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Abstract. We provide a sphere-packing lower bound for the optimal error probability in finite blocklengths
when coding over a symmetric classical-quantum channel. Our result shows that the pre-factor can be
significantly improved from the order of the subexponential to the polynomial. This established pre-factor
is essentially optimal because it matches the best known random coding upper bound in the classical
case. Our approaches rely on a sharp concentration inequality in strong large deviation theory and crucial
properties of the error-exponent function.

1. Introduction

The probability of decoding error is one of the fundamental criteria for evaluating the performance
of a communication system. In Shannon’s seminal work [1], he pioneered the study of the noisy coding
theorem, which states that the error probability can be made arbitrarily small as the coding blocklength
grows when the coding rate R is below the channel capacity C. Later, Shannon [2] made a further step
in exploring the exponential dependency of the optimal error probability ǫ∗(n,R) on the blocklength n
and rate R, and defined the reliability function as follows: given a fixed coding rate R < C, E(R) :=
lim supn→+∞ − 1

n log ǫ∗(n,R). The quantity E(R) then provides a measure of how rapidly the error
probability approaches zero with an increase in blocklength. This asymptotic characterization of the
optimal error probability under a fixed rate is hence called the error exponent analysis. For a classical
channel, the upper bounds of the optimal error can be established using a random coding argument [3].
On the other hand, the lower bound was first developed by Shannon, Gallager, and Berlekamp [4] and
was called the sphere-packing bound. Alternative approaches by Haroutunian [5] and Blahut [6] were
subsequently proposed.

In recent years, much attention has been paid to the finite blocklength regime [7, 8]. Altuğ and Wagner
employed strong large deviation techniques [9] to prove a sphere-packing bound with a finite blocklength
n. Moreover, the pre-factor of the bound was significantly refined from the order of the subexponential
exp{−O(

√
n)} [4] to the polynomial [10, 11]. This refinement is substantial especially at rates near

capacity, where the error-exponent function is close to zero; hence, the pre-factor dominants the bound
[12, 13].

Error exponent analysis in classical-quantum (c-q) channels is much more difficult because of the
noncommutative nature of quantum mechanics. Burnashev and Holevo [15, 16] investigated reliability
functions in c-q channels and proved the random coding upper bound for pure-state channels. Winter [17]
adopted Haroutunian’s method to derive a sphere-packing bound for c-q channels in the form of relative
entropy functions [5]. Dalai [18] employed Shannon-Gallager-Berlekamp’s approach to establish a sphere-
packing bound with Gallager’s expression [4]. It was later pointed out that these two sphere-packing
exponents are not equal for general c-q channels [19]. In this work, we initiate the study of the refined
sphere-packing bound in the quantum scenario. In particular, we consider a “symmetric c-q channel”
(see Section 2 for a detailed definition), which is an important class of covariant channels (e.g. [20]),
and establish a sphere-packing bound with the pre-factor improved from the order of the subexponential
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in Dalai’s result [18] to the polynomial. Our result recovers Altuğ and Wagner’s work [10] for classical
symmetric channels including the binary symmetric channel and binary erasure channel. Furthermore, the
proved pre-factor matches that of the best known random coding upper bound [21] in the classical case.
Hence, our result yields the exact asymptotics for the sphere-packing bound in symmetric c-q channels.
The main ingredients in our proof are a tight concentration inequality from Bahadur and Ranga Rao
[9], [13] (see Appendix A) and the major properties of the sphere-packing exponent [22]. We remark
that the result obtained in this paper might enable analysis in the medium error probability regime of a
classical-quantum channel [12, 13, 14]. We leave the case for general c-q channels as future work [23].

This paper is organized as follows. We introduce the necessary notation and state our main result in
Section 2. Section 3 includes the crucial properties of the error-exponent function. We provide the proof
of the main result in Section 4. Section 5 concludes this paper.

2. Notation and Main Result

2.1. Notation. Throughout this paper, we consider a finite-dimensional Hilbert space H. The set of
density operators (i.e. positive semi-definite operators with unit trace) on H are defined as S(H). For ρ, σ ∈
S(H), we write ρ ≪ σ if supp(ρ) ⊂ supp(σ), where supp(ρ) denotes the support of ρ. The identity operator
on H is denoted by 1H. When there is no possibility of confusion, we skip the subscript H. We use Tr [ · ] as
the trace function. Let N, R, and R>0 denote the set of integers, real numbers, and positive real numbers,,
respectively. Define [n] := {1, 2, . . . , n} for n ∈ N. Given a pair of positive semi-definite operators
ρ, σ ∈ S(H), we define the (quantum) relative entropy as D(ρ‖σ) := Tr [ρ (logρ− logσ)], when ρ ≪ σ,
and +∞ otherwise. For every α ∈ [0, 1), we define the (Petz) quantum Rényi divergences Dα(ρ‖σ) :=
1

