
On Redundancy in Simple Temporal Networks1

Jae Hee Lee2 and Sanjiang Li3 and Zhiguo Long4 and Michael Sioutis5

Abstract. The Simple Temporal Problem (STP) has been widely
used in various applications to schedule tasks. For dynamical sys-
tems, scheduling needs to be efficient and flexible to handle uncer-
tainty and perturbation. To this end, modern approaches usually en-
code the temporal information as an STP instance. This representa-
tion contains redundant information, which can not only take a sig-
nificant amount of storage space, but also make scheduling ineffi-
cient due to the non-concise representation. In this paper, we investi-
gate the problem of simplifying an STP instance by removing redun-
dant information. We show that such a simplification can result in a
unique minimal representation without loss of temporal information,
and present an efficient algorithm to achieve this task. Evaluation on
a large benchmark dataset of STP exhibits a significant reduction in
redundant information for the involved instances.

1 Introduction

The ability to reason about temporal information is necessary for in-
telligent agents that plan their actions to achieve their goals opti-
mally. As such, temporal reasoning has been an active research area
in Artificial Intelligence [6, 2, 16, 3, 17].

Among the different temporal representation frameworks, some
of the most well-known ones are based on relations between time
points or time intervals. Prominent examples of such representation
frameworks include for example the Simple Temporal Problem [5],
Allen’s Interval Algebra [1], and Point Algebra [20]. In this paper,
we will focus on the Simple Temporal Problem and are concerned
with redundant information in instances of this problem.

The Simple Temporal Problem (STP) encodes the quantitative dif-
ference between two variables representing time points. An STP con-
straint (x [a, b] y) associates an interval [a, b] with variables x and
y to represent the lower and upper bounds of the difference, i.e.,
a ≤ y−x ≤ b. An STP instance is called Simple Temporal Network
(STN), and consists of a set of variables and a set of STP constraints
involving those variables. This can be represented as a labelled di-
rected graph (see Figure 1). A solution of an STN is an assignment
of time points to the variables such that all of the corresponding STP
constraints are satisfied by the assignment.

There are redundant constraints in STNs. Figure 1a shows an STN
extracted from the job-shop scheduling problem benchmark dataset
used in [14]. (In all of our examples, we note that we have modified
the original STNs by reducing the bounds in their constraints to make
the examples easier to follow; however, all qualitative properties of
the STNs have been retained). We observe that the STN is densely

1 The authors have contributed equally.
2 QCIS, FEIT, UTS, Australia, email: JaeHee.Lee@uts.edu.au
3 QCIS, FEIT, UTS, Australia, email: Sanjiang.Li@uts.edu.au
4 QCIS, FEIT, UTS, Australia, email: Zhiguo.Long@student.uts.edu.au
5 CRIL, University of Artois, France, email: sioutis@cril.fr

x1

x2[-203, -61]

x3

[-291, 34]

x4

[-145, -96]

x5
[-298, 13]

 [-234, 21]

[11, 15]

[-95, -17]

[-201, 72]

[-271, -49]

 [-80, -41]

(a) An STN extracted from a job-shop problem instance.

x1

x2

x3

x4

[-145, -96]

x5

 [-234, 21]

[11, 15]

[-271, -49]

 [-80, -41]

(b) An STN obtained by removing all redundant constraints in the STN
from Figure 1a. The two STNs are equivalent by Theorem 7.

Figure 1. Two equivalent STNs.

structured and contains redundant constraints that can be removed
without affecting the set of solutions. For example, the constraint
(x2 [−95,−17] x5) is redundant and can be removed, because com-
bining the constraint between x2 and x4 and the constraint between
x4 and x5 implies a tighter constraint, viz., (x2 [−69,−26] x5). Re-
dundant constraints are not limited to the aforementioned trivial case;
although the constraint between x3 and x4 cannot be directly inferred
from any other two constraints, it can be inferred by combining more
constraints (cf. Example 6 in Section 3). Identifying such redundant
constraints efficiently is one of the main goals of this paper.

After identifying all redundant constraints in an STN, the ques-
tion arises whether we can remove all of them, while maintaining
the solution set unchanged. In this paper we characterize STNs that
retain the solution sets after removing all redundant constraints. As
an example, the STN in Figure 1a shares the same solution set with

the STN in Figure 1b that results from removing all redundant con-
straints of the STN in Figure 1a.

In the literature, the problem of identifying and removing redun-
dant information has been discussed in the context of logic formu-
las [8, 10] as well as of qualitative spatial and temporal networks. For
qualitative spatial and temporal networks, it was shown in [9] that an
all-different network defined over a distributive subclass of relations
in RCC8 [15] or Point Algebra [20] has a uniquely defined subset
of non-redundant constraints that defines a network that is equivalent
to the original network. Efficient algorithms have been developed to
identify such subsets [9, 18].

For STP constraints, [11] and [4] identify another notion of redun-
dancy, so-called dominance, for inferring the range of a variable. By
identifying and removing such redundancy, a particular property of
an STN, viz., the dispatchability [11], which is helpful for generat-
ing solutions of an STN online, may be retained. In this paper, on the
other hand, we will show that, by removing redundant constraints, the
structure of an STN is simplified, while the solution set remains the
same. This could make other reasoning tasks involving STNs more
efficient, e.g., speed up the generation of solutions of dynamic STNs.

The remainder of the paper is organised as follows. In Section 2,
we recall some basic concepts and formally define redundant con-
straints. We then prove in Section 3 some properties of redundant
constraints in STNs and use those properties to devise an algorithm
for identifying and removing redundant constraints (Section 4). Sec-
tion 5 evaluates our approach by using benchmark datasets. Finally,
Section 6 concludes the paper.

2 Preliminaries

Definition 1. The simple temporal problem (STP) is a constraint sat-
isfaction problem where each constraint is a set of linear inequalities
of the form

a ≤ y − x ≤ b, (1)

where a, b are constants and x, y are variables defined on a continu-
ous domain representing time points. The constraint in (1) is abbre-
viated as (x [a, b] y). As (1) is equivalent to −b ≤ x− y ≤ −a, we
identify (x [a, b] y) with (y [−b,−a] x).

