AN AGENT-ORIENTED METHODOLOGY FOR HYBRID INTELLIGENT SYSTEM CONSTRUCTION

By

Chunsheng Li

Submitted in fulfilment of the requirements for the degree of **Doctor of Philosophy**

University of Technology, Sydney
March 2005

CERTIFICATE OF AUTHORSHIP/ORIGINALITY

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that I have received in my research work and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

Signature of Candidate

i

To My Wife Aiyun and Our Lovely Son Kan

Abstract

In recent years, both researchers and practitioners have recognised the advantages of applying the agent-based paradigm to the development of hybrid intelligent systems (HIS). Yet, the number of deployed commercial agent-based hybrid intelligent applications is small. One of the reasons for this is the lack of practical methodologies for agent-based hybrid intelligent applications development.

The aim of this thesis is to overcome this limitation. We have devised an agent-oriented methodology, called MAHIS (standing for *Methodology for constructing Agent-based Hybrid Intelligent Systems*). To avoid building MAHIS from scratch, we have followed the strategy of extending an existing well-known methodology in order to bridge the gap between the existing methodology and agent-based HIS construction. MAHIS has extended the capabilities of MAS-CommonKADS in agent-based HIS development. It is suitable for constructing agent-based HIS, as well as analysing and designing any *open systems* with hierarchical structure. *Open system* in this thesis means that the system allows for dynamic addition or removal of agents at run-time.

MAHIS consists of eight models: Hybrid Strategy Identification Model, Organisation Model, Task Model, Agent Model, Expertise Model, Coordination Model, Reorganisation Model, and Design Model. These models are grouped into three levels: conceptualisation, analysis, and design. Both the Hybrid Strategy Identification Model and Reorganisation Model are newly developed models rather than from MAS-CommonKADS. At the same time, some existing models have

been improved accordingly. The *Reorganisation Model* is the key model to support HIS and any *open systems* with hierarchical structure. It consists of *category role*, *group roles*, *virtual organisation role*, and *dynamics rules*. This model describes the hierarchical, dynamic, reusable, and unpredictable characteristics of HIS with *virtual organisation*, *category*, and *group* perspectives. Some previously developed agents can be reused by means of involving them in a new *virtual organisation* dynamically. The output of the *Reorganisation Model* is the specification of the dynamic platform which comprises middle agents and makes all agents and agent groups hierarchical and dynamic.

A dynamic platform PAHIS (*Platform for Agent-based Hybrid Intelligent Systems*) has been developed. PAHIS not only verified the capability of MAHIS in dynamic platform construction, but also can be used as an infrastructure of agent-based HIS. It supports the dynamic addition and removal of group-based agents at run-time. A self-organising ring-based architectural model has been developed to organise middle agents in PAHIS. Moreover, the ring-based architectural model has been evaluated from the viewpoints of complexity, efficiency, extendibility, and availability. The ring-based architectural model is competent in agent-based systems with middle agents.

The verification of MAHIS in HIS construction has been conducted by two successful case studies: "financial investment planning system" and "petroleum reservoir characterisation system". The former has verified MAHIS in constructing agent-based HIS with tight-coupling hybrid strategy. The latter has verified MAHIS in constructing agent-based HIS with loose-coupling hybrid strategy. PAHIS has been employed in these two systems.

The evaluation of MAHIS with the enriched evaluation framework which was originally proposed by Cernuzzi and Rossi has been completed by comparing it with Gaia and MAS-CommonKADS. The *reorganisation attributes* have been added into the evaluation framework. The evaluation results have indicated that MAHIS is preferable over Gaia and MAS-CommonKADS, especially in the construction of agent-based HIS.

Acknowledgements

I would like to extend my immense gratitude to my supervisor Professor Chengqi Zhang and co-supervisor Dr. Zili Zhang for their guidance and stimulating discussions during the course of this work. They often offer me some constructive, insightful comments and helpful suggestions. They always give me timely feedback for my research ideas, papers and thesis drafts. I am lucky and happy to have been able to work with them during my PhD study. This thesis could not have been completed without their friendship, encouragement, and intellectual support.