α−1 log Tr
[
ρασ1−α

]
. For α = 1, D1(ρ‖σ) := limα→1Dα(ρ‖σ) = D(ρ‖σ). Let X = {1, 2, . . . , |X |} be

a finite alphabet, and let P(X ) be the set of probability distributions on X . In particular, we denote
by UX the uniform distribution on X . A classical-quantum (c-q) channel W maps elements of the
finite set X to the density operators in S(H), i.e., W : X → S(H). Let M be a finite alphabetical
set with size M = |M|. An (n-block) encoder is a map fn : M → X n that encodes each message
m ∈ M to a codeword x

n(m) := x1(m) . . . xn(m) ∈ X n. The codeword x
n(m) is then mapped to a state

W⊗n
x
n(m) = Wx1(m) ⊗ · · · ⊗ Wxn(m) ∈ S(H⊗n). The decoder is described by a positive operator-valued

measurement (POVM) Πn = {Πn,1, . . . ,Πn,M} on H⊗n, where Πn,i ≥ 0 and
∑M

i=1 Πn,i = 1. The pair

(fn,Πn) =: Cn is called a code with rate R = 1
n log |M|. The error probability of sending a message

m with the code Cn is ǫm(W, Cn) := 1 − Tr
(
Πn,mW

x
n(m)

)
. We use ǫmax(W, Cn) = maxm∈M ǫm(W, Cn)

and ǭ(W, Cn) = 1
M

∑
m∈M ǫm(W, Cn) to denote the maximal error probability and the average error

probability, respectively. Given a sequence x
n ∈ X n, we denote by Px

n(x) := 1
n

∑n
i=1 1 {x = xi} the

empirical distribution of xn.
Throughout this paper, we consider a symmetric c-q channel defined as

Wx := V x−1W1(V
†)x−1, ∀x ∈ X , (1)

where W1 ∈ S(H) is an arbitrary density operator, and V satisfies V †V = V V † = V |X | = 1H. We
define the following conditional entropic quantities for the channel W with P ∈ P(X ): Dα (W‖σ|P ) :=∑

x∈X P (x)Dα (Wx‖σ). The mutual information of the c-q channel W : X → S(H) with prior distribution
P ∈ P(X ) is defined as I(P,W ) := D (W‖PW |P ), where PWα :=

∑
x∈X P (x)Wα

x , α ∈ (0, 1]. The
(classical) capacity of the channel W : X → S(H) is denoted by C := maxP∈P(X ) I(P,W ). Let

E(1)
sp (R,P ) := sup

s≥0
{E0(s, P ) − sR}

E(2)
sp (R,P ) := sup

0<α≤1
min

σ∈S(H)

α− 1

α
(R−Dα (W‖σ|P )) ,

where we denote by E0(s, P ) := − log Tr
[(
PW 1/(1+s)

)1+s
]

an auxiliary function [16, 22]. The sphere-

packing exponent is defined by

Esp(R) := max
P∈P(X )

E(1)
sp (R,P ) = max

P∈P(X )
E(2)

sp (R,P ), (2)
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where the last equality follows from [24, Proposition IV.2]. Further, we define a rate [25, p. 152], [18]:

R∞ := lim
s→+∞

max
P∈P(X )

min
σ∈S(H)

∑

x∈X
P (x)D 1

1+s
(Wx‖σ)

= max
P∈P(X )

min
σ∈S(H)

∑

x∈X
P (x) Tr

[
W 0

xσ
]
. (3)

It follows that Esp(R) = +∞ for any R ≤ R∞ (see also [4, p. 69] and [3, Eq. (5.8.5)]).
Consider a binary hypothesis whose null and alternative hypotheses are ρ ∈ S(H) and σ ∈ S(H),

respectively. The type-I error and type-II error of the hypothesis testing, for an operator 0 ≤ Q ≤ 1,
are defined as α (Q; ρ) := Tr [(1−Q)ρ], and β (Q;σ) := Tr [Qσ]. There is a trade-off between these two
errors. Thus, we can define the minimum type-I error, when the type-II error is below µ ∈ (0, 1), as

α̂µ (ρ‖σ) := min
0≤Q≤1

{
α (Q; ρ) : β (Q;σ) ≤ µ

}
. (4)

2.2. Main Result. Let us now consider any symmetric c-q channel with capacity C.

Theorem 1 (Exact Sphere-Packing Bound). For any rate R ∈ [0, C), there exist an N0 ∈ N such that
for all codes Cn of length n ≥ N0, we have

ǫmax (Cn) ≥ 1 − o(1)

n
1
2(1+|E′

sp(R)|) exp {−nEsp(R)} , (5)

where E′
sp(R) := ∂ maxP∈P(X )E

(1)
sp (r, P )/∂r|r=R.

3. Properties of the Sphere-Packing Exponent

Lemma 2 (Optimal Input Distribution). For any R > R∞, the distribution UX is a maximizer of

E
(1)
sp (R, ·) and E

(2)
sp (R, ·).

