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Abstract. The rapid pace of innovation in the market for credit risk has given rise to a
liquid market in synthetic collateralised debt obligation (CDO) tranches on standardised
portfolios. To the extent that tranche spreads depend on default dependence between
different obligors in the reference portfolio, quoted spreads can be seen as aggregating
the market views on this dependence. In a manner reminiscent of the volatility smiles
found in liquid option markets, practitioners speak of implied correlation “smiles” and
“skews” . We explore how this analogy can be taken a step further to extract implied
factor distributions from the market quotes for synthetic CDO tranches.

1. Introduction

“Implied correlation” has become a buzzword in portfolio credit risk modelling. In a
development similar to implied volatility for vanilla options, a model parameter affecting
derivative financial instruments, but not directly observable in the market, is backed out
from derivatives prices as those derivatives become competitively quoted. The derivatives
in question are synthetic CDO tranches and the parameter is correlation in a Gaussian
single factor model of default, essentially along the lines of Vasicek (1987) and Li (2000).
This model has become the point of reference when pricing portfolio credit derivatives,
in this sense much like the Black and Scholes (1973) model in option pricing. Even more
so than in the case of Black/Scholes, however, the severe limitations of this model are
recognised by practitioners. Given these limitations, it is unsurprising that it cannot
consistently fit the market, i.e. for different tranches on the same portfolio, different
values of the correlation parameter are required in order to fit observed tranche spreads.
This has led market practitioners to speak of implied correlation “smiles” and “skews”,
evoking an analogy to the volatility smiles found in vanilla option markets.

Several alternative approaches to modelling portfolio credit risk, as required for pricing
CDO tranches, have been proposed. These include lifting the structural (asset–based)
models pioneered by Black and Scholes (1973) and Merton (1974) to the portfolio level,
for example as illustrated by Hull, Predescu and White (2005). The intensity–based mod-
elling approach initially proposed by Jarrow and Turnbull (1995) can also be applied at
the portfolio level, by modelling dependent default intensities as in Duffie and Gârleanu
(2001) or using a more general copula–based framework as introduced by Schönbucher
and Schubert (2001). Most recently, a new methodology for the pricing of portfolio credit
derivatives has been proposed by Schönbucher (2006), who takes a “top–down” approach
(as opposed to the “bottom–up” approach of the aforementioned papers) to directly model
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the stochastic dynamics of portfolio losses (and the associated loss transition rates) in an
arbitrage–free manner.1

The choice of approach to construct a model fitting observed tranche quotes primarily
depends on the application envisioned for the calibrated model. The point of view that
we take in the present paper is that we wish to price related (but illiquid) instruments in
a manner consistent with the market quotes for standard synthetic tranches on standard
reference portfolios (such as CDX or iTraxx). We want to be reasonably satisfied that the
calibrated model subsumes all the market information relevant to the pricing of the illiquid
instruments. In this, the problem is somewhat more complicated than calibrating, say, a
single–name equity option model to observed standard option prices.

Since we are concerned with relative pricing of similar instruments, we abstract from
the fundamental asset values and use credit spreads (for single names as well as for com-
petitively quoted synthetic CDO tranches) directly as inputs. Furthermore, the results of
Burtschell, Gregory and Laurent (2005) suggest that credit spread dynamics are of minor
importance in pricing CDO tranches. Consequently, the simplest solution would be to
modify the Vasicek/Li static factor model to fit observed tranche spreads.

The normal distribution of the common factor in the Vasicek model implies a Gauss-
ian dependence structure (copula) between the latent variables driving the defaults of the
various obligors. Numerous authors have suggested replacing this by a Student–t, a Mar-
shall/Olkin or various types of Archimedean copulae.2 Burtschell, Gregory and Laurent
(2005) compare a selection of these models; in their study, the best fit to market data
seems to be achieved by the double t one–factor model of Hull and White (2004).