Algebraic operations on STP constraints are defined as follows.
The intersection of two STP constraints defined over variables x, y
yields a new constraint over x, y that represents the conjunction of
the constraints. It is defined as (x [a1, b1] y) ∩ (x [a2, b2] y) :=
(x [c, d] y), where [c, d] = [a1, b1] ∩ [a2, b2].

The composition of an STP constraint over variables x, z and
another STP constraint z, y yields a new STP constraint over x, y
that is inferred from the other two constraints and is defined as
(x [a1, b1] z)⊗ (z [a2, b2] y) := (x [c, d] y), where interval [c, d] is
obtained by adding the corresponding bounds of the other two con-
straints, i.e., c = a1 + a2 and d = b1 + b2.

Note that for STP constraints, the composition and intersection are
associative and, as noted in [5], composition distributes over non-
empty intersection, i.e., (x [a, b] y)⊗

(
(x [c, d] y) ∩ (x [e, f] y)

)
=(

(x [a, b] y)⊗ (x [c, d] y)
)
∩
(
(x [a, b] y)⊗ (x [e, f] y)

)
.

Definition 2. An instance of STP is called a simple temporal network
(STN) and is a tuple (V,Γ), where V = {x1, . . . , xn} is a set of
variables and Γ is a set of STP constraints defined over V .

Without loss of generality, we assume that all variables in V appear
in Γ. Thus we will use Γ to refer to an STN and not explicitly mention

V . Furthermore, we assume without loss of generality that there is
only one constraint between x and y.

An STN naturally induces a graph in the following sense.

Definition 3. The constraint graph G = (V,E) of an STN Γ is an
undirected graph, where the set V of vertices consists of the variables
in Γ and the set E of edges consists of unordered pairs of variables
for which there is an STP constraint in Γ, i.e.,

E = {{x, y} | x, y ∈ V, x 6= y, (x [a, b] y) ∈ Γ}.

For simplicity, we write xy for an edge in place of {x, y}.

Let G = (V,E) be the constraint graph of an STN Γ. For vari-
ables x, y with xy ∈ E, we write Γ(x, y) (and equivalently Γ(y, x))
to refer to the constraint between x and y in Γ. Figure 1a is an illus-
tration of the constraint graph of an STN. Note that we use a directed
graph to illustrate a constraint graph, where for any edge xy ∈ E
with Γ(x, y) = (x [a, b] y) there is exactly one directed edge (x, y)
in the illustration with the corresponding interval [a, b].

Definition 4. A solution of an STN Γ is an assignment of time points
to the variables in Γ such that all constraints in Γ are satisfied. Given
two STNs Γ and Γ′ defined over the same set of variables we write
Γ′ |= Γ, if every solution of Γ′ is a solution of Γ. If Γ′ |= Γ and
Γ |= Γ′ then we say that they are equivalent and write Γ′ ≡ Γ. We
also write Γ |= (x [a, b] y) if every solution of Γ satisfies (x [a, b] y).

We observe that {(x [a, b] y)} |= (x [c, d] y) if and only if [a, b] ⊆
[c, d]. Therefore, if {(x [a, b] y)} |= (x [c, d] y), we will say that
(x [a, b] y) refines (x [c, d] y), written as (x [a, b] y) ⊆ (x [c, d] y).
We call an STN Γ′ a refinement of Γ, if Γ′ and Γ are defined over the
same set of variables and if for any constraint (x [a, b] y) ∈ Γ there
exists a constraint (x [a′, b′] y) ∈ Γ′ that refines (x [a, b] y).

Definition 5 (Minimality). Let Γ be a consistent STN and let x and
y variables in Γ. Then an STP constraint (x [a, b] y) is said to be
minimal in Γ, if Γ |= (x [a, b] y) and (x [a, b] y) is the smallest
constraint with respect to ⊆.

A refinement Γm of Γ is said to be the minimal network of Γ, if
for all x, y ∈ V , x 6= y there is a constraint between x and y in Γm

that is minimal in Γ.

Note that Γm is uniquely defined, and since Γm |= Γ and Γ |= Γm,
we have Γm ≡ Γ. Figure 2a shows the minimal network of the STN
Γ in Figure 1a. Note that it is also the minimal network of the STN
Γc in Figure 1b.

Definition 6. Let G = (V,E) be the constraint graph of an
STN Γ. A sequence P := (xi0xi1 , xi1xi2 , . . . , xik−1xik) of
edges in E is called a path from xi0 to xik . The length of P
is the number of edges in P and is denoted by |P |. A path P
is called a cycle, if xik = xi0 . By Γ(P) we denote the set
{Γ(xi0 , xi1),Γ(xi1 , xi2), . . . ,Γ(xik−1 , xik)} of constraints over
P . The successive composition of constraints over P with respect
to Γ is defined as⊗

Γ(P) := Γ(xi0 , xi1)⊗ Γ(xi1 , xi2)⊗ · · · ⊗ Γ(xik−1 , xik).

A concatenation of two paths P1 := (xi0xi1 , . . . , xik−1xik) and
P2 := (xikxik+1 , . . . , xi`−1xi`), denoted by P1 + P2, is the path
(xi0xi1 , . . . , xi`−1xi`). We write Π(x, y, E) for the set of all paths
from x to y on set E of edges.

Example 1. In Figure 1b P = (x1x4, x4x2, x2x3) is a path of
length three in Π(x1, x3, E), and C = (x2x4, x4x5, x5x3, x3x2)
is a cycle in Π(x2, x2, E). The composition of the constraints over
P ,
⊗

Γ(P), is then (x1[−145,−96]x4) ⊗ (x4[−15,−11]x2) ⊗
(x2[−234, 21]x3). Note that (x4[−15,−11]x2) is equivalent to
(x2[11, 15]x4).

The following lemma states that algebraic operations ⊗ and ∩ are
sufficient to calculate the minimal network of an STN. More pre-
cisely, the minimal constraint between two variables x and y is equal
to the intersection of all constraints between those variables obtained
by composing the constraints over the paths in Π(x, y, E).