Proof. We first prove that UX attains maxP∈P(X )E0(s, P ). From Eq. (1), it is not hard to verify that

UXWα = V UXWαV † for all α ∈ (0, 1]. Hence, it follows that

Tr[Wα
x (UXW

α)
1−α
α ] = Tr[V x−1Wα

1 V
†x−1(UXW

α)
1−α
α ] (6)

= Tr[Wα
1 V

†x−1(UXW
α)

1−α
α V x−1] (7)

= Tr[Wα
1 (UXW

α)
1−α
α ] (8)

= Tr[(UXW
α)

1
α ] (9)

for all α ∈ (0, 1]. The above equation shows that the distribution UX that maximizes E0(s, P ), ∀s ≥ 0
[16, Eq. (38)]. Then we have

E(1)
sp (R,UX ) = sup

s≥0

{
max

P∈P(X )
E0(s, P ) − sR

}
= Esp(R).

Further, Jensen’s inequality implies that E
(2)
sp (R,UX ) ≥ E

(1)
sp (R,UX ) = Esp(R), which completes the

proof. �

Lemma 3 (Saddle-Point Property). Consider any R ∈ (R∞, C) and P ∈ P(X ). Let SP,W (H) :=
{σ ∈ S(H) : ∀x ∈ supp(P ), supp(Wx) ∩ supp(σ) 6= ∅}. We define

FR,P (α, σ) :=
α− 1

α
(R−Dα (W‖σ|P )) , (10)

on (0, 1] × SP,W (H), and let PR(X ) :=
{
P ∈ P(X) : minσ∈S(H) sup0<α≤1 FR,P (α, σ) ∈ R>0

}
. The follow-

ing holds

(i) For any P ∈ P(X ), FR,P (·, ·) has a saddle-point with the saddle-value:

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) = sup
0<α≤1

min
σ∈S(H)

FR,P (α, σ) = E(2)
sp (R,W,P ). (11)
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(ii) The saddle-point is unique for P ∈ PR(X ).
(iii) Let P ∈ PR(X ). The unique saddle-point (α, σ) of FR,P (·, ·) satisfies α ∈ (0, 1) and

σ =

(∑
x∈X P (x)Wα

x e(1−α)Dα(Wx‖σ))1/α

Tr
[(∑

x∈X P (x)Wα
x e(1−α)Dα(Wx‖σ)

)1/α] ≫ Wx, ∀x ∈ supp(P ). (12)

The proof is provided in Appendix B.1.

Lemma 4 (Representation). For any R ∈ (R∞, C), let (α⋆
R, σ

⋆
R) be the saddle-point of FR,UX

(·, ·). It
follows that

(α⋆
R, σ

⋆
R) =


−E′

sp(R),

(
UXWα⋆

R

)1/α⋆
R

Tr
[(
UXWα⋆

R

)1/α⋆
R

]


 . (13)

Proof. Since Lemma 2 implies that UX attains E
(2)
sp (R, ·), one observes from the definition of E

(2)
sp that

all the quantities Dα⋆
R

(Wx‖σ⋆
R), x ∈ X are equal. By item (iii) of Lemma 3, we obtain a representation

of σ⋆
R in Eq. (13). The optimal α⋆

R = −∂Esp(r, UX )/∂r|r=R follows from [22, Eq. (42)]. �

Lemma 5 (Invariance). For any R ∈ (R∞, C), we have

FR,P (α⋆
R, σ

⋆
R) = Esp(R) > 0, ∀P ∈ P(X ), (14)

where α⋆
R and σ⋆

R are defined in Eq. (13).

Proof. Following the argument in Lemma 2 and recalling Eq. (13) in Lemma 4, one can verify that
supα∈(0,1] FR,P (α, σ⋆

R) = sups≥0 {E0(s, UX ) − sR} = Esp(R) for all P ∈ P(X ). Further, we obtain

Esp(R) > 0 for R ∈ (R∞, C) from the result in [22, Proposition 10]. �

4. Proof of the Main Result

For rates in the range R ≤ R∞, we have Esp(R) = +∞. The bound in Eq. (5) obviously holds. Hence,
we consider the case of R ∈ (R∞, C) and fix the rate throughout the proof.

We first pose the channel coding problem into a binary hypothesis testing through Lemma 6, which
originates from Blahut [6] for the classical case.

Lemma 6 (Hypothesis Testing Reduction). For any code Cn with message size enr, there exists an x
n ∈ Cn

such that

ǫmax (Cn) ≥ max
σ∈S(H)

α̂exp{−nr}
(
W⊗n

x
n ‖σ⊗n

)
. (15)

The proof is provided in Appendix B.2.
Let us now commence with the proof of Theorem 1. Fix arbitrary γ, ξ > 0. Let γn :=

(
1
2 + γ

) logn
n and

Rn := R − γn. The choice of the rate back-off term γn will become evident later. Choose N1 ∈ N such
that Rn ≥ R− ξ > R∞. Let σ⋆

R be defined in Eq. (13), and from Lemma 6, we have

ǫmax (Cn) ≥ α̂exp{−nRn}
(
W⊗n

x
n ‖σ⋆⊗n

R

)
. (16)