The basic model can be extended in various ways, thus introducing additional param-
eters, which facilitate an improved fit. One obvious way to introduce further degrees
of freedom into the model is to allow the systematic factor loadings (corresponding to
the constant correlation parameter in the reference Vasicek model) to vary across oblig-
ors. However, doing so without any structural assumptions results in more than 100 free
parameters in the typical case of a CDX or iTraxx portfolio, making any meaningful cal-
ibration impossible. Mashal, Naldi and Tejwani (2004) suggest bringing the number of
free parameters back down to one taking historical correlations as an input and scaling all
correlations by a constant chosen to fit the market as well as possible. Between these two
extremes, intermediate solutions could be achieved by perturbing one or more eigenvectors
of the historical variance/covariance matrix.3

Andersen and Sidenius (2005) pursue two possible extensions, one which allows for ran-
dom recovery rates and another, in which the factor loadings are random. They motivate
this by the stylised empirical observations that recovery rates are correlated with the busi-
ness cycle and that default correlation appears stronger in a bear market. In particular
for the latter case, examples are given where the model produces implied correlation skews
qualitatively similar to those observed in the market.

We pursue a third path, seeking to imply the underlying factor distribution (and thereby
the distribution of conditional default probabilities) directly from the market quotes for

1Schönbucher (2006) demonstrates how his model can be disaggregated from the portfolio level all the
way down to the level of multivariate, intensity–driven dynamics of the defaults of individual obligors,
thus providing a general framework for the modelling of credit derivatives. The aim of the present paper
is far less ambitious.

2See Burtschell, Gregory and Laurent (2005) and references therein.
3Mashal, Naldi and Tejwani (2004) mention only scaling all correlations by a single constant because

of the attraction of being able to quote a single number, the “implied correlation bump,” as representing
the default dependence implied from market quotes.
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synthetic CDO tranches. In this, we build on the well–known methods of implying risk–
neutral distributions from option prices, a strand of the literature initiated by the seminal
paper of Breeden and Litzenberger (1978).4

As the normal factor distribution used by Vasicek (1987) and Li (2000) remains the
benchmark for pricing CDO tranches, this seems a natural starting point for a factor
distribution calibrated to market data. The Edgeworth and Gram/Charlier Type A series5

expand a distribution around the normal in terms of higher order moments. In the case
of risk–neutral distributions implied by standard option prices, this is an approach that
is well known in the literature,6 where typically the series is truncated after the fourth
moment (representing kurtosis). Jondeau and Rockinger (2001) show how one can ensure
that the truncated series yield a valid density. In the sections that follow, we derive the
theoretical results required to implement CDO tranche pricing where the common factor
follows a Gram/Charlier density, fit this density to market data and apply the model to
the pricing of general tranches on standard portfolios.

2. Modelling

1. Assumption. Along the lines of Vasicek (1987), assume that the latent variable ζi

driving the default (or survival) of the i–th obligor can be written as

(1) ζi = βiY +
√

1− β2
i εi

where Y , ε1, . . . , εM are independent, εi ∼ N (0, 1) and (departing from Vasicek’s normality
assumption) the distribution of Y is given by a Gram/Charlier Type A series expansion in
the standard measure, i.e. the density f of Y is given by

f(x) =
∞∑

j=0

cjHej(x)φ(x)(2)

cr =
1

r!

∫ ∞

−∞
f(x)Her(x)dx

φ(x) =
1√
2π

e−
x2

2

where Hej(x) denotes the Hermite polynomial7 of order j.

Default of obligor i is considered to have occurred before time t if the latent variable ζi

lies below the threshold Di(t).
Note that in this context, a large homogeneous portfolio (LHP) approximation is easy

to derive. Follow Vasicek (1987) and consider a large homogeneous portfolio of M issuers.
Homogeneity of the the portfolio means that, in addition to the ζi being identically dis-
tributed, the exposures to each obligor in the portfolio are the same, as are the recovery
rates R and the correlation (βi) with the common factor.8 In this case, the randomness

4See Bahra (1997) for an overview.
5See e.g. Kendall and Stuart (1969).
6See e.g. Jackwerth and Rubinstein (1996), Corrado and Su (1996) and Jurczenko, Maillet and Negrea

