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Abstract—Timekeeping is central to network measurement.
In typical systems, its accuracy is ultimately dependent on the
forest of timeservers accessible over the network, whose roots
are the stratum-1 timeservers, which benefit from reference
hardware. It is essential that these servers are accurate and
reliable, and it is commonly assumed that this is the case. We
put this belief to the test through an examination of around 100
publicly accessible stratum-1 servers, using datasets spanning
over 3 years, collected in a testbed with reference timestamping.
We develop a methodology capable of disambiguating the effects
of routing changes, congestion related variability, and server
anomalies on timestamps. We use it to make a first assessment of
the health of (public) network timing, by reporting on the type,
severity, and frequency of anomalies we encounter.

I. INTRODUCTION

Timekeeping is a vital service provided by computer op-
erating systems, essential for many kernel services and user
space applications, and central to network measurement. The
operating system’s system clock is software built on local hard-
ware, which is synchronized through timestamp exchange, via
the Network Time Protocol (NTP), to a reference timeserver
over the network. For scalability, timeservers are organised in
a hierarchy, where a stratum s timeserver itself synchronizes
to a stratum s−1 server. Anchoring the system are the stratum-
1 timeservers, which have reference hardware such as GPS or
atomic clocks locally attached. These roots of the timing forest
‘hierarchy’ can be PCs, or purpose built networked devices [1].

As stratum-1 servers are the gold references of the system,
they are typically assumed to be highly reliable and accu-
rate (nominally to 10µs). If this were not true, the impact
would be potentially significant, since a good proportion of
the world’s computers are synchronized, ultimately, through
accessing public stratum-1 servers. These are hosted typically
by institutions such as NIST and USNO (USA) and NMI
(Australia), research institutes and some universities.1

The underlying issue here is: if a server’s clock were to mis-
behave, how would one know? In practice stratum-1 servers
act essentially as independent islands. There is support through
NTP to compare internal diagnostics of server synchronization
quality to select a preferred peer and to inform clients, but
the performance of this mechanism is variable and does not
in any case constitute independent validation. From the
perspective of the typical client, judging its server is inherently

1The interesting question of exactly how large this proportion is has become
much harder to answer following the blocking of diagnostic NTP queries since
late 2013, due to their exploitation in DDOS attack amplification [2].

problematic. Not only is the client’s clock designed to trust and
follow that of its server, the transported reference timestamps
are viewed through the shroud of network latency. This can
be highly variable, and anything from tens of microseconds
to hundreds of milliseconds and beyond in size, depending on
the minimum round trip-time (RTT) between the client and
server, and path congestion levels.

It follows from the above that, even if one were looking for
them, discrepancies between the client and server clocks can
easily be attributed to network latency, and/or shortcomings
of the client synchronization daemon/algorithm. If one is not
looking for them, then only errors which are huge compared
to the nominal 10µs are likely to be noticed. In fact, suspicion
is unlikely to be directed toward a stratum-1 unless it is simply
unreachable, or the error gross, for examples minutes or hours.

Our broad goal is to discover what is actually going on in
the public timing infrastructure, beginning with its stratum-1
heart. From discussions with owners of certain public stratum-
1 servers, we know that not only do accuracy and reliability
issues exist, but these are often not easily detected even
internally. The aim of this paper is to develop an external
methodology capable of detecting issues with a server, and to
use it to shine a light on the public stratum-1 servers.

Our findings are based on experiments employing a client
machine, located within a timing testbed in Australia, to
exchange timestamps in parallel to over 100 stratum-1 servers
spread globally. We study two datasets, each months long,
collected over 3 years apart to the same server set. Using
independent GPS synchronized DAG card monitoring [3], we
are able to disambiguate events observed at the client in
network latency, from server anomalies. Our findings include
many examples of very significant errors occurring on a
regular basis, a wide variety of anomaly types, and widely
varying anomaly amplitudes.

Because of the single client vantage point, the large RTTs
involved, and the limitations both of our current detector and
manual inspection, we are not capable of detecting anomalies
in all cases where they may exist. Even so, the findings are
significant, and strongly suggest that there may be many other
errors which, though smaller, are still well beyond the nominal
10µs we might expect of a stratum-1. This paper represents
a substantial first look at these datasets, and is the first step
in plans for a more definitive study, described in more detail
in the discussion. We know of no prior work examining the
health of commonly used servers, in particular public stratum-
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Fig. 1. Timeline of the ith host-server exchange including forward path delay
from DAG (d↑i ), server delay (d→i ), backward path delay from DAG(d↓i ) and
RTT relative to DAG (ri = d↑i + d→i + d↓i ).

1 servers, similar to what we present here. The closest related
work is [4], which noted errors in a number of public servers as
part of a survey, using a testbed of stratum-1 servers, and [5],
which provides a simple survey and compares against others,
including [6].

The paper is organised as follows. Section II describes our
testbed and its operation. Section III describes the experiment,
the selection of servers, and how the datasets were collected.
Section IV outlines the principles, challenges and methodology
of our server anomaly analysis. Section V details and discussed
our findings. We conclude in Section VI.

