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Not Being at Odds with a Class:
A New Way of Exploiting Neighbors for Classification

Myriam Bounhas' and Henri Prade” and Gilles Richard?®

Abstract. Classification can be viewed as a matter of associating a
new item with the class where it is the least at odds w.r.t. the other el-
ements. A recently proposed oddness index applied to pairs or triples
(rather than larger subsets of elements in a class), when summed up
over all such subsets, provides an accurate estimate of a global odd-
ness of an item w.r.t. a class. Rather than considering all pairs in
a class, one can only deal with pairs containing one of the nearest
neighbors of the item in the target class. Taking a step further, we
choose the second element in the pair as another nearest neighbor in
the class. The oddness w.r.t. a class computed on the basis of pairs
made of two nearest neighbors leads to low complexity classifiers,
still competitive in terms of accuracy w.r.t. classical approaches.

1 Introduction

Several classification methods rely on the idea that a new item x
should be classified in the class w.r.t. which it appears to be the least
at odds. Logical proportions [7] are Boolean expressions that link
four Boolean variables through equivalences between similarity or
dissimilarity indicators pertaining to pairs of these variables. Among
logical proportions, the heterogeneous ones [7] provide a natural ba-
sis to build a global oddness measure of an item w.r.t. a multiset, by
cumulating the oddness index w.r.t. different triples of elements in the
multiset for the different features [3]. This has suggested the simple
procedure of classifying a new item z into the class C which min-
imizes this global oddness measure. Moreover, it has been noticed
that the oddness measure of an item w.r.t. a triple can be generalized
to a subset of any size, as well as to numerical features [3]. We inves-
tigate here the use of oddness measures based on selected pairs, since
our aim is to show that we can keep on with the same idea of oddness
while lightening the computational cost. Doing so, we preserve the
accuracy while further reducing the complexity by constraining the
set of considered pairs. The idea is to constrain the choice of the two
elements in the pairs. We study the options of using pairs including
one nearest neighbour, and then two nearest neighbors [4].

2 Oddness of an item w.r.t. a multiset of values

In order to build an oddness index for a Boolean = w.r.t. a multi-
set of Boolean values {a; | ¢ € [1,n]}, we look for a formula
F(ai,...,an,x) holding iff ay = ... = ap = Oandz = 1,
orifa; = ... = an, = land z = 0. The oddness odd({a;|i €
[1,n]},z) of a Boolean x w.rt. a multi-set of Boolean values
{a; | i € [1,n]} can be summarized as:
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It is clear that odd holds true only when the value of x is seen as being
at odds among the other values: z is the intruder in the multiset of
values. In the case n = 2, odd({a1, a2}, z) is 0 if and only if the
value of z is among the majority value in the multiset {a1, a2, z}.
When n = 3, odd({a1, a2, as},x) does not hold true only in the
situations where there is a majority among values in a1, a2, as,x
and z belongs to this majority (e.g. odd({0,1,0},0) = 0), or when
there is no majority at all (e.g. odd({0,1,1},0) = 0).

Extension to real values is quite straightforward. Assuming that
numerical features are renormalized between O and 1, we use the
standard definitions of the logical connectives in the [0, 1]-valued
Lukasiewicz logic [8]. Then, a graded counterpart to formula (1) is:

min(|xz — max{a,...,an}|, |z — min{ai,...,an}]) (2).
A natural extension odd({a|i € [1,n]}, @) to vectors with m fea-
tures is to consider the sum componentwise of the odd values com-
puted via expression (1) or (2) as:
S odd({a]li € [L,n]},27)  (3),

where 7 is the j-th component of 7 and the aZ ’s are the j-th com-
ponents of the vectors a@; respectively. If odd({ai|i € [1,n]}, @) =
0, it means that no feature indicates that 7 behaves as an in-
truder among the a;’s. On the contrary, high values of odd( Eﬂz €
[1,n]}, 7) means that, on tnany features, 2’ appears as an intruder.