I am grateful to the Faculty of Information Technology at University of Technology, Sydney (UTS) for providing me with an excellent environment, scholarship for my studies, and travel funds for my participation in both domestic and overseas conferences, which have broadened my horizon enormously.

I would like to express my deep appreciation to those who helped me in one way or another during my PhD study: namely Professor Yuzhi Yan, Dr. Rongmei Liu, Dr. Shichao Zhang, Mr. Longbing Cao, Dr. Qingfeng Chen, Professor Fenxi Zhang, Dr. Xiaowei Yan, Dr. Yujin Zhang, Ms. Mei Wang, Ms. Dan Cheng, Ms. Qingfeng Song, Ms. Li Liu, Ms. Ann Goldwater, Mr. Jiaqi Wang, Mr. Li Lin, Mr. Zhenxing Qin, Mr. Yanchang Zhao, and Mr. Jiarui Ni. I would also like to thank the anonymous examiners for their valuable comments and suggestions.

I would like to give my special thanks to my wife Aiyun and my son Kan for their support and understanding throughout the years when I was away from home for my PhD study in Australia.

List of the Publications

The following is a list of my research papers published in referred international conference proceedings or journals during my PhD study at University of Technology, Sydney (UTS):

- Chunsheng Li, Zili Zhang, and Chengqi Zhang, A platform for dynamic organisation of agents in agent-based systems, in *Proceedings of the 2004 IEEE/WIC International Conference on Intelligent Agent Technology*, Beijing, China, 2004, 454-457.
- 2. Chunsheng Li, Li Liu, and Qingfeng Song, A practical framework for agent-based hybrid intelligent systems, *Asian Journal of Information Technology*, Vol. 3 (2), 2004, 107-114.
- 3. Chunsheng Li, Dan Cheng, and Chengqi Zhang, A platform to integrate well-log information applications on heterogeneous environments, in *Proceedings* of the 2nd International Conference on Information Technology and Applications, Harbin, China, 2004, 265-270.
- Chunsheng Li, Qingfeng Song, and Chengqi Zhang, MA-IDS architecture for distributed intrusion detection using mobile agents, in *Proceedings of the 2nd International Conference on Information Technology and Applications*, Harbin, China, 2004, 451-455.
- 5. Chunsheng Li, Chengqi Zhang, and Longbing Cao, Theoretical evaluation of ring-based architectural model for middle agents in agent-based system, in

- proceedings of the 14th International Symposium on Methodologies for Intelligent Systems, Maebashi, Japan, 2003, 603-607.
- 6. Chunsheng Li, Chengqi Zhang, Mei Wang, and Qingfeng Song, An approach to digitizing and managing well-logging graphs with agent-based perspective, in *Proceedings of the 2003 IEEE/WIC International Conference on Intelligent Agent Technology*, Halifax, Canada, 2003, 11-17.
- 7. Chunsheng Li, Qingfeng Song, Mei Wang, and Chengqi Zhang, SCTR: an approach to digitizing well-logging graph, in *Proceedings of the 6th IASTED International Conference on Computers, Graphics and Imaging*, Honolulu, USA, 2003, 285-288.
- 8. Longbing Cao, Chao Luo, Chunsheng Li, Chengqi Zhang, and Ruwei Dai, Open giant intelligent information systems and its agent-oriented abstraction mechanism, in *Proceedings of the 15th International Conference on Software Engineering and Knowledge Engineering*, San Francisco, USA, 2003, 85-89.
- 9. Longbing Cao, Chunsheng Li, Chengqi Zhang, and Ruwei Dai, Open giant intelligent information systems and its agent-oriented analysis and design, in *Proceedings of the 2003 International Conference on Software Engineering Research and Practice*, Vol. 2, CSREA Press, 2003, 816-822.
- 10. Chunsheng Li, Chengqi Zhang, and Mei Wang, An agent-based framework for well-logging information management, in *Proceedings of the 2nd International Conference on Active Media Technology*, Chongqing, China, 2003, 114-119.
- 11. Qingfeng Chen, Chengqi Zhang, Shichao Zhang, and Chunsheng Li, Verifying the Purchase Request in SET Protocol, in *Proceedings of the Fifth Asia Pacific Web Conference*, Xi'an, China, 2003, 263-274.
- 12. Chunsheng Li, Chengqi Zhang, and Mei Wang, An agent-based curve-digitizing system for well-logging data management, in *Proceedings of the International Conference on Information Technology: Coding and Computing*, Las Vegas, Nevada, USA, 2003, 656-660.