In the following, we provide a lower bound for the type-I error α̂exp{−nRn}
(
W⊗n

x
n ‖σ⋆⊗n

R

)
. Let pn :=⊗n

i=1 pxi
and qn :=

⊗n
i=1 qxi

, where (pxi
, qxi

) are Nussbaum-Szko la distributions [26] of (Wxi
, σ⋆

R) for every
i ∈ [n]. Since Dα(Wxi

‖σ⋆
R) = Dα(pxi

‖qxi
), for all α ∈ (0, 1], we shorthand φn(Rn) := supα∈(0,1] FRn,Px

n (α, σ⋆
R),

where Px
n is the empirical distribution of xn. Moreover, item (iii) in Lemma 3 implies that the state σ⋆

R
dominates all the channel outputs: σ⋆

R ≫ Wx, for all x ∈ supp(Px
n), Hence, we have pn ≪ qn. Subse-

quently, for every i ∈ [n], we let qxi
(ω) = 0, for all ω 6∈ supp(pxi

). We apply Nagaoka’s argument [27] by
choosing δ = exp{nRn − nφn(Rn)} to yield, for any 0 ≤ Qn ≤ 1,

α
(
Qn;W⊗n

x
n

)
+ δβ

(
Qn;σ⋆⊗n

R

)
≥ α (U; pn) + δβ (U; qn)

2
, (17)

where α (U; pn) :=
∑

ω∈Uc pn(ω), β (U; qn) :=
∑

ω∈U qn(ω), and U :=
{
ω : pn(ω)enφn(Rn) > qn(ω)enRn

}
.

4



Next, we employ Bahadur-Ranga Rao’s concentration inequality, Theorem 9 in Appendix A, to further
lower bound α (U; pn) and β (U; qn). Before proceeding, we need to introduce some notation. We define
the tilted distributions, for every i ∈ [n], ω ∈ supp(pxi

), and t ∈ [0, 1] by

q̂xi,t(ω) :=
pxi

(ω)1−tqxi
(ω)t∑

ω∈supp(pxi)
pxi

(ω)1−tqxi
(ω)t

. (18)

Let

Λ0,xi
(t) := logEpxi

[
e
t log

qxi
pxi

]
;

Λ1,xi
(t) := logEqxi

[
e
t log

pxi
qxi

]
.

(19)

Since pn and qn are mutually absolutely continuous, the maps t 7→ Λj,xi
(t), j ∈ {0, 1} are differentiable

for all t ∈ [0, 1]. One can immediately verify the following partial derivatives with respect to t:

Λ′
0,xi

(t) = Eq̂xi,t

[
log

qxi

pxi

]
, Λ′′

0,xi
(t) = Varq̂xi,t

[
log

qxi

pxi

]
,

Λ′′
0,xi

(t) = Varq̂xi,t

[
log

qxi

pxi

]
, Λ′

1,xi
(t) = Eq̂xi,1−t

[
log

pxi

qxi

]
.

(20)

With Λj,xi
(t) in Eq. (19), we can define

Λj,P
x
n (t) :=

∑

x∈X
Px

n(x)Λj,x(t), j ∈ {0, 1}; (21)

Λ∗
j,P

x
n (z) := sup

t∈R
{tz − Λj,P

x
n (t)} , j ∈ {0, 1}, (22)

where Λ∗
j,P

x
n
(z) in Eq. (22) is the Fenchel-Legendre transform of Λj,P

x
n (t). The quantities Λ∗

j,P
x
n
(z) would

appear in the lower bounds of α (U; pn) and β (U; qn) obtained by Bahadur-Randga Rao’s inequality as
shown later.

In the following, we relate the Fenchel-Legendre transform Λ∗
j,P

x
n
(z) to the desired error-exponent

function φn(Rn). Such a relationship is stated in Lemma 7; the proof is provided in Appendix B.3.

Lemma 7. Under the prevailing assumptions and for all Rn ∈ (R∞, C), the following holds:

(i) Λ∗
0,P

x
n

(φn(Rn) −Rn) = φn(Rn);

(ii) Λ∗
1,P

x
n

(Rn − φn(Rn)) = Rn;

(iii) There exists a unique t⋆ = s⋆

1+s⋆ ∈ (0, 1), such that Λ′
0,P

x
n

(t⋆) = φn(Rn) − Rn, where s⋆ :=
∂φn(r)

∂r |r=Rn
.