3 Global oddness measure for classification

Given a set C = {a;|i € [1,n]} of vectors gathering examples of
the same class, one might think of computing odd(C, ?) as a way
of evaluating how much 7 is at odds w.r.t. C. An immediate clas-
sification algorithm would be to compute odd(C, ?) for every class
and to allocate to @ the class which minimizes this number. Never-
theless, this number is not really meaningful when the size of C is
large. Indeed, we have to be careful because then {a@;|i € [1,n]} is
summarized by two vectors made respectively by the minimum and
the maximum of the feature values among the examples of C (due
to expressions (2) and (3)). These two vectors have high chance to
be fictitious in the sense that, usually, they are not elements of C.
Approximating our knowledge of the set C using only the maximal
ranges of the feature values over the members of the set seems very
crude. An idea is then to consider small subsets .S of the class C, then
compute odd(S, ?) and finally add all these atomic oddness indices
to get a global measure of oddness of 7 w.rt. C. This approach leads
to the following initial formula: X gcc |gj=n 0dd(S, ?) To take into
account the relative size of the different classes, it is fair to introduce
a normalization factor and our final definition is:

0ddn(C, ) = —Ssce,s1on 0dd(S, T)

(%)
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A classification algorithm follows, %here we allocate to a new item
z the class C minimizing Odd,, (C, ) for a given n, thus defining a

family of classifiers also denoted Odd,, .

Algorithm 1 Oddness-based algorithm

Input: a training set 'S of examples (7, cl(Z))

anew item o,

an integer n,
Partition 7'S into sets C of examples with the same label c.
for each C do

Compute Odd,, (C, Z) for subsets of size n

end for
() = argmin.(Odd,(C, 7))
return ¢l ()

4 Experimentations

The experimental study is based on 15 datasets taken from the
U.C.I. machine learning repository [6], applying standard 10 folds
cross-validation technique. On these datasets, we compare classifiers
Oddy, Oddz, Odds accuracy to the one of state-of-the-art classifiers
C4.5, SVMs, JRip and IBk (shown in Table 1). Our first experiments

Table 1. Classification accuracy of state-of-the-art classifiers

Datasets C4.5 SVM SVM JRip IBk
Poly-Kernel PUK-Kernel (k=5.k=15)

Balance 78 90 89 76 84,88
Car 95 91 87 91 92,76
Monkl1 99 75 100 98 100,100 -
Monk2 95 67 67 73 64,67
Monk3 100 100 100 100 99,98
Spect 81 81 83 81 80,79
Voting 96 96 96 95 93,91
Diabetes 74 77 77 76 73,74
Cancer 96 97 96 96 97,94
Heart 77 84 81 81 78,81
Magic 76 77 81 77 78 .77
Ionosphere 91 88 94 88 85,84
Iris 96 96 96 95 95,96
Wine 94 98 99 93 95,96
Sat. Image 94 94 95 93 95,94

lead to rather poor performances due to the huge number of subsets
considered in each class, giving them equal importance, while a lot of
them blur the accuracy of oddness measure through the summation.

In our first experiments, considering the average accuracy on all
15 datasets, it appears that Odds is a better performer than Odd,
and Odds. We then focus on Odda, trying to privilege subsets in-
cluding elements of particular interest such as nearest neighbors in
the classes. Since selecting one element of a pair as a nearest neigh-
bour of the item x in the target class leads to good accuracy rates,
we also consider the option of taking the second element as another
nearest neighbour in the class, with the normalization factor chosen
accordingly as ﬁ, leading to Odd2(N N, NN). This is also bene-
ficial from a com2plexity viewpoint.

In Tables 2 and 3, we provide classification results respec-
tively for Odda(N N, Std) (using only one nearest neigbour), and
Oddz(NN, NN) (using two nearest neigbours) for different values
of k (k being the number of nearest neigbours used).

In the last column of Table 3, we assign respectively a positive '+,
negative '—’, or neutral ." mark if the Odd2(N N, N N) is respec-
tively better, worse or similar to Oddz (NN, Std) for k = 15. This
comparison shows that the two classifiers have similar efficiency for
most datasets, except for Monk2 where Oddz(NN, NN) outper-
forms not only Odd2 (NN, Std), but also SVM and IBk.

We can also note that Odd2(NN, NN) performs more or less
in the same way as the best known algorithms. Especially we com-
pared this classifier to IBk for k=15 using the Wilcoxon Matched-

Pairs Signed-Ranks [5]. We get a p-value = 0.024 which shows that
Oddz (NN, NN) is significanly better than IBk.

