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Microarray Data Mining: Selecting Trustworthy
Genes with Gene Feature Ranking

Franco A. Ubaudi, Paul J. Kennedy, Daniel R. Catchpoole, Dachuan Guo, and
Simeon J. Simoff

Abstract Gene expression datasets used in biomedical data mining frequently have
two characteristics: they have many thousand attributes but only relatively few sam-
ple points and the measurements are noisy. In other words, individual expression
measurements may be untrustworthy. Gene Feature Ranking (GFR) is a feature se-
lection methodology that addresses these domain specific characteristics by select-
ing features (i.e. genes) based on two criteria: (i) how well the gene can discriminate
between classes of patient and (ii) the trustworthiness of the microarray data associ-
ated with the gene. An example from the pediatric cancer domain demonstrates the
use of GFR and compares its performance with a feature selection method that does
not explicitly address the trustworthiness of the underlying data.

1.1 Introduction

The ability to measure gene activity on a large scale, through the use of microar-
ray technology [1, 2], provides enormous potential within the disciplines of cellu-
lar biology and medical science. Microarrays consist of large collections of cloned
molecules of deoxyribonucleic acid (DNA) or DNA derivatives distributed and
bound in an ordered fashion onto a solid support. Each individual DNA clone rep-
resents a particular gene. Several kinds of microarray technology are available to
researchers to measure levels of gene expression: cDNA, Affymetrix and Illumina
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microarrays. Each of these platforms can have over 30,000 individual DNA fea-
tures “spotted” in a cm2 area. These anchored DNA molecules can then, through
the process of “hybridization”, capture complementary nucleic acid sequences iso-
lated from a biological sample and applied to the microarray. The isolated nucleic
acids are labeled with special fluorescent dyes which, when hybridized to their com-
plementary spot on the microarray will fluoresce when excited with a laser–based
scanner. The level of fluorescence is directly proportional to the amount of nucleic
acid captured by the anchored DNA molecules. In the case of gene expression mi-
croarrays, the nucleic acid isolated is messenger ribonucleic acid (mRNA) which
results when a stretch of DNA containing a gene is “transcribed” or is “expressed”.

This chapter focuses on two color spotted cDNA microarrays, an approach which
allows for the direct comparison of two samples, usually a control and a test sam-
ple. Data is derived from fluorescent images of hybridized microarray “chips” and
usually comprises statistical measures of populations of pixel intensities of each
gene feature. For example, mean, median and standard deviation of pixel intensities
for two dyes and for the local background are generated for each spot on a cDNA
microarray.

All microarray platforms involve assessing images of fluorescent features with
the level of fluorescence giving a measure of expression. All platforms are beset by
the same data analysis issues of feature selection, noise, high dimensionality, non–
specific signal, background, and spatial effects. The approach we take in this chap-
ter is non–platform specific, although we apply it to the “noisiest” of the platforms:
glass slide spotted cDNA microarray. Comparing gene expression measurements
between different technologies and between measurements on the same technology
at different times is a challenge, to some extent addressed by normalization tech-
niques [3]. A major issue in these data is the unreliable variance estimation, com-
plicated by the intensity-dependent technology-specific variance [4]. There is also
an agreement that different methods of microarray data normalization have a strong
effect on the outcomes of the analysis steps [5]. Another issue is the small num-
ber of replicated microarrays because of cost and sample availability, resulting in
unreliable variance estimation and thus unreliable statistical hypothesis tests. There
has been a broad spectrum of proposed methods for determining the sample size in
microarray data collection [6], with the majority being focused on how to deal with
multiple testing problems and the calculation of significance level.

Common approaches to dealing with these data issues include visual identifi-
cation of malformed spots for omission and normalization of gene expression mea-
sures [7]. Often arbitrary cut off measures are used to select genes for further assess-
ment in attempts to reduce the data volume and to facilitate selection of “interesting
genes”. Other researchers (e.g. [8, 9, 10, 11, 12]) apply dimensionality reduction to
microarray data with the assumption that many genes are redundant or irrelevant to
modeling a particular biological problem. Golub [8] calls the redundancy of terms
additive linearity to signify that many genes add nothing new or different. Feature
set reduction of microarray data also helps to deal with the “curse of dimensional-
ity” [13]. The view of John et al [14] is that use of feature selection, prior to model
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construction, obviates the necessity of relying on learning algorithms to determine
which features are relevant and has the additional benefit of avoiding overfitting.