Item (iii) in Lemma 7 shows that the optimizer t in Eq. (22) always lies in the compact set [0, 1]. Further,
Eqs. (19) and (20) ensure that Λ0,xi

(t) = Λ1,xi
(1− t), Λ′

0,xi
(t) = −Λ′

1,xi
(1− t), Λ′′

0,xi
(t) = Λ′′

1,xi
(1− t). We

define the following quantities:

Vmax := max
t∈[0,1], x∈X

Λ′′
0,x(t); (23)

Vmin := min
t∈[0,1], x∈X

Λ′′
0,x(t); (24)

Tmax := max
t∈[0,1], x∈X

T0,x(t); (25)

T0,x(t) := Eq̂x,t

[∣∣∣∣log
qx
px

− Λ′
0,x(t)

∣∣∣∣
3
]

; (26)

T1,x(t) := T0,x(1 − t); and Kmax := 15
√

2πTmax/Vmin. Note that for every x ∈ X , Λ′′
0,x(·) and T0,x(·)

are continuous functions on [0, 1] from the definitions in Eqs. (20), (26) (see also [10, Lemma 9]). The
maximization and minimization in the above definitions are well-defined and finite. Moreover, Lemma 8
guarantees that Vmin is bounded away from zero.
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Lemma 8 (Positivity). For any Rn ∈ (R∞, C) and Px
n ∈ P(X ), Λ′′

0,Pn
x

(t) > 0, for all t ∈ [0, 1].

Proof. Assume Λ′′
0,Pn

x

(t) is zero for some t ∈ [0, 1]. This is equivalent to

pxi
(ω) = qxi

(ω) · e
−Λ′

0,xi
(t)
, ∀ω ∈ pxi

, ∀i ∈ [n]. (27)

Summing the right-hand side of Eq. (27) over ω ∈ pxi
gives 1 = Tr

[
p0xi

qxi

]
e
−Λ′

0,xi
(t)
, ∀i ∈ [n]. Then,

Eqs. (27) and the above equation imply that

φn(Rn) = sup
0<α≤1

α− 1

α

(
Rn +

∑

x∈X
Px

n(x) log Tr
[
p0xqx

]
)

= 0,

where we use the fact that Rn > R∞ = −∑x∈X Px
n(x) log Tr

[
p0xqx

]
; see Eq. (3)). However, Lemma 5

implies that φn(Rn) = Esp(Rn) > 0, which leads to a contradiction. �

Now, we are ready to derive the lower bounds to α (U; pn) and β (U; qn). Let N2 ∈ N be sufficiently
large such that for all n ≥ N2,

√
n ≥ 1 + (1 + Kmax)2√

Vmin
. (28)

Applying Bahadur-Randga Rao’s inequality (Theorem 9) to Zi = log qi − log pi with the probability
measure λi = pi, and z = Rn − φn(Rn) gives

α (U; pn) = Pr

{
1

n

n∑

i=1

Zi ≥ Rn − φn(Rn)

}
(29)

≥ 2A√
n

exp
{
−nΛ∗

0,P
x
n (φn(Rn) −Rn)

}
(30)

where A := e−Kmax√
4πVmax

. Similarly, applying Theorem 9 to Zi = log pi − log qi with the probability measure

λi = qi, and z = φn(Rn) −Rn yields

β (U; qn) = Pr

{
1

n

n∑

i=1

Zi ≥ φn(Rn) −Rn

}
(31)

≥ 2A√
n

exp
{
−nΛ∗

1,P
x
n

(Rn − φn(Rn))
}
. (32)

Continuing from Eq. (30) and item (i) in Lemma 7 gives

α (U; pn) ≥ 2A√
n

exp{−nφn (Rn)}. (33)

Eq. (32) together with item (iii) in Lemma 7 yields

β (U; qn) ≥ 2A√
n

exp{−nRn} = 2Anγ exp{−nR}. (34)

Let N3 ∈ N such that Anγ > 1, for all n ≥ N3. Then Eq. (34) implies that β (U; qn) > 2 exp{−nR}.

Thus, we can bound the left-hand side of Eq. (17) from below by A√
n

e−nφn(Rn). For any test 0 ≤ Qn ≤ 1

such that β(Qn;σ⋆⊗n
R ) ≤ exp{−nR}, we have

α̂exp{−nRn}
(
W⊗n

x
n ‖σ⋆⊗n

R

)
= α(Qn; ρn)

≥ A√
n

exp{−nφn (Rn)} =
A√
n

exp {−nEsp(Rn)} , (35)

where the last equality follows from Lemma 5.
6



Finally, it remains to remove the back-off term Rn = R− γn in Eq. (35). By Taylor’s theorem, we have

Esp(R− γn) = Esp(R) − γnE
′
sp(R) +

γ2n
2
E′′

sp(R̄), (36)

for some R̄ ∈ (R− ξ,R) and E′′
sp(R̄) :=

∂2E
(1)
sp (r,UX )
∂r2

∣∣∣∣
r=R̄

. Further, one can calculate that

E′′
sp(R̄) = −

(
∂2E0(s, UX )

∂s2

∣∣∣∣
s=s̄

)−1

(37)

=
(1 + s̄)3

Λ′′
0,UX

(
s̄

1+s̄

) ≤ (1 + s̄)3

Vmin
=: Υ, (38)

where s̄ =
1−α⋆

R̄

α⋆
R̄

. From item (iii) in Lemma 3, it follows that both s̄ and |E′
sp(R)| = s⋆ are both positive

and finite for R̄ ∈ (R∞, C) and R ∈ (R∞, C). Together with the fact that Vmin > 0, we have Υ ∈ R>0.
We apply Taylor’s expansion on the function n−(·) again to yield

n− 1
2(1+|E′

sp(R)|)−γnΥ = n− 1
2(1+|E′

sp(R)|) ·
(

1 − log n

nx̄Γ
γnΥ

)

= n− 1
2(1+|E′

sp(R)|) · (1 − o(1)) , (39)

where the first equality holds for some x̄ ∈ (0, γn), and the last line follows from the definition γn =

(12 + γ) logn . Finally, by combining Eqs. (16), (35), and (39), we obtain the desired Eq. (5) for sufficiently
large n ≥ N0 := max {N1, N2, N3}.