II. TESTBED

The key event times in the timestamp exchange between a
host and its timeserver are shown in Figure 1. Packet i leaves
the host at time tha,i, arrives at the server at time tb,i, leaves it
at te,i and returns at thf,i. To provide reference time locally we
employed a DAG3.7GP high performance measurement card
to timestamp the packets just outside the host via a passive
tap. The card was synchronized to a Trimble Acutime 2000
GPS receiver mounted on the laboratory roof, and was further
stabilized via atomic clock for the first of our two experiments.
Final timestamping accuracy was around 200ns ([3], [7]).

We use our RADclock clock synchronization daemon in the
host, patches for which are available at [8]. As described in
[9], RADclock is highly accurate and robust, however here we
use it, not for host synchronization as such, but to provide an
infrastructure for the running of the experiment, in particular
to provide multiple independent streams of NTP packets, for
logging, and as an independent sanity check on the DAG. Our
primary data makes no use of host timestamps, but is based
on the DAG and server timestamps only.

For each emitted NTP packet which completes its round-
trip and is successfully matched, we obtain a 4-tuple stamp of
timestamps {Ta,i, Tb,i, Te,i, Tf,i} as our basic data unit, where
timestamp Ta,i is made at time ta,i, etc.. Here Ta,i, Tf,i are
recorded by the DAG, and Tb,i, Te,i are made by the server
and are extracted from the returning NTP packet.

III. THE EXPERIMENT

In this section we describe the servers involved in the
experiment, explain how the experiment was run, and give
an overview of the resulting datasets.

A. Server List

We performed two experiments: Exp1 which uses a server
list List1, and Exp2 which uses List2. As seen in Table I,
each experiment is of similar duration, and targets a similar
number of servers.

The basis of our server choice is the list of Stratum-1 time
servers maintained at ntp.org by the NTP Project. This list is
subject to change. At the time of Exp1 it contained around 188
servers, of which none were in Australia. In forming List1 we
selected a subset of 119 servers which were OpenAccess, and
responded to NTP requests. Over three years later, we wanted
to investigate whether these servers had changed behavior.
List2 was formed by removing from List1 servers which were
no longer listed at ntp.org2 or which no longer responded,
and adding a set of 13 Australian servers. These included
one in our laboratory, and 3 from the National Measurement
Institute (NMI), Australia’s equivalent of the National Institute
for Standards and Technology (NIST) in the US, which is
responsible for maintaining national reference time.

There are 95 servers in List1∩List2. Of these, in the case
of Exp2, only 89 had the same IP address at the beginning and
end of the experiment (this information was not available for
Exp1). To facilitate comparison between the two experiments,
we report on ListINFOCOM, a list consisting of these 89
servers plus the 13 Australian servers from List2, 102 in total.

None of the servers used in our experiments are accessed
via the Public NTP Pool. The ntppool system [10] provides
load balancing and client configuration support by mapping
server urls to physical server IP addresses transparently. It is
important for this work that the server origins do not change.

Exp List(#servers) Start End duration
Exp1 List1(119) Sep. 30, 2011 Aug. 3, 2012 151 days
Exp2 List2(117) May 5, 2014 April 2, 2015 124 days

TABLE I
DETAILS OF THE TWO EXPERIMENTS.

For interest we note that as of May 1st 2015 there were 214
servers listed as ‘OpenAccess’ at ntp.org, of which 192 had
valid URLs, and none were in Australia.

B. Data Sets

In each experiment a single laboratory host launched inde-
pendent RADclock instances to each of the servers in its list
in parallel. The generated dataset of the experiment consists of
the set of well-matched 4-tuples for each instance/server col-
lected by the DAG card (as well as complementary RADclock
data). Each instance uses a polling period of 64 seconds, or
1350 4-tuples per day assuming no packet loss.

The experiments were allowed to run until external events
(Exp1: over zealous building power testing; Exp2: hardware
failure), intervened. There are also periods of significant
missing data. In Exp2 there is a gap of just over 15 days

2Although still readily available individually, in the wake of the NTP
reflection attacks it has become difficult to obtain the full url list from ntp.org.
Several of our IP addresses were blacklisted in the process of collecting it.
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Fig. 2. RTT statistics and classification labels for the 102 ListINFOCOM servers. Countries with 3 or more servers are first, followed by:
{am(1),be(2),bg(1),cz(2),fr(1),ie(1),it(2),jp(1),mx(1),ro(2),si(1),es(2),ua(1)}. The data spans over 3 years: Top plot: Exp1 from 2011-12; Bottom: Exp2 from
2014-15. The color coding follows the server anomaly classification: Red (Bad server), Green (Good) and Black (Ambiguous).

common to all servers due to the university blocking NTP
traffic to and from our testbed network. In other cases server
availability leads to variations. In a small number of cases data
sets contain only a small number of 4-tuples, because of the
aforementioned IP change issues.

One of the most important parameters impacting our ex-
periments is the client–server RTT, and its variability. Fig-
ure 2 sets the scene by summarizing, for each experiment,
the overall RTTs observed for each server. The servers are
ordered alphabetically according to country code in each of
two classes: first those countries with at least three servers,
then the remainder. Within each country grouping the ordering
is also lexicographical. We use this ordering as a unique key,
in the range 1–102, to compactly identify the servers. The
mapping to server url’s is provided in Tables II and III below.

