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Abstract— Multi-clustering has been widely used.  It acts as a 
pre-training process for the identification of protein-ligand 
binding site in this paper.  Then, the Support Vector Machine 
(SVM) is employed to classify the pockets that are most likely to 
bind ligands with the attributes of geometric characteristics, 
interaction potential, offset from protein, conservation score and 
properties surrounding the pockets.  Our approach is compared 
to LIGSITE CSC, SURFNET, Fpocket, Q-SiteFinder, ConCavity, 
and MetaPocket on the 198 drug-target protein complexes.  The 
results show that our approach improves the success rate from 
82% to 86%. 
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I. INTRODUCTION 

The drug discovery process starts with target identification 
and validation. This operation searches the causes of the 
phenotype of the disease. Protein plays a critical role in causing 
the symptoms of a human disease. Activating or inhibiting its 
function can have a positive effect on the disease [1]. After the 
relationship between the target and disease has been found, the 
next operation of drug discovery is to find a method to modify 
that target. This consists of protein-protein and protein-ligand 
(small chemical molecule) interactions. 

Taking advantage of the three-dimensional (3D) structure 
of a protein, structure-based drug design (SBDD) attempts to 
contribute to drug discovery [2]. The 3D structure of a protein 
can be obtained experimentally with x-ray crystallography or 
Nuclear Magnetic Resonance (NMR) spectroscopy. Another 
method is to construct the protein based on its amino acid 
sequence and a similar protein with a known 3D structure. All 
this information can be found from the Protein Data Bank 
(PDB) [3] or Protein Quaternary Structure file server (PQS) 
[4], which show the atomic coordinates and the quaternary 
structure of proteins respectively. This has made the SBDD 
more and more feasible because the 3D atoms’ arrangements of 
proteins allow the prediction of protein and ligand binding 
sites, which is an important pre-requisite of SBDD [5].  When 
the protein’s structure is known, different approaches can be 
applied to find the ligand, such as virtual screening, docking 
and de novo drug design [6]. 

The protein-ligand binding sites are located in the pockets 
(clefts) on the surface of proteins. The prediction of pockets 

has been examined with the information regarding the proteins’ 
sequence or structure. The sequence conservation was analysed 
to predict the residues involved in ligand binding [7]–[8]. The 
structural information includes the studies of geometry and 
interaction energy of proteins. In POCKET [9], LIGSITE [10], 
and SURFNET [11], the studies only use the geometric 
characteristics and assume that the binding site is usually 
located in the largest pocket. On the other hand, some methods 
like PocketFinder [12] and Q-SiteFinder [13] focused on the 
energetic criteria by calculating the van der Waals interaction 
potential. However, the structure-based methods are not so 
capable of tackling the multi-chain problems of proteins. The 
methods may treat the gaps among the chains of proteins as 
pockets incorrectly. Therefore, LIGSITECSC [14] and 
ConCavity [15] suggested that the sequence conservation 
should be integrated with the structural pocket identification to 
get more accurate binding sites of proteins, particularly the 
multi-chain proteins. MetaPocket [16-17] was a combination of 
eight predictors, including LIGSITECSC [14], PASS [18], Q-
SiteFinder [13], SURFNET [11], GHECOM [19], ConCavity 
[15], Fpocket [20], and POCASA [21].  It ranked the predicted 
binding sites of the eight methods and found the potential 
binding sites according to their spatial similarity. 

The prediction of binding sites is practically a binary 
classification problem to classify whether some grid points are 
likely to bind with ligands or not. The above methods calculate 
a score for each grid point based on the corresponding protein 
characteristics, and predict the binding sites based on these 
scores. However, the methods to determine these scores are not 
easy to decide. Therefore, the Support Vector Machine (SVM) 
was applied in our previous work [22] to predict the binding 
sites by using 29 proteins’ attributes, including the geometric 
characteristics, interaction energy, sequence conservation, 
distance from protein, and the properties of the surrounding 
grid points. Like most of the datasets in bioinformatics, the 
data of the binding sites have the problems of being 
imbalanced and in large data scales [23]. Therefore, random 
under-sampling and filtering are also applied to reduce the data 
size.  

