
β (x) value is the mean of the gain distribution associated

with

G+
β (x, ξ) =

{
G(x, ξ)/(1 − β+(x)), ξ ≤ ξβ(x),

1, ξ > ξβ(x).

It is easy to see that β−(x) and β+(x) mark the bottom and top of
the vertical gap at ξβ(x) for the original distribution function G(x, ·) (if
a jump occurs there).

The case of there being no probability atom at ξβ(x) corresponds to
having β−(x) = β+(x) = β ∈ (0, 1). Then the first equation holds
because the distribution functions G−

β (x, ξ), Gβ(x, ξ) and G+
β (x, ξ) are

identical.
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When a probability atom exists but β = β+(x), we have: β−(x) <
β+(x) < 1 and thus the second relations. If β+(x) = 0, we can neverthe-
less get the third one since β−(x) < β+(x) < 1. Under the alternative
of 0 < G(x, ξβ(x)) < 1, the strict inequalities in the fifth prevail. �

Proof of Proposition 7.15: According to the definition of CVoG and
when G(x, ξβ(x)) > 0, we can calculate the mean in the definition di-
rectly as follows: for a fixed portfolio x,

ψβ(x) =
∫ ξβ(x)
0 d(G(x, ξ)/(1 − β)) + (1 − G(x, ξβ(x))/(1 − β))ξβ(x)

= G(x,ξβ(x))
1−β ×

∫ ξβ(x)

0 dG(x,ξ)
G(x,ξβ(x)) +

(
1 − G(x,ξβ(x))

1−β

)
ξβ(x)

= G(x,ξβ(x))
1−β E{g(x, Y )|g(x, Y ) ≤ ξβ(x)} +

(
1 − G(x,ξβ(x))

1−β

)
ξβ(x)

= G(x,ξβ(x))
1−β ψ+

β (x) +
(
1 − G(x,ξβ(x))

1−β

)
ξβ(x),

so we can obtain the following equation after defining λβ(x) = G(x,ξβ(x))
(1−β) ,

ψβ(x) = λβ(x)ψ+
β (x) + [1 − λβ(x)]ξβ(x).

We know λβ(x) ∈ [0, 1] since 0 ≤ Gβ(x, ξβ(x)) ≤ 1− β. If G(x, ξβ(x)) =
0, ξβ(x) is the lowest gain that can occur (and thus λβ(x) = 0 but ψ−

β (x)
is ill defined), then ψβ(x) = ξβ(x). �

Proof of Proposition 7.16: According to the following relationship:

kβ∑
k=1

pk ≤ 1 − β <

kβ+1∑
k=1

pk,

we have

G(x, ξβ(x)) =
kβ∑

k=1

pk, G(x, ξβ(x)−) =
kβ−1∑
k=1

pk,

G(x, ξβ(x)) − G(x, ξβ(x)−) = pkβ
.

The assertions then follow from Definition 7.12 and Proposition 7.15. �

Proof of Corollary 7.17: This amounts to the special case in Proposi-
tion 7.16 with kβ = 0, then we know ψβ(x) = ξβ(x) = z1. �

Proof of Theorem 7.18: Firstly, we will prove the Theorem in the case
that the distribution function G(x, ξ) of the gain g(x, Y ) for fixed x is
everywhere continuous with respect to ξ. We also assume the random
return Y has desity function p(y). Before proceeding main steps, we will
give a lemma for preparation.
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Lemma 7.22 With x fixed, let Q(ξ) =
∫
y∈Rn q(ξ, y)p(y)dy, where q(ξ, y) =

[g(x, y) − ξ]−. Then Q is a convex continuously differentiable function
with derivative

Q′(ξ) = G(x, ξ).

Proof: This lemma follows from Proposition 2.1 of Shapiro and wardi
(1994) in [20].

Now, let’s prove the Theorem in this particular case. In view of the
defining formula for Hβ(x, ξ),

Hβ(x, ξ) = ξ − 1
1 − β

E{[g(x, Y ) − ξ]−},

it is immediate from Lemma 7.22 and the fact that linear function is a
concave function that Hβ(x, ξ) is concave and continuously differentiable
with derivative

∂

∂ξ
Hβ(x, ξ) = 1 − 1

1 − β
G(x, ξ).

Therefore, the values of ξ that furnish the maximum of Hβ(x, ξ) are
precisely those for which G(x, ξ) = 1−β. They form a nonempty closed
interval, inasmuch as G(x, ξ) is continuous and nondecreasing in ξ with
limit 1 as ξ → ∞ and limit 0 as ξ → −∞. This further yields the validity
of the formula ξβ(x) ∈ argmaxξHβ(x, ξ). In particular, then, we have

max
ξ∈R

Hβ(x, ξ) = Hβ(x, ξβ(x)) = ξβ(x)− 1
1 − β

∫
y∈R

[g(x, y)−ξβ(x)]−p(y)dy.

But the integral here equals∫
g(x,y)≤ξβ(x)

[ξβ(x) − g(x, y)]p(y)dy = ξβ(x)
∫

g(x,y)≤ξβ(x)
p(y)dy−

∫
g(x,y)≤ξβ(x)

g(x, y)p(y)dy,

where the first integral on the right is by definition G(x, ξβ(x)) = 1 − β
and the second is (1 − β)ψβ(x). Thus,

max
ξ∈R

Hβ(x, ξ) = ξβ(x) − 1
1 − β

[(1 − β)ξβ(x) − (1 − β)ψβ(x)] = ψβ(x).