The results are broadly similar across the two experiments.
For each a value of 100ms clearly separates the Australian
servers from the others, and RTTs to the US are considerably
lower than to Europe or Asia. The minimum RTT shown
is often, in particular for Exp1, significantly lower than the
median, a reflection of route changes variability as we see
below. Whereas the 90% percentiles shown all fall below
500ms, the maximum RTT (not shown) is in many cases of
the order of several seconds.

A related measure is that of hop count. For Exp2 we
used traceroute to measure client→server hop count, and TTL
values from returning NTP packets to infer the server→client
count. The result from each direction varied roughly as one
would expect based on geography. The average relative differ-
ence over all servers was 7.5%.

The stratum of a server can be extracted from the returning
NTP packet. In Exp2 we found that a number of the servers,
though appearing in the stratum-1 list, were actually not
statum-1. In fact server #1 was always stratum-3, servers #14,
#21, #35, #39 were always stratum-2, and 33 others (see
Tables II and III for the full list) had a level which varied,
although typically they were stratum-1 except for a small
number of brief periods. These could be due to reboots, which
are quite likely given the long experiment durations.

IV. METHODOLOGY

In this section we establish the principles through which
server errors can be detected, explain the key impediments to
practical detection, and describe our procedure to perform our
survey of server health. It is beyond the scope of this paper
to develop an automated server anomaly detector. We take the
first steps towards such a capability, in particular our survey
constitutes an ‘expert annotated’ or labelled data set which can
serve as pseudo ground-truth for detector development.

A. Principles

From the measured 4-tuples {Ta,i, Tb,i, Te,i, Tf,i}, five es-
sential estimated path quantities can be defined:

Forward delay : D↑
i = Tb,i − Ta,i

Server delay : D→
i = Te,i − Tb,i

Backward delay : D↓
i = Tf,i − Te,i

Round Trip Time (RTT) : Ri = Tf,i − Ta,i
Path Asymmetry : Ai = D↑

i −D
↓
i .
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Fig. 3. Fundamentals of the Ri and Ai relationship. Left column (server #86 (ntp1.oma.be)): ideal scenario with constant Ri baseline, short term congestion,
and no server anomalies. Middle (server #27 (ntps1-1.cs.tu-berlin.de)): canonical route change scenario showing a level shift in Ri, which is cancelled in Ai

(and no anomalies). Right (server #68 (nist.netservicesgroup.com)): ideal Ri behaviour but with Ai showing large and persistent events (of ‘Skew and Return’
type), which must be server errors. Overlayed black curves are sliding median filterings of the time series, used to remove short term congestion variability.

The potential sources of variability in the above quantities
are threefold: congestion, changes in routing, and server errors
or anomalies (SAs). The forward and backward one-way
delays (OWDs), as well as their estimates D↑

i , D↓
i above,

are subject to all three. They cannot therefore be effectively
used to unambiguously detect anomalies. The exception is if
they are negative, which contradicts causality (packet arrives
before it is sent etc.), and immediately implicates the server,
however this is a rare and extreme situation. The server delay
is of limited use, except to allow us to confirm the expectation
that, if a server is in error over stamp i, it affects both Te,i
and Tb,i and so is invisible in D→

i . Otherwise, in particular
since it is typically of the order of 20µs, which is negligible
in most cases compared to other delays, we ignore it.

The remaining two quantities enjoy strong and comple-
mentary properties for our purpose. The most important is
the RTT, as Ri is entirely independent of server timestamps.
This allows path conditions to be judged independently of
server behaviour. In contrast, the asymmetry series Ai directly
carries the signal of any server errors: an error of size e in a
given stamp will appear as 2e. Thus Ai provides the basis
of SA detection, with Ri providing the basis of independent
disambiguation, through observing whether events present in
the Ai time series have, or could possibly have, a network
origin.

We illustrate the possible relationships between the Ri and
Ai time series using Figure 3. The left column shows an
ideal situation without anomalies. Here Ri exhibits a clean
baseline corresponding to a constant underlying minimum of
rm ≈ 372ms, plus the sum of noises due to congestion in each
direction. The Ai series is centered on the underlying path
asymmetry a ≈ 1ms, which is small compared to rm, about
which we see the difference of these noises. Thus Ai benefits

from a partial cancellation of congestion related variability. In
particular the variable component, Ri−rm, of Ri, bounds the
magnitude of the variable component Ai − a of Ai for each
stamp i.

The middle column exhibits a canonical example of the
impact of routing changes, again with no anomalies. The
primary effect on Ri is to induce level shifts in the minimum
RTT baseline (congestion characteristics can also change with
each shift, sometimes markedly). Here the single downward
shift in Ri is invisible in Ai since each OWD changes by
the same amount simultaneously. Furthermore the series is
centered on a = 0, because each of the two routes taken
are symmetric. In general, level shifts events from Ri are
still visible in Ai, but at reduced amplitude due to partial
cancellation, and with jump directions which are unrelated to
those of Ri. Partial to full cancellation of routing events is
another advantage enjoyed by Ai.