(2002).
7See Definition 3 in the appendix.
8Note that some authors write (1) as ζi =

√
ρiY +

√
1− ρiεi, in which case

√
ρi
√

ρj is the correlation
between the latent variables for obligors i and j. Then in the homogeneous case (ρi = ρj = ρ), this
correlation between latent variables is simply ρ.
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due to the idiosyncratic risk factors εi diversifies out as the size M of the portfolio grows
large. In the limit, given the value of the systematic risk factor Y , the loss fraction L on
the portfolio notional is9

(3) L ≈ (1−R)Φ

(
D − βY√

1− β2

)
where Φ(·) is the cumulative distribution function (CDF) of the standard normal distri-
bution. Setting

(4) h(x) = (1−R)Φ

(
x√

1− β2

)
the CDF of the portfolio loss fraction can be expressed as

(5) P [L ≤ θ] = 1− F

(
D − h−1(θ)

β

)
where F (·) is the CDF corresponding to the density f(·) given by (2).

The key result needed in order to implement the factor model of Assumption 1 is an
explicit relationship between the default thresholds Di(t) and the (risk–neutral) probability
of default of obligor i:

2. Proposition. Under Assumption 1,

(6) P [ζi ≤ Di(t)] = Φ(Di(t))−
∞∑

j=1

βj
i cjφ(Di(t))Hej−1(Di(t))

where Φ(·) and φ(·) are the CDF and density, respectively, of the standard normal distri-
bution.

Proof: We first derive the density g(·) of ζi.

g(x) =
∂

∂x
P [ζi ≤ x]

=
∂

∂x

∫ ∞

−∞

∫ x−βiy√
1−β2

i

−∞
φ(t)dtf(y)dy

=

∫ ∞

−∞

1√
2π

exp

{
−(x− βiy)2

2(1− β2
i )

}
1√

1− β2
i

∞∑
j=0

cjHej(y)
1√
2π

e−
y2

2 dy

= exp

{
− 1

2(1− β2
i )

(x2 − x2β2
i )

}
∫ ∞

−∞

1

2π
√

1− β2
i

exp

{
− 1

2(1− β2
i )

(y2 − 2xβiy + x2β2
i )

} ∞∑
j=0

cjHej(y)dy

= e−
x2

2

∫ ∞

−∞

1

2π
√

1− β2
i

exp

{
−(y − βix)2

2(1− β2
i )

} ∞∑
j=0

cjHej(y)dy

9cf. O’Kane and Schlögl (2005)
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Setting z := (y − xβi)/
√

1− β2
i , this is

= e−
x2

2

∫ ∞

−∞

1

2π
e−

z2

2

∞∑
j=0

cjHej(
√

1− β2
i z + xβi)dz

and applying Lemma 4,10

= φ(x)

∫ ∞

−∞
φ(z)

∞∑
k=0

ck

k∑
j=0

(
k

j

)
(
√

1− β2
i )

k−jHek−j(z)j!

[ j
2 ]∑

m=0

1

m!2m(j − 2m)!
(1− β2

i )
mHej−2m(xβi)dz

which by the orthogonality property of Hermite polynomials11 simplifies to

= φ(x)
∞∑

k=0

ckk!

[ k
2 ]∑

m=0

1

m!2m(k − 2m)!
(1− β2

i )
mHek−2m(xβi)

Reordering terms, this becomes

= φ(x)
∞∑

j=0

Hej(xβi)
∞∑

m=0

cj+2m(j + 2m)!
1

m!2mj!
(1− β2

i )
m

︸ ︷︷ ︸
=:dj

Applying Corollary 5 (see appendix),

= φ(x)
∞∑

j=0

djj!

[ j
2 ]∑

m=0

βj−2m
i Hej−2m(x)

(β2
i − 1)m

(j − 2m)!2mm!

= φ(x)
∞∑

k=0

Hek(x)
βk

i

k!