In this paper, multi-clustering acts as an unsupervised pre-
training process to improve our prediction method. Multi-
clustering is widely used in different areas, such as big data 
[24], feature selection [25], data reduction [26], and deep 
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learning [27]–[28]. After the training dataset is generated, it is 
clustered into eight groups depending on the type of attributes. 
SVM is then applied on each group of data. Therefore, eight 
classification models are generated. 

The 198 drug-target dataset, which is developed in 
MetaPocket [17], is used to evaluate our method in this paper. 
Only the top three largest binding sites are predicted and each 
site is represented as a centre point in this experiment. Our 
approach is compared with six other published methods. They 
are LIGSITECSC, SURFNET, Fpocket [20], Q-SiteFinder, 
Con- Cavity, and MetaPocket. A new evaluation method, 
which is different from that in our previous study, is applied.  It 
is more similar to the method in [17] in order to show 
comparison results more properly. 

This paper is organized as follows. In Section II, the 
prediction methods for binding sites with consideration of the 
proteins’ sequence and geometrical structure are described. 
Section III describes the attributes considered for each grid 
point. In Section IV, the overall process and the selected 
training data are introduced. The adopted evaluation method is 
discussed in Section V. Section VI shows the results of our 
proposed method.  A conclusion will be drawn in Section VII. 

II. PREDICTION OF PROTEIN-LIGAND BINDING SITE 

This section describes the most common approaches of 
binding site prediction. 

A. POCKET and LIGSITE 

POCKET [9] is one of the geometry-based methods to 
define the binding sites. Firstly, a 3D grid is generated. 
Secondly, a distance check is applied on the grid to make sure 
the atoms of protein do not overlap with the grid point. All the 
grid points, which do not overlap with the atoms of protein, are 
labelled as solvent. If the grid points outside the protein are 
enclosed by the protein surface in opposite directions of the 
same axis (i.e. the grid points are enclosed by pairs of atoms 
within the protein), it is called a protein-solvent-protein (PSP) 
event (Fig. 1). 

LIGSITE [10] is an extension to POCKET [9] with the 
scanning directions being increased.  LIGSITE scans for the 
pockets along three axes and four cubic diagonals while 
POCKET only scans three axes.  Both of them considered the 
identification of PSP events on the basis of atom coordinates. 
Some value will be assigned to each grid point, which is 
actually the number of PSP events occurred in the scanning 
directions. That means, the higher the value of a grid point, the 
more likely the grid point will be a pocket. Fig. 1 shows the 
PSP events of two enclosed grid points. This method only 
focuses on the geometric characteristics and does not consider 
any other properties of the protein. 

B. SURFNET 

SURFNET [11] is another geometry-based method to 
define the binding sites. Like LIGSITE, a 3D grid is generated 
first. The grid values of SURFNET are calculated by counting 
the number of constructed spheres. Firstly, pairs of relevant 
atoms are taken within the protein. Then, testing spheres are 

formed between the pairs. If the sphere overlaps with other 
atoms, the radius decreases until no overlapping occurs (Fig. 
2). Only the distance between two atoms within 10 Å is 
considered. The sphere of radius smaller than 1.5 Å is also 
ignored. If the grid points are out of the pockets, the distances 
between pairs of atoms are very large or cannot be found. On 
the contrary, if the grid points are inside the pockets, more than 

 
Fig. 1. PSP event used to describe the geometric feature of a grid point.  
It counts the number of scanning directions that the pair of protein atoms 
can enclose the grid point. For the POCKET method, the maximum 
number of PSP event is three while it is seven for the LIGSITE method. 