Lemma 1. Let Γ be an STN and E be the set of edges of the con-
straint graph of Γ. Let Γm be the minimal network of Γ. Then for all
x, y ∈ V, x 6= y we have

Γm(x, y) =
⋂

P∈Π(x,y,E)

⊗
Γ(P).

Proof. See [5, Section 3].

For constraint satisfaction problems chordal (aka triangulated)
constraint graphs have been identified as a class for which efficient
algorithms exist [18]. In the following we provide a characterization
of a chordal graph equivalent to that in [18], since it is more suited
for the purpose of the paper.

Definition 7. (Chordal Graph) A graph G = (V,E) is said to be
chordal or triangulated, if for any edge xy ∈ E and any path P
from x to y on E with |P | ≥ 2 there exist a z ∈ V with xz, zy ∈ E
such that P = P1 +P2, where P1 is a path from x to z and P2 a path
from z to y.

Example 2. A complete graph is chordal. The graph in Figure 1a is
chordal as it is complete. We can make a non-chordal graph chordal
by triangulating it. For example, the graph in Figure 1b is not chordal,
but we can make it chordal by adding edge x3x4 and obtain the graph
in Figure 2b.

In the following lemma we characterize a refinement (of an STN)
whose constraint graph is chordal. Such a refinement has a constraint
network that is less dense than that of the minimal network while
sharing some nice properties with the minimal network.

Lemma 2. Let Γ be a consistent STN and G = (V,E) be its con-
straint graph. Further let Γ4 be a refinement of Γ such that

1. its constraint graph G4 = (V,E4) is chordal with E4 ⊇ E;
2. Γ4(x, y) = Γm(x, y) for all xy ∈ E4.

Then Γ4 is equivalent to Γ.

Proof. We note that Γm |= Γ4 and Γ4 |= Γ. Then, because
Γm ≡ Γ, we have Γ |= Γ4 and Γ4 |= Γ. Therefore Γ ≡ Γ4.

Example 3. The minimal network Γm of Γ satisfies trivially the con-
ditions for Γ4, as its constraint graph is complete and thus chordal.
The STN in Figure 2b has a chordal constraint graph that contains
the constraint graph of the STN from Figure 1b. Its constraints are
minimal.

The following characterization of Γ4 follows from its definition
and Lemma 1.

Lemma 3. Let Γ and Γ4, as well as E and E4, be specified as in
Lemma 2. Then for all x, y ∈ V with xy ∈ E4 we have

Γ4(x, y) =
⋂

P∈Π(x,y,E)

⊗
Γ(P).

3 Redundancy in Simple Temporal Networks
In an STN some constraints can be redundant as they can be inferred
from the other constraints of the STN.

Definition 8. Let Γ be an STN. Then Γ(x, y) is said to be redundant
in Γ, if Γ \ {Γ(x, y)} |= Γ(x, y). We say Γ is prime, if it does not
contain any redundant constraints. A subset Γ′ of Γ is called a prime
subnetwork of Γ, if Γ′ is prime and equivalent to Γ. The set of non-
redundant constraints in Γ, denoted by Γc, is the core of Γ.

Any prime subnetwork of Γ contains the core of Γ as a subset
of constraints. If the core is equivalent to the original STN, then it
would be the unique minimal subset of constraints that is equivalent
to the original STN. However, the following simple example shows
that it is not always the case.

Example 4. Suppose that the STN consists of the constraints
(x [0, 1] y), (x [2, 3] z), and (y [2, 2] z), which translate to 0 ≤
y − x ≤ 1, 2 ≤ z − x ≤ 3, and z − y = 2 respectively.
Then, it is easy to see that (x [0, 1] y) and (x [2, 3] z) are both re-
dundant because (x [0, 1] y) = (x [2, 3] z) ⊗ (z [−2,−2] y) and
(x [2, 3] z) = (x [0, 1] y) ⊗ (y [2, 2] z). However, removing both
(x [0, 1] y) and (x [2, 3] z) will leave the core as the single constraint
(y [2, 2] z), which obviously have a different solution set from the
original STN.

On the other hand, for some other STNs the core is indeed equiv-
alent to the original STN.

Example 5. The STN from Figure 1b is the core of the STN from
Figure 1a. Moreover, these two STNs are equivalent, because the
minimal network of both of them is the STN shown in Figure 2a.

We observe that in Example 4, the presence of constraint (y[2, 2]z)
makes the other two constraints dependent on each other with respect
to their redundancy. These kind of STNs are degenerated.

Definition 9. Let Γ and Γ4, as well asE andE4, be specified as in
Lemma 2. Γ is said to be degenerated if it is inconsistent or if there
is xy ∈ E4 such that Γ4(x, y) = (x [a, b] y) with a = b.

It is worth noting that if an STN is degenerated, say (x [a, a] y),
then we can easily fix it either by slightly adjusting the constraint
with (x [a− ε, a+ ε] y), or by removing constraints involving y and
updating the constraints Γ(x, z) accordingly by Γ(x, z)∩ Γ(x, y)⊗
Γ(y, z).

In the following, we will show that for non-degenerated STNs, the
core will be the unique minimal subset of constraints that is equiva-
lent to the original STN. To this end, we first characterize redundant
constraints in an STN as the intersection of constraints over certain
paths.

Lemma 4. Let Γ be a consistent STN and G = (V,E) its constraint
graph. Then for all x, y ∈ V with xy ∈ E the following are equiva-
lent:

(i) Γ(x, y) is redundant in Γ;
(ii) Γ(x, y) ⊇

⋂
P∈Π(x,y,E\{xy})

⊗
Γ(P).

Proof. (i)⇒ (ii). Let Γ0 := Γ \ {Γ(x, y)}. Then, because Γ(x, y)
is redundant in Γ we have Γ0 |= Γ(x, y) thus (Γ0)m |= Γ(x, y),
where (Γ0)m is the minimal network of Γ0. Hence

Γ(x, y) ⊇ (Γ0)m(x, y). (2)

x1

x2[-160,-107]

x3

[-176,-86]

x4

[-145,-96]

x5
[-225,-137]

 [-20,21]

[11,15]

[-69,-28]

[-10,31]

[-90,-49]

 [-80,-41]

(a) The minimal network of the STNs from Figure 1a and from 1b.

x1

x2

x3

x4

[-145,-96]

x5

 [-20,21]

[11,15]

[-10,31]

[-90,-49]

 [-80,-41]

(b) An STN whose constraint graph is chordal and contains the con-
straint graph of the STN from Figure 1b. It is equivalent to the STN
from Figure 1b, and its constraints are minimal.