The rightmost column in Figure 3 gives the case of an
unmistakeable server anomaly. Whereas Ri is well behaved
with no evidence of route changes, leading one to expect an
even better behaved Ai as was the case in the leftmost column,
instead we find an underlying variability of over 50ms, over
two orders of magnitude higher than that of Ri, whose entire
histogram (outliers aside) is well under 1ms in width. With
routing and congestion sources of variability already accounted
for, the cause of this can only be errors in the server itself.

Note that an alternative explanation for large changes in Ai

coupled to no changes in Ri is that the baselines of D↑
i and

D↓
i evolve in a precisely equal and opposite way. We consider

this possibility to be pathological, and we know of no network
mechanism that could give rise to it.

The anomalous server in the right column in Figure 3 is
nist.netservicesgroup.com (server #68), which advertises as a
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Fig. 4. Challenges to SA detection. Left column (Bad server #16 (ntp1.oma.be)): moderately complex Ri baseline behavior, within which a server anomaly
can nonetheless be detected as shown. Middle (Good server #3 (ntp.brisbane.nmi.gov.au)): high asymmetry so that the level change events in Ri appear in A
with the same instead of reduced (or zero) amplitude, but perhaps different sign. Right (Ambiguous server #100 (hora.roa.es)): hard to filter persistent and
large congestion events present in both Ri and Ai, making it too difficult to determine if the events seen in Ai are anomalies.

stratum-1. As a NIST controlled server it could be expected
to have a considerable number of stratum-2 clients, whose
clocks would be directly impacted by their server’s error. The
anomaly is not an isolated event but follows a pattern of peri-
ods of skew (incorrect clock rate), usually linear but sometimes
not, broken by sudden jumps, which is continuously present
over the entire 28 hour period shown. In fact, it is present over
the entire duration of both Exp1 and Exp2, each months long.

B. Challenges
The example of server nist.netservicesgroup.com above is

one where the server errors were large and consistent, against
a backdrop of consistently low levels of routing events and
congestion. With such a high ‘signal to noise’ ratio the detec-
tion is simple, and quite definitive, even from the other side of
the world. However, our server data exhibits a diverse set of
complex behaviors, making detection, in particular automated
detection, extremely challenging in the general case where
anomalies may be small, rare, and buried in noise. We next
describe the most important of these challenges to reliable
detection.

The first challenge is that of baseline variability, by which
we mean variations in the underlying minimum value rm of
Ri. Given the large RTTs to the majority of our servers, and
the long experiment durations, it is not surprising that routing
changes are numerous, resulting in many cases in extremely
complex baselines. The leftmost column of Figure 4 gives an
example of moderate complexity 11 days long. It contains 10’s
of level shifts, with jump sizes ranging from a fraction of a
millisecond to 10’s of ms, and level durations rangings from
days to just a few minutes or even a single stamp. Despite
this complexity, it is possible to diagnose server anomalies
with high confidence in certain circumstances. The black circle
marks the location of a level shift event occurring in Ai,

of amplitude 6ms, which can be diagnosed as anomalous
because of the well behaved nature of Ri in its immediate
neighborhood. Baselines can be far more complex than the
one shown here, and make the reliable automatic analysis
of a long trace problematic, and manual analysis very time
consuming. When there are too few events at fixed routing
to distinguish congestion variability from routing events, then
baselines cannot even be measured and conclusions cannot be
drawn.

The second challenge is that of asymmetric routing changes.
It is possible that a routing change affects one direction only.
In that case there is no cancellation: the event manifests
in Ai with the same shape and amplitude as in Ri, but
possibly with opposite sign. The middle column of Figure 4
gives an example where each of the jumps in Ri appear
in Ai with the same amplitude, first in the same direction
as that of Ri, and then the opposite one. In this case the
two level changes in Ri moved in the same direction and
those in Ai moved in opposite directions. If the reverse were
true, the result would be Ai having a wider range than Ri

(range(Ri) = maxiRi − miniRi). Thus an event amplitude
in Ai which is the same size or larger than a simultaneous
one in Ri is not necessarily due to an anomaly, and cannot be
used as a reliable signature of such, even though cancellation
within Ai is the more common scenario.

The final challenge is congestion. In Ri this manifests as a
positive noise which can be confused with, and hide, underly-
ing level shifts, making baselines and true variability hard to
measure. In Ai it manifests as a bidirectional noise which
could be confused with, or hide, level shifts from routing
changes or SAs. When congestion arises mainly from one
direction only it appears with the same shape and amplitude
in both Ri and Ai (no cancellation). Sustained congestion
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events are particularly problematic since during them the
baseline is never sampled, and just as for routing changes,
sustained congestion events which act in opposing directions
can generate an overall amplitude range which is higher in Ai

than in Ri, even with no anomaly. The rightmost column of
Figure 4 is an example of an Ambiguous labelling. Although
there is a prominent LS event of amplitude 12ms in Ai (which
we believe is a SA), it intersects both routing and sustained
congestion events. Without a clean ‘ideal zone’ neighborhood,
we label this as Ambiguous rather than Bad.