 
Fig. 2. SURFNET. There are three solid line circles and several dotted 
line circles in each graph. The top and bottom solid line circles represent 
the pair of relevant atoms and the middle one shows the constructed 
sphere of a grid point. The dotted line circles represent the other atoms 
that surround the testing grid point. The initial sphere in the upper graph 
overlaps with other atoms. Therefore, its radius decreases until no 
overlapping occurs to form the final sphere in the lower graph. 



one sphere can be formed. 

C. PocketFinder 

PocketFinder [12] is an energy-based method of ligand 
binding site prediction. It uses the van der Waals interaction 
energy between the protein and a simple atomic probe to locate 
the binding sites with high energy. A 3D grid potential map is 
generated first. The potential at grid point p is calculated by the 
Lennard-Jones formula: 
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where iC12  and iC6  are constants, which are the typical 12-
6 Lennard-Jones parameters used to model the van der Waals 
interaction energy between a carbon atom placed at the grid 
point p and the protein atom i; N is the total number of protein 
atoms. 12

pir  and 6
pir  are the powers 12 and 6 of rpi respectively, 

where rpi is the distance between the grid point p and the 
protein atom i. The first term describes the repulsion between 
atoms when they are very close to each other. The second term 
describes the attraction between atoms at long distance. 

D. Sequence Conservation 

As not all residues in protein are equally important, 
conservation analysis is a very useful method to predict those 
functionally important residues in the protein sequence [29]-
[31]. Sequence conservation has also been shown to be 
strongly correlated with ligand binding sites [7]-[8]. Therefore, 
[15] suggested combining the sequence conservation and the 
structure of protein to predict the protein ligand binding sites 
by weighting every pair of protein atoms. 

III.  PROTEIN ATTRIBUTES USED 

This section describes the 29 protein attributes which are 
introduced in [22] by us. These attributes are also used in this 
paper for the training and testing for the identification of the 
protein-ligand binding sites. 

1) Grid values: These are the two values of each grid 
point that are calculated by LIGSITE and SURFNET. They 
can represent the binding site preference based on geometric 
characteristics. 

2) Interaction potential: This energy is the same as the 
van der Waals interaction potential of an atomic probe with 
the protein [12]. The calculation is done by the PocketFinder 
method, which is mentioned in Section II. The Lennard-Jones 
formula (1) is used to estimate the interaction potential 
between the protein and a carbon atom placed at the grid 
point.  

3) Conservation score: Conservation score is obtained 
from a residue-level analysis to identify which residues in a 
protein are responsible for its function. The score of each grid 
point is the conservation score of the nearest residue. Jensen-
Shannon divergence (JSD) method is used to calculate the 

score since it has been shown to provide an outstanding 
performance in identifying residues near bound ligands [31].  
It is an open source program which is freely available in its 
webpage [31]. 

4) Distance from protein: The squared distance from each 
grid point to the closest point on the van der Waals surface of 
the protein is calculated. When the grid points are too far from 
the atoms, they are not likely to be a pocket. In the 
experiment, almost 90% of ligand atoms are located within 5Å 
of the protein’s van der Waals surface. Hence, the grid points 
with the squared distance larger that 5Å are filtered out in 
order to reduce the huge data size. 

5) Properties of surrounding grid points: All the binding 
sites are formed by many grid points (the distance between 
two grid points is 1Å [15]), so the properties of the grid points 
nearby are also relevant features to the prediction.  The six 
connected points (as shown in Fig. 3) are selected and their 
properties of grid values of LIGSITE and SURFNET, 
interaction potential, and conservation score are used as the 
attributes.  Together with the distance of the selected grid 
point from protein, there are totally 29 features assigned as the 
attributes of each selected grid point. 

IV.  METHODOLOGY 

A. Overall Process 

In this paper, multi-clustering acts as a unsupervised pre-
training process to improve the prediction result. The protein 
attributes are first divided into three types, including geometry-
based, energy-based, and sequence conservation. For the 
geometry-based type, the attributes consist of the grid values of 

 
Fig. 3. Six connected grid points of a selected grid point. All the spots in 
the graph represent the grid points. The middle one is the selected grid 
point and the larger black spots are the connected grids points: their 
properties are used as the attributes of the classification. 