5. Discussion

In this work, we establish a sphere-packing bound with a refined polynomial pre-factor that coincides
with the best classical results [10, Theorem 1] to date. As discussed by Altuğ and Wagner [10, Sec. VII],
the pre-factor is correct for binary symmetric channels but slightly worse for binary erasure channels (in
the order of 1/

√
n). On the other hand, our pre-factor matches the recent result of the random coding

upper bound [21, Theorem 2], where the pre-factor has been shown to be exact. Hence, we conjecture
that the established result is optimal for general symmetric c-q channels.

This work admits variety of potential extensions. First, the symmetric c-q channel studied in this paper
is a covariant channel with a cyclic group:

WUin(g)xUin(g)† = Uout(g)WxUout(g)†, ∀g, x ∈ X , (40)

where Uin and Uout are the unitary representations on X and S(H) such that Uin(g)xUin(g)† = (x +
g) mod |X | and Uout(g) = V g. It would be interesting to investigate whether the refined sphere-packing
bound can be extended to covariant quantum channels N : S(Hin) → S(Hout) with arbitrary compact
groups. Second, the random coding bound in the quantum case has been proved only for pure-state
channels [16]. It is promising to prove the bound for this class of c-q channels by employing the symmetry
property. Finally, the refinement provides a new possibility for moderate deviation analysis in c-q channels
[13], which is left as future work.
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Appendix A. A Tight Concentration Inequality

Let (Zi)
n
i=1 be a sequence of independent, real-valued random variables whose probability measures are

λi. Let Λi(t) := logE
[
etZi

]
and define the Fenchel-Legendre transform of 1

n

∑n
i=1 Λi(·) to be: Λ∗

n(z) :=

supt∈R
{
zt− 1

n

∑n
i=1 Λi(t)

}
, ∀z ∈ R. Thenb there exists a real number t⋆ ∈ (0, 1] for every z ∈ R

such that z = 1
n

∑n
i=1 Λ′

i(t
⋆) and Λ∗

n(z) = zt⋆ − 1
n

∑n
i=1 Λi(t

⋆). Define the probability measure λ̃i via
dλ̃i

dλi
(zi) := et

⋆zi−Λi(t
⋆), and let Z̄i := Zi − Eλ̃i

[Zi]. Furthermore, define m2,n :=
∑n

i=1 Varλ̃i

[
Z̄i

]
, m3,n :=

∑n
i=1 Eλ̃i

[∣∣Z̄i

∣∣3
]
, and Kn(t⋆) :=

15
√
2πm3,n

m2,n
. With these definitions, we can now state the following sharp

concentration inequality for 1
n

∑n
i=1 Zi:

Theorem 9 (Bahadur-Ranga Rao’s Concentration Inequality [11, Proposition 5], [28]). Given
√
m2,n ≥ 1 + (1 + Kn (t⋆))2 , (41)

it follows that

Pr

{
1

n

n∑

i=1

Zi ≥ z

}
≥ e−nΛ∗

n(z)
e−Kn(t⋆)

2
√

2πm2,n
. (42)

Appendix B. Proofs of Miscellaneous Lemmas

B.1. Proof of Lemma 3. Let R > R∞ and P ∈ P(X ) be arbitrary. It is convenient to reparameterize
the function FR,P by the substitution α = 1

1+s :

FR,P (α, σ)|α= 1
1+s

= −sR + sD 1
1+s

(W‖σ|P ) =: KR,P (s, σ). (43)

In the following, we prove the existence of a saddle-point of KR,P (·, ·) on R≥0 × SP,W (H), where R≥0 :=
[0,∞). By Ref. [29, Lemma 36.2], (s⋆, σ⋆) is a saddle point of KR,P (·, ·) if and only if the supremum in

sup
s∈R≥0

inf
σ∈SP,W (H)

KR,P (s, σ) (44)

is attained at s⋆, the infimum in

inf
σ∈SP,W (H)

sup
s∈R≥0

KR,P (s, σ) (45)

is attained at σ⋆, and the two extrema in Eqs. (44), (45) are equal and finite. We first claim that

∀s ∈ R≥0, inf
σ∈SP,W (H)

KR,P (s, σ) = inf
σ∈S(H)

KR,P (s, σ). (46)

To see that, observe that for any s ∈ R≥0, the definition of the α-Rényi divergence yields

