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Abstract: Nonreciprocal optical bistability is numerically investigated in InGaAsP/InP nonlinear
waveguide Bragg gratings having a strong and asymmetric sidewall modulation. Minimum switch-
ing power as low as 77 mW is predicted by choosing optimal switching conditions.

1. Introduction

For ultra-fast optical communication, all-optical switches and logic gates are important [1], which can be realized by
optical bistability in nonlinear media [2], [3], [4]. In this paper we investigate numerically an optical Schmitt trigger
operation in longitudinally asymmetric waveguide Bragg gratings (WBGs). These WBGs have also a property of
non-reciprocal transmission, where the switching threshold in one direction is lower than that in the other direction.
The analyzed WBG can be fabricated with an optical planar circuit technology using InGaAsP/InP [5]. The sidewall
modulation of this structure is large, and thereby the coupled mode equations can not be directly applied due to
the strong coupling between the forward and the backward waves [6]. Analysis has been therefore performed fully
numerically with the nonlinear finite-difference time-domain (FDTD) method that inherently deals with the necessary
coupling and guiding effects of the WBGs.

2. Nonlinear WBG Configuration

The asymmetric WBG has been modeled such that the stopband of the grating has a nearly linear profile along the
waveguide. The grating is realized by a sidewall periodic perturbation of a dielectric waveguide whose top view and
cross section are shown in Fig.1 (a) and (b), respectively. The sidewall modulation is expressed by a function of
distance z as
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where Λ is the period of the grating chosen to be Λ = 0.241µm for this paper, and L0 is the total length of the
grating. The averaged width of the waveguide was chosen to be W = 0.4 µm such that it supports only the dominant
propagation mode at an operating frequency. The nearly linear variation of the band edge frequency is described
by a 3rd-order polynomial in terms of the normalized distance z′ = z/L0 as g(z′) = az′3 + bz′2 + cz′ + d, with
a = −0.4856, b = −0.0009, c = 0, and d = 1. Note that this results in a chirp of the stopband center frequency
along the grating. For Wg = 0.1 µm and Wg = 0.2 µm, the transmission spectra for the whole asymmetric WBGs is
shown in Fig.2. The waveguide has a three-dimensional (3D) pedestal waveguide structure [5], which consists of an
InP cladding and an InGaAsP core, and it is approximated by a slab waveguide for analysis. The third-order nonlinear
susceptibility for the InGaAsP core is χ

(3)
0 = 3.8 × 10−18 m2/V2.
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Fig.1 Schematic configuration of the asymmetric
waveguide Bragg grating; (a) the top view, and (b) the
cross section of the waveguide.
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Fig.2 Comparison of the calculated transmission spec-
tra for 200-Λ-long asymmetric gratings with the max-
imum modulation Wg = 0.1 µm and Wg = 0.20 µm.
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3. FDTD Analysis of Nonlinear WBGs

We apply Yee’s FDTD algorithm to Maxwell’s equations [7] including Kerr nonlinearity and typical chromatic disper-
sion properties through the auxiliary differential equation (ADE) technique [8]. The relation between the length of the
waveguide grating and the switching threshold for the RTL configuration is plotted in Fig.3. The switching threshold
no longer exhibits a linear dependence on the grating length. This is considered to be due to the strong modulation of
the grating.

Next we increased the sidewall modulation to Wg = 0.20 µm while maintaining the longitudinal profile of the
modulation. The transmission spectra for the 200Λ-long asymmetric grating are compared with that of Wg = 0.1 µm
in Fig.3. Due to the rapidly oscillating sinusoidal carrier, only the envelopes of the signals are visible in the figure. The
operating frequency for the nonlinear switching analysis was then chosen to be 214.03 THz. This frequency is closer
to the band edge (214.08 THz) than that of the previous case because the transmission spectrum is much steeper at the
band edge, which allows the same level of extinction ratio for the nonlinear switching operation. The results for the
switching behavior are shown in Fig.4 . Either of the two transmission plots show the Schmitt trigger operation, i.e. the
switch turns on at a certain incident power, holding the on-state until the input passes through a lower threshold power.
In this result the switching threshold has been reduced to E

(on)
th = 1.05 × 107 V/m (P (on)

th = 77 mW) for the RTL

(right to left, positive taper) configuration, and E
(on)
th = 1.6 × 107 V/m (P (on)

th = 170 mW) for the LTR (left to right,
negative taper) configuration. As expected, the stronger modulation allows the reduction of the switching threshold
significantly. With the incident laser power of 77 mW, the experimental observation of the switching operation in this
device should be feasible.
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Fig.3 Switch-on threshold electric field and power ver-
sus the length of the waveguide grating for the RTL
(right to left) configuration with Wg = 0.1 µm and
0.2 µm. The error bars are the uncertainty due to the
increment of the incident field variation.

Fig.4 Switching for the LTR (left to right) and RTL
configuration of a 220Λ-long waveguide with Wg =
0.20 µm at 214.03 THz operating frequency (∆f =
0.05 THz). Maximum incident field is 2.6 × 107 V/m
at 75 ps. Minimum switch-on threshold is E

(on)
th =

1.05 × 107 V/m (P (on)
th = 77 mW) for RTL.
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