C. Detection Methodology

We perform, for each server in each experiment, an exhaus-
tive manual joint assessment of the Ri and Ai time series
to examine the evidence for server anomalies. The approach
consists of five components.

i) Congestion Filtering With stamps being nominally 64
seconds apart, we expect the congestion component of each
time series to be close to independent typically. Onto the
graphs of each of Ri and Ai we superimpose filtered versions,
R̃i and Ãi, designed to suppress short term variability without
impacting on events with longer timescales. We use a sliding
median filter with window width W . This non-linear filter
suppresses outliers very effectively, yet has the remarkable
ability to preserve the positions of discontinuities, and leave
largely invariant structures involving them (such as pairs of
‘up and down’ level shifts), provided their width exceeds W/2,
and to surgically remove them if it does not.

Examples of the filtering are given as the black curves in
all plots of Ri and Ai. We use a window width of W = 31,
large enough to dampen congestion very significantly, but short
enough in timescale (33 minutes) to not significantly modify
the drift of a typical free running oscillator, which forms a
possible SA mode we do not wish to remove.

ii) Ideal Zone Selection We define an Ideal Zone as an
interval in which, based on an examination of Ri and R̃i,
there is no evidence of significant routing events or sustained
congestion events. By ‘sustained’ we mean that Ri remains
well above the baseline over the duration in question, so that
the baseline cannot be recovered, even by minimum filtering.
Operationally here, we call congestion ‘sustained’ whether the
median filtered R̃i detaches from the baseline over a time
interval well beyond W . Restricting to such intervals deals
directly and effectively with the challenges of routing changes,
and congestion events which the filtering cannot remove. It
returns us to the tractable situation where the variability in Ai

must be lower than that in Ri in the absence of server error.

iii) Server Event Amplitude Measurement The variability,
due to known sources, of Ãi from within an ideal zone should
by design be very low. We measure the global amplitude of
what is actually present using the range maxi Ãi−mini Ãi of
Ãi, as this will capture events no matter how rare they may
be within the zone, and no matter what form/shape they may
have (we do not wish to prejudge the forms that SAs may
take), and requires no tuning parameters.

iv) Ideal Zone Diagnosis The final step compares the
amplitude measurement (the server signal) against the degree
of variability in R̃i (the path noise). If the signal clearly
exceeds the noise we declare that an anomaly has been found.
Expert judgement plays an important role here in deciding
which features in Ri and R̃i to include in the definition of
the noise. For example variability due to small routing events
can be tolerated (ignored) if it is seen that its effect in Ai is
negligible in any case. Another common example: it may be
clear visually that an anomaly will be detected provided the
ideal zone is cropped to exclude an unrelated level shift from
Ri of a competing or larger magnitude.
v) Server Labelling Given a server, each ideal zone in each
experiment is tested as above, and the server labelled as:
Bad: clear evidence of at least one SA across the experiments,
Good: no sign of a server anomaly across either experiment,
Ambiguous: evidence of possible SAs, but inconclusive given
noise levels, or simply too noisy for any determination.

Bad is a confident statement that an anomaly has been
found. It is not a mere heuristic classification, but rather
a direct measurement of error while controlling (informally
but conservatively) for statistical errors. Good is a confident
statement that there are no major errors, but does not imply
that there are none. Anomalies falling outside ideal zones will
be missed by our approach. and anomalies smaller than the
underlying congestion noise level, or suppressed by the short
range congestion filtering, will generally be indetectable.

D. A Prototype Detection Tool: The Adjusted Range Test.
We briefly describe a detector which we have developed in

parallel with, and in support of, the manual assessment. Our
goal was to seek a tool which is simple, and yet capable of
detecting anomalies at least in many of the less challenging
cases. By simple, we mean capable of processing the Ri

and Ai series fully and jointly without resorting to feature
extraction/comparison, such as the localization of ideal zones,
or measurement of LS positions, heights, and degrees of
cancellation, which are all very difficult to achieve robustly.

The method is built on the median filtered R̃i and Ãi above,
and is based on the idea that, at a per-stamp level, the value
of Ri above its baseline can be used as a bound on the
variability of Ai, and so R̃i can be used to bound variability
in Ãi. Let mR, mA be the (scalar) medians of the R̃i and
Ãi series respectively. We define a conservative estimate of
the per-stamp bound as bi = |R̃i − mR|, and use bi it to
push Ãi towards mA without overshoot for each i, which
reduces its potential contribution to the range. The range of this
adjusted Ãi is then used as the ‘signal’ amplitude. Essentially
we dial-down Ãi in non-deal zones, instead of localizing them
and excluding them altogether. The global RTT noise level is
estimated as the width of the R̃i histogram excluding outliers
(we use the interval between the 5th and 95th percentiles),
then doubled to take into account the one-sided worst case
described above. The final adjusted-range to RTT-noise ratio
we denote by the test statistic µ. Nominally values above unity
signify detection, in practice we compare against a threshold.
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The above method has clear limitations, but performs well
enough to be useful. We use it to quantify anomaly size and
S&R in the manually chosen ideal zones. In such an assisted
environment it replicates the manual classification very closely.