- 13. Chunsheng Li, Chengqi Zhang, and Zili Zhang, A ring-based architectural model for middle agents in agent-based system, in *Proceedings of the 4th International Conference on Intelligent Data Engineering and Automated Learning*, Hong Kong, China, 2003, 94-98.
- 14. Chunsheng Li, Chengqi Zhang, Qingfeng Chen, and Zili Zhang, A scalable and robust framework for agent-based heterogeneous database operation, in *Proceedings of the International Conference on Intelligent Agents, Web Technologies and Internet Commerce*, Vienna, Austria, 2003, 260-271.
- 15. Chunsheng Li, Mei Wang, and Liping Yang, An agent-based system for well-logging data manipulation on Intranet, *Daqing Petroleum Institute Journal*, 26(1), 2002, 54-56.
- 16. Chengqi Zhang, Chunsheng Li, and Zili Zhang, An agent-based framework for petroleum information services from distributed heterogeneous data resources, in *Proceedings of the 9th Asia Pacific Software Engineering Conference*, Gold Coast, Australia, 2002, 593-602.
- 17. Chunsheng Li, Chengqi Zhang, and Zili Zhang, An agent-based middleware for uniform operation in a heterogeneous database environment, in *Proceedings of the 4th Asia-Pacific Conference on Simulated Evolution and Learning*, Vol. 1, Singapore, 2002, 385-389.
- 18. Chunsheng Li, Chengqi Zhang, and Zili Zhang, An agent-based intelligent system for information gathering from World Wide Web environment, in *Proceedings of the 2002 International Conference on Machine Learning and Cybernetics*, Vol. 4, Beijing, China, 2002, 1852-1857.

Contents

Ab	stract		iii
Ac	knowled	gements	V
Lis	st of the	Publications	vi
Lis	st of Tab	les	xiv
Lis	st of Figu	ıres	xvi
1	Introdu	ction	1
	1.1 Ch	naracteristics of Hybrid Strategies	4
	1.2 M	ethodologies for Agent-Based HIS	7
	1.2.1	Evaluation Criteria with HIS Attributes	8
	1.2.2	Evaluating Methodologies with Criteria	10
	1.2.3	Methodology Selection for Tailoring	11
	1.3 Ou	ıtline of MAHIS Methodology	12
	1.4 Ke	ey Research Issues of MAHIS	15
	1.4.1	MAHIS Modelling	15
	1.4.2	Verification of MAHIS in Dynamic Platform Construction	17
	1.4.3	Verification of MAHIS in HIS Construction	
	1.4.4	Evaluation of MAHIS	19
	1.5 Pr	incipal Contributions of the Thesis	19
		ıtline of the Thesis	

2	Literatu	re Review and Related Work	23
	2.1 Ag	gent-Based HIS	24
	2.1.1	HIS and Hybrid Modelling	24
	2.1.2	Suitability of Agent in HIS	26
	2.1.3	Agent-Based Hybrid Intelligent Systems	30
	2.2 Me	ethodologies for Multi-Agent Systems	34
	2.2.1	Concept of Agent-Oriented Methodology	34
	2.2.2	Classification of Agent-Oriented Methodologies	36
	2.2.3	Well-Known Agent-Oriented Methodologies	38
	2.3 Ag	ent-Oriented Methodology Evaluations	45
	2.4 Su	mmary	46
3	Hybrid I	Modelling and Agent-Oriented Methodologies	48
	3.1 W	hat Is A Hybrid Intelligent System?	49
	3.2 Hy	brid Modelling	50
	3.2.1	Hybrid Technique Models	51
	3.2.2	Hybrid Strategy Models	53
	3.2.3	Characteristics of HIS	61
	3.3 Me	ethodologies and Hybrid Strategies	62
	3.3.1	Comparison of Agent-Oriented Methodologies	62
	3.3.2	Ranking Methodologies for Selection	66
	3.4 Su	mmary	69
4	MAHIS:	A Methodology for Constructing Agent-Based HIS	70
	4.1 Hy	brid System Development Cycle	71
	4.2 Fr	amework of MAHIS	74
	4.3 Co	onceptualisation	77
	4.3.1	Hybrid Problem Requirements	78
	4.3.2	Hybrid Strategy Identification Modelling	79
	4.4 An	nalysis	82
	4.4.1	Organisation Modelling	83
	442	Task Modelling	86