Given the widespread use of feature selection for microarray data and the data
quality issues, it is surprising that we were unable to find approaches in the literature
specifically addressing data quality [15]. This is also true of more general feature
selection literature [16]. Some researchers have endeavored to manage the issues of
small sample size and microarray noise in their approaches. Unsupervised methods
are used to evaluate the quality of microarray data in [17] and [18] but they are
subjective and need manual configuration. Baldi and Hatfield [7] use variance of
expression as prior knowledge when training a Bayesian network. Yu et al [19] apply
an approach they call “quality” to filter genes, although it only uses expression data.

The feature analysis and ranking method proposed in this chapter addresses the
issue of dealing with diverse quality across technologies and the small number of
replicated measurements. Our approach explicitly uses quality measures of a spot
(such as variance of pixel intensities) to compute a trustworthiness measure for each
gene which complements its gene expression measure. Understanding of gene ex-
pression can then be based on the quality of the spot as well as its intensity. A “con-
fidence” of the findings based on data quality can be incorporated into models built
on the data. Also, training sets with few sample points, as are often found in gene
expression may also mean that the assumption that test data has similar quality as
training sets is no longer valid. The unsupervised learning we apply to all available
data helps to gain an understanding of the quality of gene expression measurements.

1.2 Gene Feature Ranking

Gene Feature Ranking is a feature selection methodology for microarray data which
selects features (genes) based on (i) how well the gene discriminates between classes
of patient and (ii) the trustworthiness of the data. The motivation behind the first of
these is straightforward. However, previous methods have not specifically addressed
the issue of the quality of data in feature set reduction. Hence, our emphasis on
assessing the trustworthiness of the data. A training subset of data is used to assess
classification of patients by genes. All available data is used in an unsupervised
learning process to assess the trustworthiness of gene measurements.

Gene Feature Ranking, shown schematically in Fig. 1.1, consists of two con-
secutive feature selection phases which generate ranked lists of features. Phase 1
ranks genes by the trustworthiness of their data. Genes ranked above a threshold are
passed to the second phase. Phase 2 ranks the remaining genes using a traditional
feature selection algorithm (such as Gain Ratio [20]). The goal of the approach is to
maintain a balance between the trustworthiness of data and its discriminative abil-
ity. Following we describe how attributes and data sample points are used in GFR
and then we describe the two phases in detail. Although data preprocessing meth-
ods which suppress genes that do not respect some measures may be seen as an
alternative to GFR, such approaches have the limitation that they are generally ad



4 F. A. Ubaudi, P. J. Kennedy, D. R. Catchpoole, D. Guo and S. J. Simoff

hoc and usually use expression measurements to assess the spot quality rather than
“quality measures”. Gene Feature Ranking, on the other hand, is a framework that
specifically addresses the quality aspects of the data.

Fig. 1.1 Gene Feature Ranking applies two phases of feature selection to data. Phase 1, labelled
“Generate Trustworthiness Ordered List”, filters genes based on the trustworthiness of their data,
as measured by the “confidence”. Phase 2, labelled as “Traditional Feature Selection” filters the
trusted genes based on how well they can discriminate classes.

1.2.1 Use of attributes and data samples in Gene Feature Ranking

Attributes associated with individual genes in the microarray data are grouped as
either “expression” attributes or “spot quality” attributes, but not both. Expression
attributes are considered to measure the level of expression of a gene. Spot quality
attributes are statistical measures of likely accuracy of the expression for the gene.
An example of an expression attribute is median pixel intensity of the spot and an
example of a spot quality attribute is the standard deviation of pixel intensities for
a spot. Expression attributes of genes are used to build the model and spot quality
attributes are used to assess the trustworthiness (or confidence) of the gene.

Three subsets of available data are recognized in GFR. Training Data Set con-
sists of “expression” attributes from the microarray gene expression data together
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with associated clinical data. The purpose of this data is to build the model and it
includes the class of patient. Test Data Set is a smaller set of “expression” attributes
and clinical data used to evaluate the accuracy of the model built from the train-
ing data. Non–Training Data Set consists of “spot quality” attributes from all of
the microarray gene expression data. This data is used in the first (unsupervised)
phase of GFR. As this data is not used directly to build a model it does not contain
information about the patient class or any clinical attributes.