∞∑
m=0

dk+2m(k + 2m)!
(β2

i − 1)m

2mm!
(7)

Consider the term
∞∑

m=0

dk+2m(k + 2m)!
(β2

i − 1)m

2mm!

=
∞∑

m=0

(k + 2m)!
(β2

i − 1)m

2mm!

∞∑
n=0

ck+2m+2n(k + 2m + 2n)!
1

n!2n(k + 2m)!
(1− β2

i )
n

10Reproduced from Schlögl (2008) for the reader’s convenience in the appendix. Note that this Lemma
is a special case of scaling and translation results well-known in white noise theory, see e.g. Kuo (1996)
or Hida, Kuo, Potthoff and Streit (1993). We thank John van der Hoek for pointing this out.

These results essentially afford densities given in terms of Edgeworth or Gram/Charlier expansions the
same amount of tractability as the Gaussian. Calculations can be performed directly at the level of the
infinite series expansion, without the need to truncate the series before deriving the desired results (as
has been the practice in the option pricing literature using these expansions). See Schlögl (2008) for an
application to traditional option pricing.

11see for example Kendall and Stuart (1969)
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Market Vasicek Model Gram/Charlier
Upfront (pts) Spread (bp)

Subordination Bid Ask Bid Ask Upfront Spread Upfront Spread
0% 37 42 500 500 41.79 500.00 39.88 500.00
3% 0 0 280 330 0.00 365.93 0.00 306.55
7% 0 0 102 110 0.00 93.71 0.00 104.84

10% 0 0 39 59 0.00 24.27 0.00 53.82
15% 0 0 6 16 0.00 1.60 0.00 9.48
30%

Latent variable correlation coefficient β2: 16.98% 17.58%
Skewness: −0.2825
Excess kurtosis: 1.8986

Table 1. Calibration to CDX NA I tranche quotes on 21 April 2004

and change indices to j := m + n, so that this

=
∞∑

j=0

ck+2j(k + 2j)!(1− β2
i )

j 1

2jj!

j∑
m=0

(
j

m

)
(−1)m

The inner sum is zero for all j > 0, so that we have

= ckk!

Substituting this into (7) yields

(8) g(x) = φ(x)
∞∑

k=0

Hek(x)βk
i ck

It follows from Lemma 6 (see appendix) that

P [ζi ≤ Di(t)] =

∫ Di(t)

−∞
g(x)dx

= Φ(Di(t))−
∞∑

j=1

βj
i cjφ(Di(t))Hej−1(Di(t))

2

Lemma 2 permits the term structures of default thresholds to be fitted to the risk–
neutral probabilities of default backed out of the single–name credit default swap spreads.12

CDO tranche spreads can then be calculated by semi-analytical methods — we use the
method described by Andersen, Sidenius and Basu (2003), the only modification required
being that the calculation of the unconditional loss probabilities from the conditional loss
probabilities by numerical integration is carried out with respect to a factor distribution
given by a Gram/Charlier density.

12For the relationship between CDS spreads and risk–neutral probabilities of default/survival, see
Schönbucher (2003).
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Figure 1. CDX data example

0

0.1

0.2

0.3

0.4

0.5

0.6

-5

-4
.6

-4
.2

-3
.8

-3
.4 -3

-2
.6

-2
.2

-1
.8

-1
.4 -1

-0
.6

-0
.2 0.
2

0.
6 1

1.
4

1.
8

2.
2

2.
6 3

3.
4

3.
8

4.
2

4.
6 5

Figure 2. iTraxx data example

Fitted (thick line) versus normal densities

3. Examples

3.1. Implied factor distributions. To extract implied factor distributions from com-
petitively quoted tranche spreads, we assume a flat correlation structure (i.e. βi ≡ β for
all i) and truncate the Gram/Charlier series expansion after some even–numbered mo-
ment,13 thus essentially generalising the Vasicek/Li factor model by allowing for non-zero
skewness, excess kurtosis and possibly higher order terms. We implement a non-linear
optimisation14 to find β, skewness and excess kurtosis and any desired higher moments
such that the squared relative error in the model tranche spreads versus the mid-market
quoted spreads is minimised.