LIGSITE and SURFNET, distance from protein, and the grid 
values of the six connected grid points. For the energy-based 
type, the attributes consist of the interaction potential and that 
of the six connected grid points. For the sequence conservation 
type, the attributes consist of the conservation score and that of 
the six connected grid points. 

K-means clustering [32] is then applied to cluster the 
training data into two regions for each type of attributes, and 
each region contains half of the number of data.  (Therefore, 
K=2 in this case.)  Only one type of attributes is used for each 
clustering, while the other types of attributes are set to zero for 
simplicity.  As we have three types of attributes, a 3-bit binary 
code can be assigned and totally eight regions of clustered data 
are formed.  The centroid of each region is calculated.  Fig. 4 
shows an example of the multi-clustering.  SVM is then 
applied to the training data of each region to form eight 
classification models of binding sites.   

Both the learning and classifying process of SVM are used 
in the SVMlight program.  For the testing datasets, each testing 
protein is also built with the 29 attributes.  The grid points of 
each testing protein are clustered into 8 regions based on the 
centroids calculated in the training set.  The grid points are 
classified by the corresponding models to identify whether they 
are potential binding sites.  The potential binding sites are then 
clustered into different groups by K-means clustering, where 
the initial value of K depends on the number of potential 
binding sites.  The value of K will decrease if empty clusters 
are formed during the clustering process.  After clustering, 
each group is represented by a centroid that corresponds to an 
identified binding site.  Fig. 5 shows the overall process of the 
proposed prediction method. 

B. Datasets 

In this paper, the training set is the same as the one in our 
previous study [22], which is 15% of the LigASite (v9.4) 
dataset (40 proteins) as shown in Table I. 

V. EVALUATION  

To evaluate and compare our method to the others, the 
same performance measurement should be used.  [17] proved 
that most of ligands bind to large pockets. Therefore, they 
suggested an evaluation method for comparing the top three 
largest sites only. After the grid points of binding sites are 
predicted by SVM, the top three largest sites are selected [17] 
and each site is represented by a grid point in the centre of it.  
Then, if the centre grid points of the three largest predicting 
sites are located inside the real binding sites (i.e. the distance 
between the centre grid points and any atoms of the ligand is 
within 4Å), the prediction will be counted as a hit, i.e. the 
binding site is identified correctly. There are sometimes more 
than one binding site within a protein. A prediction is counted 
as a hit if at least one binding site in the given protein can be 
located correctly. Using the same approach in [17], the top 1 to 
top 3 binding sites are evaluated separately. The success rate is 
calculated by the following equation to compare the 
performance of different methods: 
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N
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where NHIT is the number of proteins that at least one 
binding sites can be located correctly and NP is the total 
number of proteins in the dataset. 

VI. RESULTS 

This section shows the comparison of our method and the 
other prediction methods. Our method in this paper is named as 
MCSVMBs and our previous method in [22] is named as 
SVMBs.  The 198 drug-target protein complexes [17] are used 
as the testing dataset. MCSVMBs is compared with other 
methods, based on the evaluation of the top three largest 
binding sites.  They are LIGSITECSC, SURFNET, Fpocket, Q-
SiteFinder, ConCavity, and MetaPocket. LIGSITE and 
PocketFinder are not applied in this experiment since 
LIGSITECSC and Q-SiteFinder are the extension of them 
respectively. All LIGSITECSC, SURFNET, and Fpocket use 
geometric characteristics to predict the ligand binding site. Q-
SiteFinder uses energy criteria and ConCavity uses both 
geometric and sequence conservation properties to do the 

 

 
Fig. 4. Example of multi-clustering. The three lines represent the 
clustering border of different types of attributes and separate the data into 
eight regions. 