V. RESULTS

We report on the results of our server classification in two
ways. First in Figure 2 via a color code, and second in Table II
for the 37 Bad servers only, and Table III for the servers which
were not Bad (hence Good or Ambiguous in each experiment).
Figure 2 makes it easy to see how the servers fares with
respect to their country of origin and RTT, whereas Table II
allows the two experiments per-server to be compared more
easily. Of the countries with 3 or more servers, Australia and
Sweden performs the best, and Brazil and the US the worst.
Larger RTT implies longer paths, and so greater potential to
pick up more routing events and congestion which make it
harder to spot anomalies. Certain European countries have
more Ambiguous ratings, reflecting their extremely complex
baselines. The main systematic difference between Exp1 and
Exp2 was a change in the character of path asymmetry,
whereas the servers themselves were remarkably consistent
as the tables show. In Exp2 fully asymmetric route changes
were more common, making detection more challenging both
in terms of congestion and routing events in Ai.

Table II provide a breakdown of the Bad servers according
to a number of criteria which we now describe. Note that we
did not find any evidence of correlations between anomalies
across servers.

Prevalence is a measure of the number of anomalies found.
We observed just two main scenarios: Rare, when only a very
small number, typically 1 or 2, were found, and High, where
anomalies are found ‘almost everywhere’. We speculate that
the latter are due to servers which have a systemic problem
such as a failed GPS receiver. The latter case can be subdivided
into two subcases. The first are those with high congestion
and/or very complex baselines. Here the small number found
is a reflection of how hard it is to find a viable ideal zone, and it
seems likely that there are many other undiagnosed anomalies.
The second are servers which would otherwise rate as Good.
Here the anomalies may relate to convergence issues following
reboots or other disturbances.

Confidence is a measure of how ‘clear and obvious’ the
anomalies are. The default value is High, since by definition,
we are confident of our conservative Bad classifications. We
reserve Very High for those servers which have High preva-
lence, and for which the anomaly stood out particularly clearly
given (i) its amplitude compared to the network noise, and (ii)
the degree of coherence of both network and congestion events
between Ri and Ai, giving confidence in the interpretation.
Server nist.netservicesgroup.com from Figure 3 is a member
of this ‘unmistakeably anomalous’ class.

Anomaly Type is an attempt to classify the form and
shape of the observed anomalies. All types that are observed
(in different locations within the time series) are listed for
each server. The most common form, exemplified, again, by

nist.netservicesgroup.com, we call S&R, that is a period of
Skew followed by a Return (jump). This class contains many
variations of detail, and we speculate that it is due to a
misbehaving clock disciplining algorithm which is corrected
(when error is detected as too great) by a jump. The LS
anomalies take the form of a level shift, followed by second
shift returning back to a similar level some time later. These
are rare, and may be due to some error-control mechanism
mistakenly believing that an error correction is required, and
later changing its mind. Finally, Drift anomalies are those that
take the characteristic random walk appearance of an oscillator
free running under temperature variations, a clear symptom of
a failure to lock onto a reference signal. An example is given
in Figure 5 for server #69 (ntp1.oma.be) over an ideal zone
where Ri has a histogram width of just a few ms. In contrast,
the drift anomaly has an amplitude of over 100ms and has
High prevalence (present throughout the trace).

The final two fields, Size and Test statistic, are the values
output by the detection tool described in Section IV-D, when
applied to the most representative of the ideal zones found.
This could be the widest such zone, or the one with the clearest
interpretation coupled with a high amplitude (not necessarily
the zone we have chosen to showcase in Figures 3, 4, and 5 for
servers #68, #69, #16 respectively). For interest, we explored
the robustness of the test statistic by applying it to the entire
timeseries for each server in each experiment, treating the
manual assessment as ground truth. A server was labelled as
Bad if µ > 2. The method labelled 37 out of the 2×102 = 204
cases as Bad, compared to 53 manually. Of these there were
9 false positives (labelled as Bad but actually not), and 25
missed detections (not labelled Bad but actually are).

Finally we compare results according to the Stratum level
classification from the first column. We find no systematic dif-
ference between the Stratum-1 and Varying Stratum categories.
This suggests that the latter may simply be due to Stratum-
1’s briefly dropping stratum level following occasional system
reboots or resets (note however that the servers with varying
stratum from Table III have a much high percentage of
Ambiguous rankings). In contrast, the 4 Bad servers which are
never stratum-1 perform consistently poorly as expected. They
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Fig. 5. An example of Ai containing an anomaly of Drift type from server
#69 (ntp1.oma.be). The anomaly is present throughout the entire Exp1 trace.
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Stratum ServerId URL Detection Confidence Prevalence Anomaly Type Size Test
level # {G, Am, B } {H, VH } {R, H } {D, LS, S&R } [ ms ] statistic

( Exp1, Exp2 )

Stratum-1
(always)