Table 2. Classification accuracies given as mean and standard deviation
with Odda (N N, Std) classifier for k = 3,7,13,15

Datasets Odd> (NN, Std)

Value of k 3 7 13 15
Balance 75.61£4.99 85.65+4.11 86.23+3.59 86.33+3.57
Car 87.73+£3.99 92.68+3.17 90.85+2.99 90.1+2.86
Monk1 99.5942.95 99.76+2.19 99.38+2.87 99.334+2.87
Monk2 36.39+8.57 53.03+£5.85 61.344+5.34 64.28+4.4
Monk3 99.8240.72 99.8740.66 99.6+1.31 99.1441.82
Spect 82.98-+5.17 84.08-+4.7 83.82-+5.76 83.38-+5.76
Voting 92.96+4.29 94.334+3.38 94.98+2.63 94.3943.82
Diabetes 73.61+3.99 75.1+£3.49 75.5+3.03 75.93+3.98
W.B. Cancer | 95.79£2.32 [ 96.31+1.82 | 96.37£1.91 96.49+2
Heart 81.55+3.94 82.52+5.39 82.145.34 82.34-+5.55
Magic 78.39+3.27 | 78.32+3.03 | 78.83£3.18 [ 78.94+3.09
Tonosphere 91.224+4.11 90.56+4.92 91.58+5.4 91.6945.6
Iris 94.534+5.47 94.534+5.47 95.214+4.68 95.214+4.68
‘Wine 97.58+2.71 98.2442.44 | 97.67+2.87 97.58+2.87
Sat. Image 95.1+1.48 94.594+1.36 | 93.93£1.77 93.84+1.67

Table 3. Classification accuracies given as mean and standard deviation
with Odda (NN, NN) classifier for k = 3,7,13,15

Datasets Odd>(NN,NN)

Value of k 3 7 13 15
Balance 56.374+6.56 | 83.63+£3.89 | 83.72+4.12 | 84.47£3.54 ()
Car 75.38+4.53 | 92.39+3.89 [ 91.26+2.89 90.36£3.83 ()
Monk I 85.954+4.66 | 99.76:£0.24 [ 99.56+0.74 | 99.57+£0.94 ()
Monk2 53.7248.1 59.74+4.6 67.93+4.23 | 67.73£3.13 (+)
Monk3 94.4944.97 | 99.95£0.05 [ 99.91+0.71 99.59+1.25 ()
Spect 76.524+6.02 | 82.77+5.09 | 83.82+3.68 | 84.51+4.80 (+)
Voting 90.69+2.92 | 93.36+2.85 94.3£3.57 94.86+3.03 ()
Diabetes 68.48+5.2 73.064+3.22 | 74.55£3.48 | 74.84+3.03 (-)
W. B. Cancer | 94.05£2.48 | 95.864+2.88 | 96.051+2.38 96.02+2.32 ()
Heart 74.294+4.72 | 79.46+£8.26 | 81.4446.07 82.58+7.60 ()
Magic 75.25+3.41 78.68+3.73 | 79.24£2.53 | 79.52+3.15 (+)
Tonosphere 91.174+4.2 91.6442.88 91.814+2.0 91.854+2.12 ()
Iris 94.59£5.62 | 94.59£5.62 94.7+5.63 94.98+£524 ()
Wine 97.64+4.81 97.814+2.65 | 97.77£2.78 97.74+2.78 ()
Sat. Image 95.51£1.75 95.29+1.1 9479+1.69 | 9477181 (+)

S Conclusion

In this paper, we suggest a new way to evaluate the oddness of an
item w.r.t. a class. Since using subsets of pairs (Oddz) provides better
accuracy results than singletons (Odd,) or triples (Odds), we further
investigate this option by filtering candidate pairs. We first choose
one item in a pair as a nearest neighbour, then two elements in a
pair as nearest neighbours in the class. Experiments show that we are
still competitive with state of the art classifiers (k-NN, SVM) while
having drastically decreased complexity. These results suggest that it
may be beneficial to consider pairs of nearest neighbours and then
to minimize an oddness measure, which departs from the k-NN view
dealing with nearest neighbours in isolation.
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