This confirms the formula for β− CVoG, ψβ(x) = maxξ Hβ(x, ξ), and
completes the proof of the Theorem in this special case.

In the following, I’ll prove it in a more general sense, including the
discreteness of the distribution.
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The finiteness of Hβ(x, ξ) is a consequence of our assumption that
E{|g(x, y)|} < ∞ for each x ∈ X. It’s concave follows at once from the
convexity of [g(x, y)− ξ]− with respect to ξ. Similar to convex function,
a finite concave function, Hβ(x, ξ) has finite right and left derivatives at
any ξ. The following approach of proving the rest of the assertions in
the theorem will rely on first establishing for these one-sided derivatives,
the formulas,

∂+Hβ

∂ξ
(x, ξ) =

1 − β − G(x, ξ)
1 − β

,
∂−Hβ

∂ξ
(x, ξ) =

1 − β − G(x, ξ−)
1 − β

.

(7.1)
We start by observing that

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
.

When ξ′ > ξ, we have:

[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

⎧⎨
⎩

= 0 if g(x, Y ) ≥ ξ′
= 1 if g(x, Y ) ≤ ξ

∈ (0, 1) if ξ < g(x, Y ) < ξ′

Since PY {ξ < g(x, Y ) ≤ ξ′} = G(x, ξ′)−G(x, ξ), this yields the existence
of a value ρ(ξ, ξ′) ∈ [0, 1] for which

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ)+ρ(ξ, ξ′)[G(x, ξ′)−G(x, ξ)].

Since furthermore G(x, ξ′) ↘ G(x, ξ) as ξ′ ↘ ξ, it follows that

lim
ξ′↘ξ

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ).

So, we obtain

lim
ξ′↘ξ

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

G(x, ξ) =
1 − β − G(x, ξ)

1 − β
,

thereby verifying the first formula in (7.1). For the second formula in
(7.1), we argue similarly that when ξ′ < ξ we have

[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

⎧⎨
⎩

= 0 if g(x, Y ) ≥ ξ
= 1 if g(x, Y ) ≤ ξ′

∈ (0, 1) if ξ′ < g(x, Y ) < ξ
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where PY {ξ′ < g(x, Y ) < ξ} = G(x, ξ−) − G(x, ξ′). Since G(x, ξ′) ↗
G(x, ξ−) as ξ′ ↗ ξ we obtain

lim
ξ′↗ξ

E

{
[g(x, Y ) − ξ′]− − [g(x, Y ) − ξ]−

ξ′ − ξ

}
= G(x, ξ−),

and then

lim
ξ′↗ξ

Hβ(x, ξ′) − Hβ(x, ξ)
ξ′ − ξ

= 1 − 1
1 − β

G(x, ξ−) =
1 − β − G(x, ξ−)

1 − β
.

That gives the second formula in (7.1).
Because of concavity, the one-sided derivatives in (7.1) are non-increasing

with respect to ξ, with the formulas assuring that

lim
ξ→∞

∂+Hβ

∂ξ
(x, ξ) = lim

ξ→∞
∂−Hβ

∂ξ
(x, ξ) = − β

1 − β

and on the other hand,

lim
ξ→−∞

∂+Hβ

∂ξ
(x, ξ) = lim

ξ→−∞
∂−Hβ

∂ξ
(x, ξ) = 1.

On the basis of these limits, we know that the level set {ξ|Hβ(x, ξ) ≥
c} are bounded (for any choice of c ∈ R) and therefore that the maximum
in the theorem is attained, with the argmax set being a closed, bounded
interval. The values of ξ in that set are characterized as the ones such
that

∂+Hβ

∂ξ
(x, ξ) ≤ 0 ≤ ∂−Hβ

∂ξ
(x, ξ).

According to the formulas in (7.1), they are the values of ξ satisfying
G(x, ξ−) ≤ 1− β ≤ G(x, ξ). The rest of the Theorem is a direct conclu-
sion of the above results. �

Proof of Corollary 7.19: The joint concavity of Hβ(x, ξ) in (x, ξ) is an
elementary consequence of the definition of this function, the relation-
ship between convexity and concavity and the convexity of the function
(x, ξ) → [g(x, y)−ξ]− when g(x, y) is convex in x. The concave of ψβ(x)
in x follows immediately then from the maximization formula in The-
orem 7.18. (In convex analysis, when a convex function of two vector
variables is minimized with respect to one of them, the residual is a
convex function of the other: see Rockafellar [13]. Here, we can obtain
the result just simply applying the above theory to the convex function
−Hβ(x, ξ).) �

Proof of Theorem 7.20: This rests on the principle in optimization
that maximization with respect to (x, ξ) can be carried out by maximiz-
ing with respect to ξ for each x and then maximizing the residual with
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respect to x. In the situation at hand, we invoke Theorem 7.18 and in
particular, in order to get the equivalence in the second formula in the
Theorem, the fact there that the maximum of Hβ(x, ξ) in ξ (for fixed x)
is always attained. �

Proof of Theorem 7.21: This relies on the maximization formula in
Theorem 7.18 and the assured attainment of the maximum there. The
arguments are very much like that for Theorem 7.20. Because ψβ(x) =
maxξ Hβ(x, ξ), we have ψβi(x) ≥ τi, if and only if there exists ξi such
that Hβi(x, ξi) ≥ τi. �
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