∀σ ∈ S(H)\SP,W (H), D 1
1+s

(W‖σ|P ) = +∞, (47)

which, in turn, implies

∀σ ∈ S(H)\SP,W (H), KR,P (s, σ) = +∞. (48)

Hence, Eq. (46) yields

sup
s∈R≥0

inf
σ∈SP,W (H)

KR,P (s, σ) = sup
s∈R≥0

inf
σ∈S(H)

KR,P (s, σ) = sup
s∈R≥0

min
σ∈S(H)

KR,P (s, σ), (49)

where the last equality in Eq. (49) follows from the lower semi-continuity of the map σ 7→ D1/(1+s)(W‖σ|P )
[24, Corollary III.25] and the compactness of S(H). Further, by the fact R > R∞ and the definition of

E
(2)
sp , we have

E(2)
sp (R,P ) = sup

s∈R≥0

min
σ∈S(H)

KR,P (s, σ) < +∞, (50)

which guarantees the supremum in the right-hand side of Eq. (49) is attained at some s ∈ R≥0, i.e.,

sup
s∈R≥0

inf
σ∈SP,W (H)

KR,P (s, σ) = max
s∈R≥0

min
σ∈S(H)

KR,P (s, σ) < +∞. (51)
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Thus, we complete our claim in Eq. (44). It remains to show that the infimum in Eq.(45) is attained
at some σ⋆ ∈ SP,W (H) and the supremum and infimum are exchangeable. To achieve this, we will show
that (R≥0,SP,W (H),KR,P ) is a closed saddle-element (see Definition 10 below) and apply Rockafellar’s
saddle-point result, Theorem 11, to conclude our claim.

Definition 10 (Closed Saddle-Element [29]). The triple (A,B, F ) is called a closed saddle-element if for
any1 x ∈ ri (A) (resp. y ∈ ri (B)):

(a) B (resp. A) is convex;
(b) F (x, ·) (resp. F (·, y)) is convex (resp. concave) and lower (resp. upper) semi-continuous; and
(c) any accumulation point of B (resp. A) that does not belong to B (resp. A), say yo (resp. xo)

satisfies limy→yo F (x, y) = +∞ (resp. limx→xo
F (x, y) = −∞).

Theorem 11 (The Existence of Saddle-Points [29, Theorem 8], [30, Theorem 37.3]). Let (A,B, F ) be any
closed saddle-element on R

m ×R
n.

(I) No non-zero x0 has the property that, for all x ∈ ri(A) and y ∈ ri(B), the half-line {x + tx0 : t ≥ 0}
is contained in A and F (x + tx0, y) is a non-zero and non-decreasing function for t ≥ 0.

(II) No non-zero y0 has the property that, for all x ∈ ri(A) and y ∈ ri(B), the half-line {y + ty0 : t ≥ 0}
is contained in B and F (x, y + ty0) is a non-increasing function for t ≥ 0.

If condition (I) is satisfied, then

max
x∈A

inf
y∈B

F (x, y) = inf
y∈B

sup
x∈A

F (x, y) < +∞. (52)

If condition (II) is satisfied, then

−∞ < sup
x∈A

inf
y∈B

F (x, y) = min
y∈B

sup
x∈A

F (x, y). (53)

If (I) and (II) are both satisfied, then F has a saddle-point on A× B.
Fix an arbitrary s ∈ ri (R≥0) = R>0. We check that (SP,W (H),KR,P (s, ·)) fulfills the three items

in Definition 10. (a) The set SP,W (H) is clearly convex. (b) Since the map σ 7→ D1/(1+s)(W‖σ|P )
is convex (owing to Lieb’s concavity theorem [31]) and lower semi-continuous on L(H)+ [24, Corollary
III.25], by Eq. (43), σ 7→ KR,P (α, σ) is also convex and lower semi-continuous on SP,W (H). (c) Due to
the compactness of S(H), any accumulation point of SP,W (H) that does not belong to SP,W (H), say σo,
satisfies σo ∈ S(H)\SP,W (H). By Eqs. (47), (48), one finds KR,P (α, σo) = +∞.

Next, fix an arbitrary σ ∈ ri (SP,W (H)). Owing to the convexity of SP,W (H), it follows that ri (SP,W (H))
= ri (cl (SP,W (H))) (see e.g. [30, Theorem 6.3]). We first claim cl (SP,W (H)) = S(H). To see this, ob-
serve that S(H)++ ⊆ SP,W (H) since a full-rank density operator is not orthogonal with every Wx, x ∈ X .
Hence,

S(H) = cl
(
S(H)++

)
⊆ cl (SP,W (H)) . (54)

On the other hand, the fact SP,W (H) ⊆ S(H) leads to

cl (SP,W (H)) ⊆ cl (S(H)) = S(H). (55)

By Eqs. (54) and (55), we deduce that

ri (SP,W (H)) = ri (cl (SP,W (H))) = ri (S(H)) = S(H)++, (56)

where the last equality in Eq. (56) follows from [32, Proposition 2.9]. Hence, we obtain

∀σ ∈ ri (SP,W (H)) and ∀x ∈ X , σ ≫ Wx. (57)

Now, we verify that (R≥0,KR,P (·, σ)) satisfies the three items in Definition 10. (a) The set R≥0 is obviously
convex. (b) From Eqs. (57) and the definition of the Rényi divergence , the map s 7→ D1/(1+s)(W‖σ|P ) is
continuous on R≥0. Further, s 7→ sD1/(1+s)(W‖σ|P ) is concave on R≥0 [24, Appendix B]. By Eq. (43), the
map s 7→ KR,P (s, σ) is concave and continuous on R≥0. (c) Since R≥0 is closed, there is no accumulation
point of R≥0 that does not belong to R≥0.