Figure 2. STNs equivalent to the STNs in Figure 1.

By Lemma 1 we know that

(Γ0)m(x, y) =
⋂

P∈Π(x,y,E\{xy})

⊗
Γ(P). (3)

From (2) and (3) it follows that

Γ(x, y) ⊇
⋂

P∈Π(x,y,E\{xy})

⊗
Γ(P).

(ii) ⇒ (i). For all paths between x and y on E \ {xy}, we have
Γ |= Γ(P) and thus Γ |=

⊗
Γ(P). Therefore

Γ |=
⋂

P∈Π(x,y,E\{xy})

⊗
Γ(P).

By applying our assumption (ii) we then have Γ |= Γ(x, y), and we
showed (i).

Example 6. The constraint Γ(x3, x4) = (x3[−201, 72]x4)
in the STN Γ from Figure 1a is redundant in Γ, because
(x3[−201, 72]x4) ⊇ (x3[−10, 31]x4) = Γ(x3, x2) ⊗ Γ(x2, x4) ∩
Γ(x3, x5)⊗ Γ(x5, x4) ⊇

⋂
P∈Π(x3,x4,E\{x3y4})

⊗
Γ(P).

As noted before Γ4 shares some nice properties with the mini-
mal network of Γ, thus allowing a characterization of the redundant
constraints in Γ4.

Proposition 5. Let Γ and Γ4, as well as E and E4, be specified as
in Lemma 2. Then for all x, y ∈ V with xy ∈ E4 the following are
equivalent:

(i) Γ4(x, y) is redundant in Γ4

(ii) Γ4(x, y) =
⋂

P∈Π(x,y,E4\{xy})

⊗
Γ4(P)

(iii) Γ4(x, y) =
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y)

Proof. See Appendix A.

Example 7. Consider the minimal network in Figure 2a as Γ4 for
Γ in Figure 1a. Then we have Γ4(x3, x4) = (x3[−10, 31]x4) =
(Γ4(x3, x1) ⊗ Γ4(x1, x4)) ∩ (Γ4(x3, x2) ⊗ Γ4(x2, x4)) ∩
(Γ4(x3, x5)⊗ Γ4(x5, x4)).

There is a correspondence between redundant constraints in Γ and
in Γ4.

Proposition 6. Let Γ and Γ4, as well as E and E4, be specified
as in Lemma 2. Furthermore, let Γ be not degenerated. Then for all
x, y ∈ V with xy ∈ E4 the following are equivalent:

(i) Γ(x, y) is redundant in Γ
(ii) Γ4(x, y) is redundant in Γ4

(iii) Γ4(x, y) =
⋂

P∈Π(x,y,E)
|P |≥2

⊗
Γ(P)

Proof. See Appendix A.

Example 8. Taking the STN Γ in Figure 1a and the STN Γ4 in
Figure 2a as an example of the above proposition, we can see the
constraint Γ(x3, x4) = (x3[−201, 72]x4) is redundant in Γ while
Γ4(x3, x4) = (x3[−10, 31]x4) is redundant in Γ4.

The following theorem affirms that, for non-degenerated STNs,
the core resulting from removing redundant constraint simultane-
ously is the unique prime subnetwork of the STN.

Theorem 7. Let Γ be a consistent and non-degenerated STN. Then
the core Γc of Γ is equivalent to Γ and the unique prime subnetwork
of Γ.

Proof. The proof is similar to that for RCC8 constraints (see [9, The-
orem 29]). Suppose r1, r2, . . . , rn are the redundant constraints of Γ.
Let Γ0 := Γ and Γi := Γi−1 \ {ri} for 1 ≤ i ≤ n. Note that Γn is
precisely Γc, the core of Γ.

Suppose k with k < n is the largest integer such that Γk ≡ Γ.
Let rk+1 = Γ(x, y), thus Γ(x, y) is redundant in Γ. Further, let
Γ4 be as specified in Lemma 2. Then, on the one hand, we know
by Proposition 6 that Γ4(x, y) is redundant in Γ4. On the other
hand, because Γ4 is a refinement of Γk that satisfies the conditions
in Lemma 2 w.r.t. Γk, by Proposition 6 we also have that Γ(x, y)
is redundant in Γk. Therefore, Γk+1 = Γk \ {rk+1} ≡ Γk ≡ Γ,
contradicting our assumption that k < n is the largest integer such
that Γk is equivalent to Γ. Therefore, k = n and Γc is equivalent to
Γ, thus it is a prime subnetwork of Γ which is uniquely defined.

With this result, we can use the core as a simplification of the origi-
nal STN to obtain a maximal reduction in the size of representation,
without changing the semantic essence.

4 Efficient Algorithm for Calculating the Core

The result below follows directly from Proposition 6 and Proposi-
tion 5, and allows for efficient identification of redundant constraints
in STNs.

Proposition 8. Let Γ and Γ4, as well as E and E4, be specified
as in Lemma 2. Furthermore, let Γ be not degenerated. Then, for all
x, y ∈ V with xy ∈ E4 the following are equivalent:

(i) Γ(x, y) is redundant in Γ;
(ii) Γ4(x, y) =

⋂
xz,zy∈E4

Γ4(x, z)⊗ Γ4(z, y).

With the aid of Proposition 8, we propose Algorithm 1 to effi-
ciently calculate the core of a non-degenerated STN Γ. In this algo-
rithm, we first construct a chordal graph G4 = (V,E4) by trian-
gulating the constraint graph G = (V,E) of Γ (line 3). Then, we
construct Γ4 as specified in Lemma 2 by using a certain algorithm
ESTABLISHPPC that refines Γ appropriately (line 4). After that, we
iteratively retrieve the core of Γ edge by edge (lines 5–11). By Propo-
sition 8, to identify the redundancy of a constraint involving an edge
xy ∈ E, we only need to check if the constraint involving the corre-
sponding edge xy in E4 equals the intersection of the compositions
of all paths of length two from x to y in E4 (lines 8–11).