Two market data examples are given in Tables 1 and 2. For the CDX NA I tranche
quotes on 21 April 2004, the Gram/Charlier calibration produces very good results, with
the model spreads very close to the mid-market quotes, especially when compared to the
spreads representing the best fit of a Vasicek flat correlation model calibrated using the
same objective function. This is also reflected in the shape of the calibrated density itself,
which is nicely unimodal, as Figure 1 shows. For the ITRX.EUR 2 tranche quotes on
21 March 2005, the fit is not as good. In fact, an unconstrained calibration of skewness
and kurtosis to the market quotes in this case would not result in a valid density —
the density shown here is the result of a constrained optimisation as suggested by Schlögl
(2008). Difficulties are encountered in particular in fitting the senior tranche spread — this
appears to be a problem common to most (possibly all) variations of the Vasicek factor
approach.16 Adding a fifth and sixth moment to the expansion improves the situation

13Truncating the expansion after an odd–numbered moment would unavoidably result in an invalid
density. For truncation after an arbitrary even–numbered moment, Schlögl (2008) describes an algorithm,
which ensures that the coefficients of the truncated expansion are calibrated in a way that ensures that
the density is positive everywhere.

14E.g. Powell’s method (see Press, Teukolsky, Vetterling and Flannery (1992)) modified as in Schlögl
(2008).

15“Excess” is to be interpreted in a manner analogous to excess kurtosis, i.e. the number quoted is
the excess of the sixth moment about the mean above the corresponding moment of the standard normal
distribution, which in this case is 15.

16We obtained similar results using other distributional assumptions on the common factor, including
the normal inverse Gaussian along similar lines as Guegan and Houdain (2005) and Kalemanova, Schmid
and Werner (2007).
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Market Gram/Charlier 4 Gram/Charlier 6
Upfront (pts) Spread (bp)

Subordination Mid Mid Upfront Spread Upfront Spread
0% 17.5 500.00 17.36 500.00 17.39 500.00
3% 0.0 112.50 0.00 112.38 0.00 112.63
6% 0.0 36.13 0.00 35.69 0.00 34.95
9% 0.0 18.00 0.00 19.28 0.00 20.03

12% 0.0 10.00 0.00 6.27 0.00 7.20
22%

Latent variable correlation coefficient β2: 18.19% 18.22%
Skewness: 0.5438 0.3929
Excess kurtosis: 2.3856 1.9772
Fifth moment about the mean: 2.6704
Excess15 sixth moment about the mean: 29.8882

Table 2. Calibration to ITRX.EUR 2 tranche quotes on 21 March 2005

Market Gram/Charlier 4 Gram/Charlier 6
Upfront (pts) Spread (bp)

Subordination Mid Mid Upfront Spread Upfront Spread
0% 13.01 500.00 12.74 500.00 12.89 500.00
3% 0.00 67.10 0.00 62.87 0.00 72.68
6% 0.00 17.93 0.00 16.86 0.00 15.17
9% 0.00 8.34 0.00 8.26 0.00 10.70

12% 0.00 3.28 0.00 0.99 0.00 1.33
22%

Latent variable correlation coefficient β2: 14.60% 14.49%
Skewness: 0.6886 −0.0047
Excess kurtosis: 2.3650 1.2638
Fifth moment about the mean: −0.7185
Excess sixth moment about the mean: 30.5882

Table 3. Calibration to ITRX.EUR 2 tranche quotes on 2 July 2007

somewhat and also smoothes the resulting density more toward the unimodal, as can be
seen in Figure 2 (the thick line represents the higher order fit).