1.2.2 Gene Feature Ranking: feature selection phase 1

Phase 1 of GFR determines the trustworthiness of genes by evaluating the con-
fidence of each expression reading (labelled confidence in Fig. 1.1) in the non–
training dataset. Trustworthiness of a gene is the median value of the N confidence
values. The confidence value c for a gene in a specific microarray spot is

c =
1

log
(

(σcontrol+σtest )
2 +‖σcontrol−σtest‖

) . (1.1)

The spot quality attributes σcontrol and σtest are the standard deviations of pixel inten-
sity for the control and test channels respectively. High pixel deviation is associated
with low confidence in the accuracy of expression measure. As cDNA microarrays
have two intensity channels per spot, the definition of c in equation (1.1) comprises
an average of the variations of the channels as well as a measure of their difference.

The genes are then ranked by trustworthiness with those below a threshold judged
too noisy and then discarded. Gene Feature Ranking does not a priori prescribe the
threshold. Two issues contribute to setting a threshold: (i) an understanding of the
redundancy present in the attributes is needed to avoid setting the threshold too high;
and (ii) analysis of the distribution of trustworthiness values for genes is needed to
prevent setting the threshold too low. We set the threshold empirically, although an
approach based on the calculated trustworthiness values would also be appropriate.

1.2.3 Gene Feature Ranking: feature selection phase 2

Phase 2 of GFR ranks the remaining genes according to their discriminative ability
using the training data set (as shown in Fig. 1.1). All genes passed through from
phase 1 are considered to have high enough trust for use in phase 2. Genes ranked
above a phase 2 threshold are selected to build a classifier. The feature selection
method in phase 2 is not prescribed. Here, we use Gain Ratio. The result is a list of
genes that are discriminative and trustworthy.

As in the first feature selection phase, choice of the selection threshold is the
responsibility of the user. In this chapter, we choose several final feature subset
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sizes to compare the achieved classification accuracy of models constructed using
different feature selection methodologies. Two other possible approaches might use
a measure of the minimum benefit provided for each feature with the following
metrics: (i) the classification accuracy gained by the model; or (ii) a balance between
trustworthiness and discriminative ability.

1.3 Application of Gene Feature Ranking to Acute
Lymphoblastic Leukemia data

This section applies GFR to the subtyping of Acute Lymphoblastic Leukemia (ALL)
patients. We describe the ALL data then build classifiers using GFR ranked genes
and Gain Ratio only ranked genes to classify patients suffering from two subtypes
of ALL: B lineage and T lineage.

Biomedical data was provided by the Children’s Hospital at Westmead and com-
prises clinical and microarray datasets linked by sample identifier. Clinical attributes
include sample ID, date of diagnosis, date of death and immunophenotype (the class
label). The microarray dataset has several attributes for each gene for each array:
f635Median, f635Mean, f635SD, f532Median, f532Mean and f532SD. The median
and mean measurements are “expression” attributes and the standard deviation at-
tribute is the “spot quality”. These relate to median, mean and standard deviation of
the pixel intensities for the fluorescent emission wavelength of the two dyes: 635 nm
(red) and 532 nm (green). The 635 nm fluorescent dye was associated with leukemia
samples and the 532 nm dye represented pooled normal (non–leukemic) samples.
Consequently, this study compared on the one array ALL to normal control.

Data was preprocessed. Patients with missing data and genes not present on all
microarrays and “non–biological” genes were omitted. Outlier expression measures
that were close to the minimum or maximum measurable value were repaired to
conform with other data. Microarray data was normalized by adjusting arrays to
have the same average intensity. Preprocessing resulted in 120 arrays (47 patients)
for B ALL and 44 arrays (14 patients) for T ALL with a total of 9485 genes.

Algorithms other than GFR are implemented in Weka [21]. Gain Ratio [20] was
applied in GFR phase 2 to rank genes by class discrimination and alone to compare
with GFR. The same parameter settings for Gain Ratio were used in both cases.
AdaBoostM1 [22] was used for classification with parameters of a primary classifier
of DecisionStump being boosted, 10 iterations of boosting and reweighting with a
weight threshold of 100. AdaBoostM1 was chosen to handle the class imbalance.
Test error of classifiers was estimated with ten–fold cross validation.

Figure 1.2 explores how trustworthiness differs between genes by graphing
gene’s trust by rank as calculated in GFR phase 1 with equation (1.1). Data at-
tributes f532SD and f635SD were σtest and σcontrol respectively. From this ranking
we empirically set the phase 1 threshold to 7000.