10 server-in-our-lab.au ( –, B ) H H D 0.8 6
27 ntps1-1.cs.tu-berlin.de ( G, B ) H R LS 3 8
38 time.coi.pw.edu.pl ( G, B ) H R D, S&R 19 30
61 bonehed.lcs.mit.edu ( B, B ) VH H S&R 7 15
65 clock.sjc.he.net ( B, Am ) H H LS 13 64
68 (Fig. 3) nist.netservicesgroup.com ( B, B ) VH H S&R 27 25
69 (Fig. 5) ntp.myfloridacity.us ( B, Am ) VH H D 130 29
78 time-a.timefreq.bldrdoc.gov ( B, B ) VH H S&R 98 934
79 time-b.nist.gov ( B, Am ) H R LS 18 6
80 time-b.timefreq.bldrdoc.gov ( B, B ) H H D, S&R 2 8
83 utcnist.colorado.edu ( B, G ) VH H D, S&R 6 29
84 utcnist2.colorado.edu ( B, B ) H H D, S&R 4 23
91 canon.inria.fr ( Am, B ) H R S&R 28 67

Stratum-2
(always)

21 ntp.probe-networks.de ( B, Am ) H H LS 169 372
35 ntp1.net.icm.edu.pl ( B, Am ) H H D 12 21
39 vega.cbk.poznan.pl ( B, B ) VH H D, S&R 208 1949

Stratum-3 1 augean.eleceng.adelaide.edu.au ( –, B ) VH H D 26 62

Varying
Stratum

15 ts1.aco.net ( B, B ) H R LS 3 11
16 (Fig. 4) ts2.aco.net ( B, B ) H R LS 6 6
20 ntps1.pads.ufrj.br ( Am, B ) H H S&R 3 11
23 ntp1.fau.de ( B, B ) H H LS 3 6
25 ntp3.fau.de ( B, B ) H H LS, S&R 3 23
31 time.fu-berlin.de ( G, B ) H R S&R 108 253
33 zeit.fu-berlin.de ( G, B ) H R S&R 14 50
41 ntp1.ntp-servers.net ( B, B ) VH H LS, S&R 42 9
55 time1.stupi.se ( G, B ) H R S&R 50 173
56 time2.stupi.se ( G, B ) H R S&R 283 79
57 timehost.lysator.liu.se ( B, B ) H H D, S&R 15 35
58 ntp.remco.org ( Am, B ) H H S&R 9 10
62 clock.danplanet.com ( G, B ) VH H D, S&R 1441 900
63 clock.isc.org ( B, B ) VH H D, S&R 8 62
66 clock.via.net ( B, B ) H H D, LS 45 93
72 ntp2.netwrx1.com ( Am, B ) H H D 45 9
73 rackety.udel.edu ( B, B ) H R LS, S&R 15 44
88 ntp.bsdbg.net ( B, B ) VH H D, S&R 59 60
89 ntp.nic.cz ( B, Am ) H R S&R 3 7
94 ntp2.inrim.it ( G, B ) H R S&R 4 6

TABLE II
BREAKDOWN OF SERVER ANOMALY CHARACTERISTICS DISCOVERED IN THE ‘BAD’ SERVERS. NIST CONTROLLED SERVERS HAVE BEEN HIGHLIGHTED

IN RED, AND SERVERS WITH AN ANOMALY DISPLAYED IN SOME FIGURE, IN BOLD.

all have High prevalence, 2/4 of them display VH confidence,
and 3/4 of them display drift, which is consistent with a
diagnosis of a failure to synchronize to their hardware (GPS).
Finally, they contain some of the very highest values of Size
and Test statistic.

Server #10 is is a rack mounted 1U DELL server in our
laboratory running FreeBSD, whose system clock is disci-
plined (like many commodity stratum-1’s) using the ntpd
daemon with GPS pulse-per-second input. It was classified
as Bad because of a small number of periods, up to 1 day
long, where a very clear yet small, locally only 0.03 ms
in amplitude, oscillatory anomalous behaviour was observed.
The diagnosis was possible despite the very small amplitude,
because, being on the LAN, the baseline was perfect and
the Ri was exceptionally small and clean. The anomaly is
familiar to us (see [9]), being traceable to periodic forcing from
the airconditioning cycle in the machine room. This example
validates our approach, and shows the potential for increased
sensitivity when the test client is closer to the server.

Given their mandated role as standard keepers in the US
and Australia respectively, it is important to comment on those

NIST and NMI controlled servers included in ListINFOCOM.
The NMI servers are available to registered users only and so
did not appear at ntp.org. All three were labelled as Good,
however they are subject to strong diurnal congestion cycles
which would disadvantage their clients. This is consistent with
our knowledge of the infrastructure based on discussions with
the maintainers at the NMI. The hardware consists of well
monitored atomic standards, however network access is often
bandwidth constrained. Out of the 8 NIST servers in the list,
6 were labelled Bad, and of these 4 were Bad in both Exp1
and Exp2. All but one has high prevalence in both Exp1 and
Exp2, and 3 out of 6 were in the VH confidence class.

VI. CONCLUSION

We have sought both to develop a unique capability to assess
time servers remotely, and to use it to provide a first look at
the health of the root of the public timing system.