	4.4.3	Agent Modelling	88
	4.4.4	Coordination Modelling	90
	4.4.5	Knowledge Modelling	93
	4.4.6	Reorganisation Modelling	96
	4.5 De	sign	101
	4.5.1	Architecture Design	102
	4.5.2	Agent Communication Language	104
	4.5.3	Platform Design	104
	4.5.4	Application Design	105
	4.6 Su	mmary	106
5	Case Stu	dy 1: PAHIS A Platform for Agent-Based HIS	107
	5.1 Re	quirements for Developing PAHIS	108
		HIS Analysis	
		HIS Design	
	5.3.1	The Organisational Structure for Middle Agents	
	5.3.2	Coordination Mechanism	
	5.4 Im	plementation of PAHIS	118
	5.5 Ev	aluation of PAHIS' Structure	123
	5.5.1	Complexity	123
	5.5.2	Efficiency	124
	5.5.3	Extendibility	125
	5.5.4	Availability	126
	5.6 Su	mmary	127
6	Case Stu	dy 2: Financial Investment Planning System	129
	6.1 Co	nceptualisation	130
	6.1.1	Financial Investment Planning Requirements	
	6.1.2	Hybrid Strategy Identification Model	
		alysis of the System	
		j	
	6.2.1	Organisation model	134

	6.	2.3	Agent Model	135
	6.	2.4	Coordination Model	136
	6.	2.5	Expertise Model	137
	6.	2.6	Reorganisation Model	140
	6.3	De	sign of the System	142
	6.4	Im	plementation of the System	144
	6.5	Su	mmary	145
7	Case	e Stu	dy 3: Petroleum Reservoir Characterisation	146
	7.1	Co	nceptualisation	147
	7.	1.1	Reservoir Characterisation Requirements	147
	7.	1.2	Hybrid Integration Strategy Identification	150
	7.2	An	alysis of the System	151
	7.	2.1	Organisation Model	151
	7.	2.2	Task Model	152
	7.	2.3	Agent Model	154
	7.	2.4	Coordination Model	155
	7.	2.5	Expertise Model	159
	7.	2.6	Reorganisation Model	168
	7.3	De	sign of the System	169
	7.4	Im	plementation of the System	173
	7.5	Su	mmary	175
8	Eval	luati	on of MAHIS	176
	8.1	Fra	amework for AOM Evaluation	177
	8.2	Atı	tributes Tree	179
	8.3	Co	mparison of Methodologies	184
	8.4	Sui	itability Analysis of MAHIS	191
	8.5	Su	mmary	194
9	Con	clusi	ions and Future Work	195
	9.1 (Conc	clusions	196
			re Work	

Bib	liography	y20	1

List of Tables

Table 1.1 Evaluation results of methodologies	11
Table 1.2 Ranking results of the methodologies	12
Table 3.1 Relations used in hybrid technique models	51
Table 3.2 Practical hybrid technique models	52
Table 3.3 Enriched attributes tree model	63
Table 3.4 The evaluation results with attributes tree	65
Table 3.5 Ranked methodologies for hybrid strategies	69
Table 4.1 Suitable architectural models for hybrid strategies	76
Table 4.2 Worksheet OM-1: Problems and opportunities	83
Table 4.3 Worksheet OM-2: Description of organisational aspects	84
Table 4.4 Worksheet TM-1: Refined description of the tasks	87
Table 4.5 Conventions for CML syntax specification	96
Table 4.6 Worksheet RM-1: Description of category role	98
Table 4.7 Worksheet RM-2: Description of agent grouping	98
Table 4.8 Worksheet RM-3: Description of system dynamics	101
Table 5.1 Practical architectural models	113
Table 6.1 The intelligent characteristics of the processes	132
Table 7.1 The intelligent characteristics of the processes	150
Table 7.2 The tasks of petroleum reservoir characterisation	153
Table 7.3 The agent model of petroleum reservoir characterisation	154