Phase 2 of GFR then ranked the phase 1 selected genes with Gain Ratio using
the training dataset. Gain Ratio balances feature trust and class discrimination.
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Fig. 1.2 Trustworthiness by gene ranked in phase 1 of GFR. Also shown is the trustworthiness
threshold we selected, which is 7,000. All genes ranked after this threshold are removed from
further consideration in GFR phase 2.

Genes from the training data were also ranked by Gain Ratio without applying the
first phase of GFR. Comparison between the GFR ranked list and GainRatio–only
ranked list show that the top ten ranked genes are the same in both lists. Four of the
genes ranked within the top 20 by GainRatio are ranked below the trustworthiness
threshold by GFR. Of the top 256 genes, 34 differ between GFR and Gain Ratio.

To further illustrate these changes between GFR and GainRatio–only selected
genes, the raw data was converted to a basic expression ratio using

Expression = log2

(
F635−B635
F532−B532

)
(1.2)

where B is the intensity fluorescence for each channel in the local background region
around the feature (F). In eq. (1.2), if the feature is poor quality, faint, misshapen or
has a particularly noisy background, often the F−B value in one channel is negative
yielding an incalculable logarithm value. The expression value for the 20 genes from
each feature selection approach was identified for the 61 ALL patients, subjected
to hierarchical clustering and displayed as a “heat map”. Expression values which
were “null” due to poor quality were represented as a grey square on the heat map.
Figure 1.3 indicates that the four genes removed from the top 20 with GFR were all
overly represented with null expression values across the patient cohort. Both sets of
gene could distinguish B from T–lineage ALL, however GFR leads to the selection
of more trustworthy genes.

Classifiers were built using the “immunotype” class attribute and expression at-
tributes (“f635Median” and“ f532-Median”) for the top 16 ranked genes for GFR
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and Gain Ratio. The motivation behind choosing this number of features was from
considerations of being able to compare models for different classes.

Accuracy of these classifiers derived from 10–fold cross validation is reported in
Table 1.1. Features selected with GFR result in a slightly more accurate classifier
than with Gain Ratio. We also analyzed the impact of using different sized GFR
feature subsets on classification accuracy (see Table 1.2). Classifiers were built using
the same parameters as before, with the only difference being the number of features
used (16, 1024 or all genes). The best performance arose from using the sixteen
features chosen by GFR. Regardless of the number of features used or the feature
selection method, all classifiers were accurate. This was expected due to the strong
genetic relationship with leukemia cell types.

Table 1.1 Cross validation accuracy of classifiers built using the top 16 ranked features. Column 1
is classification accuracy. Column 2 is the Kappa statistic defined as the agreement beyond chance
divided by the amount of possible agreement beyond chance [23] p.115. Column 3 are the total
number of classification errors. Column 4 is the feature selection method applied.

Accuracy Kappa Total Errors Feature selection methodology

99.39% 0.9844 1 GFR
98.17% 0.9537 3 Gain Ratio

Table 1.2 Accuracy of classifiers trained using different numbers of the top GFR ranked features.
Column 1 is the number of features used. Column 2 is the classification accuracy. Column 3 is the
Kappa statistic. Last four columns present counts of true and false positives and negatives.

Features Accuracy Kappa True positive False negative False positive True negative

16 99.39% 0.9844 120 0 1 43
1,024 98.17% 0.9531 119 1 2 42
9,485 98.78% 0.9689 119 1 1 43

1.4 Conclusion

This chapter introduces Gene Feature Ranking, a feature selection approach for mi-
croarray data that takes into account the trustworthiness or quality of the measure-
ments by first filtering out genes with low quality measurements before selecting
features based on how well they discriminate between different classes of patient.
We demonstrate GFR to classify the cancer subtype of patients suffering from ALL.
Gene Feature Ranking is compared to Gain Ratio and we show that GFR outper-
forms Gain Ratio and selects more trustworthy genes for use in classifiers.
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(A)

(B)

Fig. 1.3 Hierarchical cluster analysis of the top 20 genes selected following (A) Gain Ratio only
and (B) GFR feature selection. The dendrogram at the top of each plot identifies the relationship
of each patient on the basis of the expression of the 20 genes; B–lineage (on left and marked B–)
and T–lineage (on right and marked T– or TL–). Each box on the heat map represents a gray–scale
annotation of the expression ratio for each gene (row) in each ALL patient (column), with the gray
scale at the base of each plot. Increasing light gray boxes represents increasing expression in ALL
patients compared to control samples, whilst dark gray represents decreasing expression. White
boxes represent “null” expression value indicative of poor quality features. Genes marked with *
were removed by GFR phase 1.