In terms of capability, we have described in detail the princi-
ples, pitfalls, and practical approaches of a server analysis and
labelling methodology capable of unambiguously detecting
server errors of diverse types. Its effectiveness is such that it
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Stratum ServerId URL Detection
level # {G, Am }

( Exp1, Exp2 )

Stratum-1
(always)

2 csiro-nml.physics.uwa.edu.au ( –, G )
3 ntp.brisbane.nmi.gov.au ( –, G )
4 ntp.melbourne.nmi.gov.au ( –, G )
5 ntp.sydney.nmi.gov.au ( –, G )
6 ntp.waia.asn.au ( –, G )
7 ntp1.net.monash.edu.au ( –, G )
8 ntp10.net.monash.edu.au ( –, G )
9 syd4gps0.syd.ops.aspac.uu.net ( –, G )
11 tick.une.edu.au ( –, G )
12 tock.une.edu.au ( –, G )
17 a.st1.ntp.br ( Am, Am )
22 ntp0.fau.de ( G, G )
24 ntp2.fau.de ( G, G )
26 ntps1-0.cs.tu-berlin.de ( G, G )
28 ptbtime1.ptb.de ( G, G )
29 ptbtime2.ptb.de ( G, Am )
30 rustime01.rus.uni-stuttgart.de ( G, Am )
32 time1.one4vision.de ( G, Am )
34 ntp.certum.pl ( G, G )
37 ntp2.tp.pl ( G, G )
42 ntp1.vniiftri.ru ( G, G )
43 ntp2.ntp-servers.net ( G, Am )
44 ntp2.vniiftri.ru ( G, G )
45 ntp3.vniiftri.ru ( G, G )
47 ntp1.gbg.netnod.se ( G, G )
48 ntp1.mmo.netnod.se ( G, G )
49 ntp1.sp.se ( G, G )
50 ntp1.sth.netnod.se ( G, G )
51 ntp2.gbg.netnod.se ( G, G )
52 ntp2.mmo.netnod.se ( G, G )
53 ntp2.sp.se ( G, G )
54 ntp2.sth.netnod.se ( G, G )
59 ntp0.nl.uu.net ( G, Am )
60 ntp4.linocomm.net ( G, Am )
70 ntp.your.org ( Am, G )
71 ntp1.conectiv.com ( G, G )
77 time-a.nist.gov ( Am, Am )
81 time-c.timefreq.bldrdoc.gov ( G, G )
82 timekeeper.isi.edu ( Am, Am )
85 ntp.amnic.net ( Am, Am )
86 ntp1.oma.be ( G, G )
87 ntp2.oma.be ( G, G )
90 time.ufe.cz ( G, G )
95 clock.nc.fukuoka-u.ac.jp ( G, G )
96 cronos.cenam.mx ( G, G )
97 ntp2.usv.ro ( G, G )
98 ntp3.usv.ro ( G, G )
99 ntp.mostovna.com ( G, G )

100 hora.roa.es ( Am, Am )
101 ntp.i2t.ehu.es ( Am, Am )
102 ntp.time.in.ua ( Am, Am )

Stratum-2 14 asynchronos.iiss.at ( G, G )

Varying
Stratum

13 vk6hgr.echidna.id.au ( –, G )
18 c.st1.ntp.br ( Am, Am )
19 d.st1.ntp.br ( Am, Am )
36 ntp1.tp.pl ( G, G )
40 ntp0.ntp-servers.net ( Am, Am )
46 ntp4.vniiftri.ru ( G, G )
64 clock.nyc.he.net ( Am, Am )
67 gps.layer42.net ( Am, Am )
74 t1.timegps.net ( G, Am )
75 t2.timegps.net ( G, Am )
76 time.xmission.com ( G, G )
92 ntp-galway.hea.net ( G, Am )
93 ntp1.inrim.it ( G, G )

TABLE III
NTP SERVERS NOT LABELLED AS BAD, HENCE GOOD OR AMBIGUOUS IN

EACH EXPERIMENT. NIST (RESP. NMI) CONTROLLED SERVERS HAVE
BEEN HIGHLIGHTED IN RED (RESP. PURPLE).

can operate under extremely challenging path environments,
with large RTT and many and diverse routing and congestion
events, although of course these factors limit its sensitivity.

In our server testing we found many instances of server
error. In some cases these were small and rare, but in many
others they were of an amplitude and frequency well beyond
what one would expect and require from the root of the timing
system. Our main findings include:
i) Errors were found in 37 of the 102 servers examined. In
24 of these, anomalies was continuously present for months
at a time. In 22 cases the anomaly amplitude exceeded 10ms,
and in 9 cases 50ms, enormous compared to the nominal time
server error of 0.01ms.
ii) The most common anomaly type was ‘Skew and Return’
(seen in 24 out of 37) followed by Drift (14) then LS (8)
iii) A high proportion of NIST servers exhibit errors, and are
among the worst servers in the list.

There are many exciting directions for future work. In terms
of the methodology, we intend to develop an automated classi-
fier capable of processing long, complex, traces with low false
positive and high detection rates, and to make it available to the
community. In terms of stratum-1 health, we intend to examine
the current datasets more fully, and expand the study to include
a much longer list. The main limitation in our current data
however is the high path noise. By moving closer to the servers
to reduce this, and by using multiple vantage points to further
help resolve Ambiguous cases and cross-check conclusions,
we can greatly enhance detection sensitivity. To this end we
are planning a measurement campaign making use of CAIDA’s
Ark [11] monitoring network. Finally, we intend to contact the
operators of servers where we found consistent errors.
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