Algorithm 1: CORE(Γ)

Input : A non-degenerated STN Γ.
Output: Γc, the core of Γ.

1 Γc ← ∅ ;
2 G = (V,E)← the constraint graph of Γ;
3 G4 = (V,E4)← TRIANGULATE(G);
4 Γ4 ← ESTABLISHPPC(Γ, G4);
5 while E 6= ∅ do
6 xy ← E.POP() ;
7 I ← (x [−∞,∞] y) ;
8 foreach z with (x, z), (z, y) ∈ E4 do
9 I ← I ∩ (Γ4(x, z)⊗ Γ4(z, y)) ;

10 if Γ4(x, y) 6= I then
11 Γc ← Γc ∪ Γ(x, y);

12 return Γc.

Example 9. To calculate the core of the STN Γ in Figure 1a, Algo-
rithm 1 first triangulates the constraint graph G = (V,E) of Γ. In
this case, as G is complete, any triangulation of G is still G. Then,
by calculating the minimal network, Γ4 is obtained, which is the
STN shown in Figure 2a. For each edge xixj in E, the algorithm
checks if the constraint Γ4(xi, xj) coincides with the intersection⋂

xixk,xkxj∈E4 Γ4(xi, xk) ⊗ Γ4(xk, xj). The result shows that

Γ4(x1, x2), Γ4(x1, x3), Γ4(x1, x5), Γ4(x2, x5), and Γ4(x3, x4)
are such constraints. Therefore, we know that the corresponding con-
straints in Γ are redundant, and we obtain the core Γc in Figure 1b
by removing them.

In what follows, we analyze the time complexity of Algorithm 1
in terms of the number of triangles t in the graph G4. Note that
a sparsely structured graph can contain much fewer triangles than a
complete graph of the same number of vertices. For each execution of
the while loop from (lines 5–13), the algorithm checks the triangles
inG4 that contain xy as an edge. Hence, the while loop checks each
triangle in G4 at most three times and runs in O(t + |E|) time. To
obtain a sparse chordal graph G4 (line 4), we can use the maximum
cardinality search algorithm [19] and a simple fill-in procedure [12].
In particular, the maximum cardinality search algorithm visits the
vertices of G in an order such that, at any point, a vertex is visited
that has the largest number of visited neighbours. Consequently, a
vertex ordering α is produced. Then, the fill-in procedure considers
the vertices in G one by one following the vertex ordering α, and,
connects each pair of vertices in the neighbourhood of the vertex at
hand with an undirected fill edge (if an edge is not already present).
The obtained graph G4 is then a triangulation of G [7]. The maxi-
mum cardinality search algorithm has the nice property that it does
not lead to any fill edges if the graph is already chordal. The entire
operation of triangulating G in the aforementioned manner is linear
in the size of G4, viz., O(|V | + |E4|). Further, to construct Γ4

(line 6), we can use the state-of-the-art algorithm P3C [13], which
runs inO(t) time. Therefore, Algorithm 1 runs inO(t+ |V |+ |E4|)
time.

5 Evaluation

In this section, we evaluate the previous theoretical results using a
large benchmark dataset comprising over a thousand of STNs of var-
ious nature. Note that by the analysis that took place in the previous
section, the performance of Algorithm 1 is strongly dependent on the
algorithm P3C for constructingG4 which has been shown to be very
efficient in [13]. In light of that, and as we are more interested in ob-
taining results on redundancy reduction for STNs, we will not report
on the computation time of our implementation.

Regarding the benchmark dataset, we employed the dataset of
1491 STNs used in the work of Planken et al. [14]. The basic prop-
erties of that dataset are presented in Table 1. More details about the
nature of each dataset can be found in [14, Section 4]. The STNs vary
from random scale-free networks and parts of the road network of
New York City, to STNs generated from hierarchical task networks
(HTNs) and job-shop scheduling problems. Note that Chordal-1 and
Scale-free-1 contain STNs of a fixed number of variables, while
Chordal-2 and Scale-free-2 contain STNs of a variant number of
variables. It is worth noting that a small percentage of STNs are de-
generated. To be exact, 100/1491 of the STNs are degenerated. The
number of degenerated STNs varies per nature of dataset. For exam-
ple, only 5 out of the 400 STNs of the job-shop scheduling problems
dataset (Job-shop) are degenerated. On the other hand, over a third
of the STNs of the 1000-variable scale-free STNs dataset are degen-
erated. In any case, all degenerated STNs were easily and minimally
repaired by introducing a small weight ε to each degenerated inter-
val [a, a], hence, modifying each such interval to [a− ε, a+ ε]. We
also observe that Chordal-1 and Chordal-2, which are STNs whose
constraint graphs are chordal, are the densest ones, followed by the
STNs of the job-shop scheduling problems dataset, viz., Job-shop
and the scale-free networks datasets, viz., Scale-free-1 and Scale-
free-2. On the contrary, STNs derived from the road network of New
York City (New York), HTNs (HTN), and diamond-shaped networks
(Diamonds) are extremely sparse, to the point of resembling trees,
and are thus almost devoid of redundancy (as we will see in the fol-

Table 1. Results on redundancy reduction

dataset #STNs #deg.a propertiesb reductionc

|V| |E| D µ min max σ

Chordal-1 250 18 1 000 75 840–499 490 0.532 97.43% 94.41% 98.99% 1.25
Chordal-2 130 11 214–3 125 22 788–637 009 0.509 96.92% 94.61% 98.27% 0.98

Scale-free-1 130 48 1 000 1 996–67 360 0.039 10.27% 0.10% 55.23% 13.09
Scale-free-2 160 18 250–1 000 2 176–3 330 0.025 3.30% 0.37% 17.93% 3.74

New York 170 0 108–3 906 113–6 422 0.006 0.01% 0.00% 0.19% 0.04
Diamonds 130 0 111–2 751 111–2 751 0.006 0.00% 0.00% 0.00% 0.00
Job-shop 400 5 17–1 321 32–110 220 0.142 49.45% 0.00% 73.69% 16.91