A similar result is obtained for more recent data, as reported for 2 July 2007 in Table 3.
Again, the fit via an implied factor distribution is difficult in particular for the most senior
tranche, where calibrated spreads are too low. Adding a fifth and sixth moment to the
expansion allows us to increase the model spread for the most senior tranche, but at the
cost of radically changing the factor distribution: As Figure 3 shows, the Gram/Charlier
four–moment fit (the non-normal density plotted with a thin line) is very similar in shape



CDO IMPLIED FACTOR DISTRIBUTIONS 9

0

0.1

0.2

0.3

0.4

0.5

0.6
-5

-4
.6

-4
.2

-3
.8

-3
.4 -3

-2
.6

-2
.2

-1
.8

-1
.4 -1

-0
.6

-0
.2 0.
2

0.
6 1

1.
4

1.
8

2.
2

2.
6 3

3.
4

3.
8

4.
2

4.
6 5

Figure 3. iTraxx implied factor distribution for 2 July 2007

to the 21 March 2005 result, while the six–moment fit (the thick line) is substantially
different.17

One should also note that during the period of considerable turmoil in the credit mar-
kets (from August 2007) the quality of the fit deteriorated markedly (results not reported
here), and it is a matter of further research whether this market situation can be accu-
rately mirrored by any of the existing models, in particular those based on the one–factor
approach.

3.2. Interpolation of implied and base correlation. By fitting the factor distribution
to the tranche spreads quoted in the market, we are essentially subsuming all departures
from the flat correlation single factor Gaussian model in the implied factor distribution.
As such, the implied factor distribution is specific to the underlying portfolio, which limits
the applicability — in the same way a risk–neutral distribution extracted from, say, S&P
500 index option prices is applicable only to that particular index. In practical terms, such
implied distributions are useful for interpolating prices (or implied volatility/correlation)
in a manner consistent with the absence of arbitrage. This is what is involved when pricing
non-standard tranches on the index portfolios.

The question that one might therefore ask is: Does the implied factor distribution also
deal well with situations where the “implied correlation smile” is caused by influences

17One can argue that is might be due to overfitting, as this can be avoided by changing the weighting
of the individual tranches in the objective function for the minimisation. For the results reproduced here,
the relative pricing error for each tranche was weighted equally.
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Compound and base correlation as defined in O’Kane and Livesey (2004)

Correlation Gram/Charlier fit
Subordination Actual spread compound base Spread Compound corr. Base corr.

0% 8170.34 13.72% 13.72% 8170.45 13.72% 13.72%
3% 2391.05 13.42% 13.54% 2390.92 13.42% 13.54%
7% 1172.06 12.67% 13.36% 1172.65 12.64% 13.37%

10% 568.41 17.72% 13.01% 567.6 17.26% 13.10%
15% 97.46 13.10% 11.71% 98.07 13.21% 12.41%
30%

Table 4. Standard tranches, heterogeneous portfolio

Correlation Gram/Charlier fit
Subordination Actual spread compound base Spread Compound corr. Base corr.

0% 5081.53 13.64% 13.64% 5082.33 13.64% 13.64%
5% 1428.59 13.00% 13.36% 1428.94 12.98% 13.37%

10% 739.64 7.27 % 13.23% 739.58 7.30 % 13.26%
12% 463.83 15.08% 13.01% 462.59 14.81% 13.10%
15% 58.5 13.01% 10.56% 59.08 13.16% —
40%

Table 5. Non-standard tranches, heterogeneous portfolio

other than non-normality of the common factor? Mashal, Naldi and Tejwani (2004) iden-
tify heterogeneity in correlation and spreads as one of the potential causes of an “implied
correlation smile.” This motivates the following experiment: On a portfolio of 100 names,
vary the CDS spreads between 30 and 300 basis points, and vary the β between 20% and
47.5%, (higher spread names have higher correlations). Calculate the “correct” spreads
using a Gaussian model with the heterogeneous correlations, and then fit the (flat corre-
lation) Gram/Charlier model to the standard tranches. The result of this calibration is
given in Table 4. Then, calculate the spreads for non-standard tranches using the previ-
ously fitted Gram/Charlier model and compare these with the correct spreads. As Table 5
shows, the spreads calculated using the fitted model agree very closely with those given by
the postulated “correct” model, demonstrating that the portfolio heterogeneity has been
absorbed well into the modified distribution of the common factor.18