Table 7.4 The statements in <i>content</i> of query primitive	171
Table 7.5 Complicated lithology stratum classification result	174
Table 8.1 Evaluation results of MAHIS	191

List of Figures

Figure 1.1 Framework of MAHIS methodology	13
Figure 1.2 The components of MAHIS	16
Figure 2.1 The relationships among components of a methodology	35
Figure 3.1 Intelligent technologies being used in HIS	49
Figure 3.2 Models for integrating HIS	53
Figure 3.3 Structure of stand-alone systems	54
Figure 3.4 Structure of transformational systems	55
Figure 3.5 Structure of loose-coupling systems	57
Figure 3.6 Structure of tight-coupling systems	58
Figure 3.7 Structure of fully-integration systems	60
Figure 4.1 Hybrid system development life cycle	73
Figure 4.2 Use case notation	78
Figure 4.3 MSC Investor request use case diagram	79
Figure 4.4 Relationships of components in HSI model	80
Figure 4.5 The structure of the process categories	85
Figure 4.6 The organisation of financial investment planning	85
Figure 4.7 The task tree of finical investment planning	87
Figure 4.8 Activity diagram for planning agent	90
Figure 4.9 State chart for planning agent	90

Figure 4.10 Coordination model	91
Figure 4.11 The events of planning agents	92
Figure 4.12 Interactions with SDL state diagrams	93
Figure 4.13 The components of reorganisation model	97
Figure 4.14 Category, group, VO, and agent relationships	99
Figure 4.15 The process of VO formation	100
Figure 4.16 The global system architecture	103
Figure 5.1 The framework of the system	108
Figure 5.2 The organisation use case of PAHIS	109
Figure 5.3 MSC interactions of PAHIS	110
Figure 5.4 The hierarchy structure of the categories	110
Figure 5.5 SDL interactions of PAHIS	111
Figure 5.6 Ring organisational structure	114
Figure 5.7 Interaction between agents	117
Figure 5.8 Framework for information gathering	119
Figure 5.9 Structure of middle agent	120
Figure 6.1 MSC process of financial investment planning	133
Figure 6.2 Relationships between processes and resources	134
Figure 6.3 Activity diagram for interface agent	136
Figure 6.4 The events of user handling agents	137
Figure 6.5 Agents, groups and categories	140
Figure 6.6 Architecture of financial investment planning system	142
Figure 6.7 Structure of the agents in the system	143
Figure 6.8 Example of asset allocation and portfolio results	144
Figure 7.1 Use case of reservoir property prediction	148
Figure 7.2 MSC process of petroleum reservoir characterisation	149
Figure 7.3 Organisation of the petroleum reservoir characterisation	151
Figure 7.4 DFD of petroleum reservoir characterisation	152
Figure 7.5 The task tree of petroleum reservoir characterisation	153
Figure 7.6 Activity diagram for middle agent	155
Figure 7.7 MSC process of well logs curve digitising	156

Figure 7.8 MSC process of well logs regeneration	157
Figure 7.9 MSC process of reservoir property prediction	157
Figure 7.10 Even flow diagram of the system	158
Figure 7.11 Typical interactions with SDL state diagrams	158
Figure 7.12 Structure of a LAG node	164
Figure 7.13 Two cross curves in LAG	165
Figure 7.14 Structure of a CS	166
Figure 7.15 The hierarchical structure of the categories	168
Figure 7.16 Architecture of reservoir characterisation system	170
Figure 7.17 Components of well log digitising application	173
Figure 7.18 Components of reservoir property prediction application	173
Figure 8.1 Hierarchical structure of the enriched attributes tree	180