HTN 121 0 500–625 748–1 599 0.007 0.02% 0.00% 0.15% 0.04
a The number of degenerated STNs.
b |V|,|E|, and D: the number of vertices, the number of edges, and the average density of the constraint graphs of STNs respectively.
c µ, min, max, and σ: the average, the minimal, the maximal, and the standard deviation value of reduction rate respectively.

lowing evaluation).
Regarding the results of our evaluation, Table 1 provides a detailed

description of redundancy reduction per nature of dataset. Given
the fact that chordal STNs are the densest ones, it is not surprising
to obtain reduction rates lying between 94.41% to 98.99%, with a
reduction rate of about 97% on average. With respect to the job-
shop scheduling problems, we obtained an average reduction rate of
49.45%, while the reduction rate among the STNs reaches as high
as 73.69%. Further, we obtain a 10.27% average reduction rate for
scale-free STNs of a fixed number of variables, and a 3.3% reduc-
tion rate for scale-free STNs of a variant number of variables. Similar
as the case of the job-scheduling problems, some of the STNs have
less redundant constraints because they are already sparse. Finally,
as expected due to their extreme sparseness, no significant reduc-
tion rate is obtained for any of the STNs derived from the road net-
work of New York City, HTNs, and diamond-shaped networks. As an
example, all constraints in the dataset of diamond-shaped networks
are non-redundant. Finally, note that removing a constraint from an
STN simplifies its constraint graph structure by eliminating the cor-
responding edge. Multiple graph related tasks, such as storing, query-
ing, representing and reasoning, and pattern matching could benefit
from the high reduction in the number of edges for several types of
STNs.

As we strongly hinted earlier, the density of the constraint graph
of a given STN correlates with the reduction that we can achieve in
the number of constraints of that STN. The question arises of how big
the correlation between densities and reduction rates really is, at least
with respect to the dataset at hand. To answer this question, we use
the Spearman’s rank correlation coefficient [21], a non-parametric
test that is used to measure the degree of association between two
variables. It assesses how well the relationship between two vari-
ables x and y can be described using a monotonic function. Like
other correlation coefficients, this one varies between −1 and +1,
with 0 implying no correlation. Correlations of −1 or +1 imply an
exact monotonic relationship. Positive correlations imply that as x in-
creases, so does y. Negative correlations imply that as x increases, y
decreases. By using the average density D and the average reduction
rate µ as our variables, along with their respective values as provided
in Table 1, we can obtain a Spearman’s rank correlation coefficient of
0.99, which demonstrates that each of our variables is almost a per-
fect monotone function of the other. This results suggest that a strong
correlation between densities and reduction rates exists, despite the
different nature of the datasets.

6 Conclusion and Future Work
In this paper, we investigated the redundancy problem of STNs. In
particular, we showed that for any non-degenerated STN Γ, there is
a unique minimal subset Γc of its constraints (i.e., the core of Γ)
such that all of the constraints in Γc are not redundant in Γ and Γc

has the same set of solutions as Γ. We proposed an efficient algo-
rithm to calculate the core, which runs in time linear in the number
of triangles in a chordal graph that results from triangulating the con-
straint graph of Γ. Our experiments on benchmark datasets unveiled
a large amount of redundant constraints , which suggests that the
cores of the STNs achieve significant reductions of redundancies in
practice. With respect to our dataset, we also identified two measures
with a strong correlation between them. For future work, it would
be interesting to investigate whether that statistical dependence be-
tween our measures will hold if more datasets of various nature were
to be considered. Further, we would like to devise efficient reason-
ing algorithms based on the simplified representations to accomplish
tasks involving dynamic and uncertain information and interactions
between multi-agents.

A Proofs
Proposition 5 . Let Γ and Γ4, as well as E and E4, be specified
as in Lemma 2. Then for all x, y ∈ V with xy ∈ E4 the following
are equivalent:

(i) Γ4(x, y) is redundant in Γ4

(ii) Γ4(x, y) =
⋂

P∈Π(x,y,E4\{xy})

⊗
Γ4(P)

(iii) Γ4(x, y) =
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y)

Proof. (i) ⇒ (ii). Suppose Γ4(x, y) is redundant in Γ4. Then, by
applying Lemma 4, we know that

Γ4(x, y) ⊇
⋂

P∈Π(x,y,E4\{xy})

⊗
Γ4(P).

On the other hand, Γ4(x, y) is minimal in Γ4. Therefore

Γ4(x, y) ⊆
⋂

P∈Π(x,y,E4\{xy})

⊗
Γ4(P).

and we showed (ii).

(ii)⇒ (iii). Let P be a path between x and y onE4 \{xy}. Then,
because G4 is chordal, there exists a z′ ∈ V with (x, z′), (z′, y) ∈
E4, such that P is a concatenation of paths P1 and P2, where P1 is
between x and z′ and P2 is between z′ and y. Since Γ4(x, z′) and
Γ4(z′, y) are minimal in Γ4, we have⊗

Γ4(P1) ⊇ Γ4(x, z′)

and ⊗
Γ4(P2) ⊇ Γ4(z′, y).

Hence, ⊗
Γ4(P) =

⊗
Γ4(P1)⊗

⊗
Γ4(P2)

⊇ Γ4(x, z′)⊗ Γ4(z′, y)

⊇
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y).

Because the preceding statement holds for any path P between x and
y on E4 \ {xy}, we have⋂

P∈Π(x,y,E4\{xy})

⊗
Γ4(P) ⊇

⋂
xz,zy∈E4

Γ4(x, z)⊗ Γ4(z, y)

and by applying our assumption (ii), we have

Γ4(x, y) ⊇
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y).

The other inclusion

Γ4(x, y) ⊆
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y)

follows from the minimality of Γ4(x, y) in Γ4. Thus we showed
(iii).

(iii) ⇒ (i). We first observe that for all x, y, z ∈ V with
xy, xz, zy ∈ E4

Γ4 \ {Γ4(x, y)} |= {Γ4(x, z),Γ4(z, y)}

and
{Γ4(x, z),Γ4(z, y)} |= Γ4(x, z)⊗ Γ4(z, y)

and therefore

Γ4 \ {Γ4(x, y)} |= Γ4(x, z)⊗ Γ4(z, y).