When applied to market data, the model interpolates (and extrapolates) base correlation
in a manner in line with the accuracy of the calibration. Compared to direct interpola-
tion/extrapolation of the base correlation obtained from market quotes, base correlation
calculated from a calibrated model has the advantage that it is guaranteed to be consis-
tent with the absence of arbitrage.19 Figure 4 shows the interpolation/extrapolation of

18Incidentally, the numbers in Tables 4 and 5 also demonstrate a fact well–known to practitioners: The
non-monotonicity and relative instability of implied correlation for mezzanine tranches implies that if one
does chose to interpolate the “correlation smile” directly, one should do this at the level of base correlation,
rather than the correlation implied by tranche spreads. Base correlation for a subordination level of x%
is the implied correlation of an equity tranche covering losses from zero to x% of the CDO notional.

19This is not guaranteed in the case of direct interpolation, see O’Kane and Livesey (2004).
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Figure 4. Interpolated base correlation for 2 July 2007

base correlation the implied by the model fitted to iTraxx market data on 2 July 2007
(i.e. the calibration reported in Table 3). At the senior end, the model extrapolates based
on the calibration of the most senior tranche (and thus departs substantially from what
one would obtain by directly extrapolating the base correlations). At the equity end, di-
rectly extrapolating the market base correlations would result in much lower correlations
(and thus much lower spreads or upfront payments) than the essentially flat extrapolation
implied by the model.

4. Conclusion

In a way similar to volatility for standard options, (default) correlation is the key pa-
rameter for the pricing of CDO tranches, which is not directly observable in the market.
As prices for these derivative financial instruments become competitively quoted in the
market, values for these parameters can be implied. We have demonstrated how, in a way
similar to how one can extract risk-neutral distributions from standard option prices, an im-
plied factor distribution for a CDO pricing model can be constructed in a semi-parametric
way. Essentially, in the sense that the factor distribution determines the copula of the
joint distribution of default times, a default dependence structure has thus been extracted
from market quoted tranche spreads.
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Appendix: Some useful results on Hermite polynomials under linear
coordinate transforms

We use the definition of Hermite polynomials customary in statistics, as given for ex-
ample in Kendall and Stuart (1969), where they are called “Chebyshev–Hermite polyno-
mials.” In the literature these polynomials are usually denoted Hei(·), as opposed to a
slightly different version of Hermite polynomials, which are usually denoted Hi(x) (see e.g.
Abramowitz and Stegun (1964)).

3. Definition. The Hermite polynomials Hei(·) are defined by the identity

(9) (−D)iφ(x) = Hei(x)φ(x)

where

D =
d

dx

is the differential operator and

φ(x) =
1√
2π

e−
1
2
x2

The following results are reproduced for the reader’s convenience. See Schlögl (2008) for
proofs.

4. Lemma. The Hermite polynomials Hei(·) satisfy

(10) Hei(ax + b) =
i∑

j=0

(
i

j

)
ai−jHei−j(x)j!

[ j
2 ]∑

m=0

1

m!2m(j − 2m)!
a2mHej−2m(b)

5. Corollary. The Hermite polynomials Hei(·) satisfy

Hei(y + a) =
i∑

j=0

(
i

j

)
Hei−j(y)aj(11)

Hei(ax) = i!

[ i
2 ]∑

m=0

ai−2mHei−2m(x)
(a2 − 1)m

(i− 2m)!2mm!
(12)

6. Lemma. We have for i ≥ 1

(13)

∫ b

a

Hei(y)
1√
2π

e−
(y−µ)2

2 dy =

i−1∑
j=0

(
i

j

)
µj (φ(a− µ)Hei−j−1(a− µ)− φ(b− µ)Hei−j−1(b− µ))

+ µi (Φ(b− µ)− Φ(a− µ))

where Φ(·) is the cumulative distribution function of the standard normal distribution. If
µ = 0 and i ≥ 1

(14)

∫ b

a

Hei(y)
1√
2π

e−
y2

2 dy = φ(a)Hei−1(a)− φ(b)Hei−1(b)
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ETH Zürich.
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