TABLE I.  TRAINING DATA SET. 

1pkj  3gd9  1lf3  3lem  1llo 
1ybu  4tpi  3h72  2j4e  1rn8 
2v8l  1x2b  1g97  2zhz  3a0t 
1o26  1rzu  1znz  1ojz  1sqf 
2gga  3gh6  3d1g  2jgv  1dy3 
1jyl  2e1t  2ywm  1kwc  2g28 
3d4p  2wyw  2dtt  1tjw  2za1 
2art  1u7z  3gid  1i1h  2w1a 

 



prediction. MetaPocket predicts the binding site by combining 
eight other approaches. 

The success rate of this experiment is calculated by (2).  
The prediction results of top 1 to top 3 binding sites for all 
approaches are evaluated separately. Table II shows the 
prediction results of MCSVMBs and the other seven 
approaches on the 198 drug-target dataset. MCSVMBs can 
achieve the highest success rate among all the methods. Table 
III shows the number of hit proteins among the seven methods 
on the drug-target dataset. The results of SVMBs are different 
from [22] since the evaluation method is different. There are 
123 proteins that can have the binding sites correctly identified 
as the top 1 prediction. There are 33 and 14 proteins that can 
have the binding sites correctly identified as the top 2 and top 3 
predictions respectively. There are 28 proteins that no 
associated binding sites can be identified correctly in the top 1-
3 predictions.  Our method can identify the highest number of 
binding sites among all methods. 

VII.  CONCLUSION 

The identification of binding sites (pockets) is the pre-
requisite for protein-ligand docking and an important step of 

structure-based drug design. The prediction of the protein-
ligand binding site has been investigated in this paper. SVM is 
employed to identify the binding sites. It makes use of the 
attributes of geometric characteristics, interaction potential, 
distance from protein, conservation score and the grid points 
nearby to do the identification.  Threshold assignment is no 
longer needed to determine the pockets. Distance filter and 
random under-sampling are also employed to reduce the effect 
of large data size and imbalanced data respectively. 

Our approach is compared to LIGSITECSC, SURFNET, 
Fpocket, Q-SiteFinder, ConCavity, and MetaPocket on the 198 
drug-target protein complexes. Only the top three largest 
binding sites are considered and each site is represented as one 
centre grid point.  The results show that our approach performs 
better than the other approaches and predicts the binding sites 
correctly at 62.1% for top 1 prediction, 78.8% for top 1-2 
prediction, and 85.9% at top 1-3 prediction.  The binding sites 
identification can be treated as a preliminary step of the 
docking process. This study can be further developed in the 
application of ligands finding by virtual screening, docking or 
de novo drug design. 
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Fig. 5. Flowchart for prediction of protein-ligand binding site. 

TABLE III.  NUMBER OF HIT PROTEINS ON 198 DRUG-TARGET 
DATASET. 

Method Top 1 Top 2 Top 3 None 

MCSVMBs 
SVMBs 

MetaPocket 
LIGSITECSC 
SURFNET 

Fpocket 
Q-SiteFinder 
ConCavity 

123 
122 
121 
95 
46 
61 
79 
93 

33 
30 
17 
18 
11 
34 
28 
12 

14 
10 
9 
7 
8 
17 
16 
6 

28 
36 
51 
78 
133 
86 
75 
87 

 

TABLE II.  SUCCESS RATE (%) OF TOP 3 BINDING SITES PREDICTIONS 
ON 198 DRUG-TARGET DATASET. 

Method Top 1 Top 1-2 Top 1-3 

MCSVMBs 
SVMBs 

MetaPocket 
LIGSITECSC 
SURFNET 

Fpocket 
Q-SiteFinder 
ConCavity 

62.1 
61.6 
61 
48 
24 
31 
40 
47 

78.8 
76.8 
70 
57 
30 
48 
54 
53 

85.9 
81.8 
74 
61 
34 
57 
62 
56 
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