Thus we have

Γ4 \ {Γ4(x, y)} |=
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y)

By applying our assumption (iii) we then have

Γ4 \ {Γ4(x, y)} |= Γ4(x, y)

and we showed (i).

Non-degenerated STNs have the following property.

Lemma 9. Let Γ and Γ4, as well as E and E4, be specified as in
Lemma 2. Suppose Γ is not degenerated. Then there is a fixed ε > 0
such that for any cycle C ∈ Π(x, x,E) we have that⊗

Γ(C) ⊇ (x [−ε, ε] x)

Proof. We first note that there exists an ε > 0 such that for any
x ∈ V and for any path P ∈ Π(x, x,E4) of length 3, i.e., P is
a triangle, we have

⊗
Γ(P) ⊇ (x [−ε, ε] x). This is because there

are only finitely many triangles in P4 and the composition of non-
degenerated constraints is again non-degenerate. Then, because G4

is chordal, for any cycle C ∈ Π(x, x,E) with xy ∈ C there exists
a z ∈ V with xz, zy ∈ E4 such that C = P1 + P2 + yx with
P1 ∈ Π(x, z, E) and P2 ∈ Π(z, y, E). Then⊗

Γ(C) =
⊗

Γ(P1)⊗
⊗

Γ(P2)⊗ Γ(y, x)

⊇ Γ(x, z)⊗ Γ(z, y)⊗ Γ(y, x)

⊇ (x [−ε, ε] x)

Example 10. The STN Γ2 in Figure 2b is not degenerated.
Consider the paths C1 = (x2x4), C2 = (x4x3, x3x5, x5x4),
C3 = (x4x3, x3x2). Note that C = C1 + C2 +
C3 and C2 are cycles. Then

⊗
Γ2(C) =

⊗
Γ2(C1) ⊗⊗

Γ2(C2) ⊗
⊗

Γ2(C3) = (x2[11, 15]x4) ⊗ (x4[−80, 41]x4) ⊗
(x4[−52, 30]x2) = (x2[−121, 86]x2) ⊇ (x2[−41, 45]x2) =⊗

Γ2(C1)⊗
⊗

Γ2(C3) ⊇ (x2[−εC , εC]x2), where we can choose
εC = 41.

Proposition 6 . Let Γ and Γ4, as well asE andE4, be specified as
in Lemma 2. Furthermore, Γ is not degenerated. Then for all x, y ∈
V with xy ∈ E4 the following are equivalent:

(i) Γ(x, y) is redundant in Γ
(ii) Γ4(x, y) is redundant in Γ4

(iii) Γ4(x, y) =
⋂

P∈Π(x,y,E)
|P |≥2

⊗
Γ(P)

Proof. (i)⇒ (ii). Because Γ4 |= Γ, we have

Γ4 \ {Γ4(x, y)} |= Γ \ {Γ(x, y)},

and since, by our assumption, Γ \ {Γ(x, y)} ≡ Γ, we have

Γ4 \ {Γ4(x, y)} |= Γ.

As Γ4 ≡ Γ by Lemma 2, we finally have

Γ4 \ {Γ4(x, y)} |= Γ4,

and showed (ii).
(ii) ⇒ (iii). Suppose Γ4(x, y) is redundant in Γ4. Then, by

Proposition 5 we know that

Γ4(x, y) =
⋂

xz,zy∈E4
Γ4(x, z)⊗ Γ4(z, y).

By applying Lemma 3 we then have

Γ4(x, y)

=
⋂

xz,zy∈E4

 ⋂
P1∈Π(x,z,E)

⊗
Γ(P1)

⊗
 ⋂

P2∈Π(z,y,E)

⊗
Γ(P2)

Since STP constraints are distributive (composition distributes over
intersections) we have

Γ4(x, y) =
⋂

xz,zy∈E4
P1∈Π(x,z,E)
P2∈Π(z,y,E)

⊗
Γ(P1 + P2) (4)

On the other hand, because G4 is chordal, P is a path between x
and y on E with |P | ≥ 2 if and only if there exists a z ∈ V with
(x, z), (z, y) ∈ E4, z 6= x, z 6= y, such that P is a concatenation of
paths P1 and P2, where P1 is between x and z and P2 is between z
and y. Hence we have

⋂
P∈Π(x,y,E)
|P |≥2

⊗
Γ(P) =

⋂
xz,zy∈E4

P1∈Π(x,z,E)
P2∈Π(z,y,E)

⊗
Γ(P1 + P2) (5)

From (4) and (5) it follows

Γ4(x, y) =
⋂

P∈Π(x,y,E)
|P |≥2

⊗
Γ(P)

and we showed (iii).
(iii)⇒ (i): Suppose

Γ4(x, y) =
⋂

P∈Π(x,y,E)
|P |≥2

⊗
Γ(P)

We first note that we can partition the set of paths between x and y
on E with |P | ≥ 2 into two subsets P1 and P2, where

P1 := {P ∈ Π(x, y, E) | xy ∈ P, |P | ≥ 2},

P2 := {P ∈ Π(x, y, E) | xy /∈ P, |P | ≥ 2}.

Hence

Γ4(x, y) =
⋂

P∈P1∪̇P2

⊗
Γ(P). (6)

We note that P1 consists of paths that are of the form C1 + (xy),
(xy) + C2, or C1 + (xy) + C2, where C1 and C2 are cycles on E
with |C1| ≥ 2 and |C2| ≥ 2. Then, since Γ is not degenerated, by
Lemma 9, there is an ε > 0 such that⊗

Γ(C1) ⊇ (x [−ε, ε] x),

⊗
Γ(C2) ⊇ (y [−ε, ε] y),

and we have, without loss of generality, for P = C1 + {xy}+ C2⊗
Γ(P) =

⊗
Γ(C1 + {xy}+ C2)

=
⊗

Γ(C1) ⊗ Γ(x, y) ⊗
⊗

Γ(C2)

⊇ (x [−ε, ε] x)⊗ Γ(x, y)

= (x [a− ε, b+ ε] y),

where Γ(x, y) = (x [a, b] y). Hence,

⋂
P∈P1

⊗
Γ(P) ⊇ (x [a− ε, b+ ε] y). (7)

Thus by (6) and (7) we have

Γ4(x, y) =
⋂

P∈P1∪̇P2

⊗
Γ(P)

=
⋂

P∈P1

⊗
Γ(P) ∩

⋂
P∈P2

⊗
Γ(P)

⊇ (x [a− ε, b+ ε] y) ∩
⋂

P∈P2

⊗
Γ(P)

⊇ (x [a, b] y) ∩
⋂

P∈P2

⊗
Γ(P)

= (x [a, b] y) ∩
⋂

P∈P1

⊗
Γ(P) ∩

⋂
P∈P2

⊗
Γ(P)

= Γ(x, y) ∩
⋂

P∈P1∪̇P2

⊗
Γ(P)

= Γ(x, y) ∩ Γ4(x, y)

= Γ4(x, y)

Consequently we have

(x [a− ε, b+ ε] y) ∩
⋂

P∈P2

⊗
Γ(P)

= (x [a, b] y) ∩
⋂

P∈P2

⊗
Γ(P).

By setting (x [c, d] y) :=
⋂

P∈P2

⊗
Γ(P) we then have

(x [a− ε, b+ ε] y) ∩ (x [c, d] y) = (x [a, b] y) ∩ (x [c, d] y),

which yields [max(a − ε, c),min(b + ε, d)] =
[max(a, c),min(b, d)] which holds only if a ≤ c and b ≥ d,
i.e., (x [a, b] y) ⊇ (x [c, d] y). Therefore

Γ(x, y) ⊇
⋂

P∈P2

⊗
Γ(P).

Since ⋂
P∈P2

⊗
Γ(P) =

⋂
P∈Π(x,y,E\{xy})

⊗
Γ(P)

we have
Γ(x, y) ⊇

⋂
P∈Π(x,y,E\{xy})

⊗
Γ(P)

and by Lemma 4 we have that Γ(x, y) is redundant in Γ.

REFERENCES
[1] James F. Allen, ‘Maintaining knowledge about temporal intervals’,

Commun. ACM, 26, 832–843, (1983).
[2] Roman Barták, Robert A. Morris, and K. Brent Venable, ‘An introduc-

tion to constraint-based temporal reasoning’, Synthesis Lectures on Ar-
tificial Intelligence and Machine Learning, 8(1), 1–121, (2014).

[3] John L. Bresina, Ari K. Jnsson, Paul H. Morris, and Kanna Rajan, ‘Ac-
tivity planning for the mars exploration rovers’, in ICAPS, pp. 40–49,
(2005).

[4] Patrick R. Conrad, Julie A. Shah, and Brian C. Williams, ‘Flexible ex-
ecution of plans with choice’, in ICAPS, (2009).

[5] Rina Dechter, Itay Meiri, and Judea Pearl, ‘Temporal constraint net-
works’, Artif. Intell., 49(1-3), 61–95, (1991).

[6] Michael Fisher, Dov M. Gabbay, and L. Vila, Handbook of temporal
reasoning in artificial intelligence, number 1 in Foundations of artificial
intelligence, Elsevier, Amsterdam ; Boston, 1st edn., 2005.

[7] Delbert Fulkerson and Oliver Gross, ‘Incidence matrices and interval
graphs.’, Pacific J. Math., 15(3), 835–855, (1965).

[8] Georg Gottlob and Christian G. Fermüller, ‘Removing redundancy
from a clause’, Artif. Intell., 61(2), 263 – 289, (1993).

[9] Sanjiang Li, Zhiguo Long, Weiming Liu, Matt Duckham, and Alan
Both, ‘On redundant topological constraints’, Artif. Intell., 225, 51–76,
(2015).

[10] Paolo Liberatore, ‘Redundancy in logic I: CNF propositional formulae’,
Artif. Intell., 163(2), 203–232, (2005).

[11] Nicola Muscettola, Paul H. Morris, and Ioannis Tsamardinos, ‘Refor-
mulating temporal plans for efficient execution’, in KR, pp. 444–452,
(1998).

[12] Seymour Parter, ‘The use of linear graphs in gauss elimination’, SIAM
review, 3(2), 119–130, (1961).

[13] Léon Planken, Mathijs de Weerdt, and Roman van der Krogt, ‘P3C: A
new algorithm for the simple temporal problem’, in ICAPS, pp. 256–
263, (2008).

[14] Léon Planken, Mathijs de Weerdt, and Roman van der Krogt, ‘Comput-
ing all-pairs shortest paths by leveraging low treewidth’, J. Artif. Intell.
Res., 43, 353–388, (2012).

[15] David A. Randell, Zhan Cui, and Anthony G. Cohn, ‘A spatial logic
based on regions and connection’, in KR, pp. 165–176, (1992).

[16] Francesca Rossi, Kristen Brent Venable, and Neil Yorke-Smith, ‘Un-
certainty in soft temporal constraint problems: A general framework
and controllability algorithms forthe fuzzy case’, J. Artif. Intell. Res.,
617–674, (2006).

[17] Julie A Shah and Brian C Williams, ‘Fast dynamic scheduling of dis-
junctive temporal constraint networks through incremental compila-
tion’, in ICAPS, pp. 322–329, (2008).

[18] Michael Sioutis, Sanjiang Li, and Jean-François Condotta, ‘Efficiently
characterizing non-redundant constraints in large real world qualitative
spatial networks’, in IJCAI, pp. 3229–3235, (2015).

[19] Robert Endre Tarjan and Mihalis Yannakakis, ‘Simple linear-time algo-
rithms to test chordality of graphs, test acyclicity of hypergraphs, and
selectively reduce acyclic hypergraphs’, SIAM J. Comput., 13(3), 566–
579, (1984).

[20] Marc B. Vilain and Henry A. Kautz, ‘Constraint propagation algorithms
for temporal reasoning’, in AAAI, pp. 377–382, (1986).

[21] Daniel Zwillinger and Stephen Kokoska, CRC standard probability and
statistics tables and formulae, CRC Press, 1999.