1We denote by ri and cl the relative interior and the closure of a set, respectively.
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We are now in a position to prove item (i) of this Proposition. Since the set SP,W (H) is bounded,
condition (II) is satisfied. Equation (53) in Theorem 11 implies that

−∞ < sup
s∈R≥0

inf
σ∈SP,W (H)

KR,P (s, σ) = min
σ∈SP,W (H)

sup
s∈R≥0

KR,P (s, σ). (58)

Then Eqs. (51) and (58) lead to the existence of a saddle-point of KR,P (·, ·) on R≥0 × SP,W (H). Note
that KR,P (s, σ) = FR,P (1/(1 + s), σ). We conclude the existence of a saddle-point of FR,P (·, ·) on (0, 1] ×
SP,W (H). Hence, item (i) is proved.

We postpone the proof of the uniqueness of the optimizer to later and now show item (iii). Given any
R ∈ (R∞, C) and P ∈ PR(X ), one finds

min
σ∈S(H)

sup
0<α≤1

FR,P (α, σ) ∈ (0,+∞). (59)

If α⋆ = 1 and σ⋆ is a saddle point of FR,P (·, ·), by Eq. (10) we deduce that FR,P (1, σ⋆) = 0 for every
possible σ⋆, which contradicts Eq. (59). Hence, α⋆ = 1 is not a saddle point of FR,P (·, σ⋆).

For any saddle-point (α⋆, σ⋆) of FR,P (·, ·), it holds that

FR,P (α⋆, σ⋆) = min
σ∈S(H)

FR,P (α⋆, σ) =
α⋆ − 1

α⋆
R +

1 − α⋆

α⋆
min

σ∈S(H)
Dα⋆(W‖σ|P ). (60)

We claim the minimizer of Eq. (60) must satisfy

σ⋆ =

(∑
x∈X P (x) Wα⋆

x

Tr[Wα⋆
x (σ⋆)1−α⋆ ]

) 1
α⋆

Tr

[(∑
x∈X P (x) Wα⋆

x

Tr[Wα⋆
x (σ⋆)1−α⋆ ]

) 1
α⋆

] =

(∑
x∈X P (x)Wα⋆

x e(1−α⋆)Dα⋆ (Wx‖σ)) 1
α⋆

Tr
[(∑

x∈X P (x)Wα⋆

x e(1−α⋆)Dα⋆(Wx‖σ)
) 1

α⋆

] (61)

for every α⋆ ∈ (0, 1). Our approach closely follows from Hayashi and Tomamichel [33, Lemma 5]. For
two density operators σ, ω ∈ S(H) and a map G : S(H) → L(H)sa (where L(H)sa denotes the self-adjoint
operators on H), define the Fréchet derivative (see e.g. [33, Appendix C], [34]2)

∂ωG(σ) := DG(σ)[ω − σ]. (62)

By letting

gα(σ) :=
∑

x∈X
P (x) log Tr

[
Wα

x σ
1−α
]
, (63)

it follows that

σ⋆ = arg min
σ∈S(H)

Dα (W‖σ|P ) = arg max
σ∈S(H)

gα(σ), ∀α ∈ (0, 1). (64)

Since the map σ 7→ gα(σ) is strictly concave for every α ∈ (0, 1) [31], a sufficient and necessary condition
for σ to be an optimizer of Eq. (64) is ∂ωgα(σ) = 0 for all ω ∈ S(H). Direct calculation shows that

∂ωgα(σ) = Tr

[
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ

1−α]
∂ωσ

1−α.

]
(65)

Next, we check that the fixed-points of the following map achieves the optimum:

σ 7→

(∑
x∈X P (x) Wα

x

Tr[Wα
x σ1−α ]

) 1
α

Tr

[(∑
x∈X P (x) Wα

x

Tr[Wα
x σ1−α]

) 1
α

] . (66)

2We note that the Fréchet derivative of functions involving matrices has other applications in quantum information theory;
see e.g. [35, 36, 37].
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Let

χα(σ) := Tr



(
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ

1−α]

) 1
α


 > 0, ∀α ∈ (0, 1), (67)

and let σ̄ be a fix-point of the map in Eq. (66). Then, by Eqs. (66), (67), we have

χα(σ̄) · σ̄ =

(
∑

x∈X
P (x)

Wα
x

Tr [Wα
x σ̄

1−α]

) 1
α

. (68)

Substituting Eq. (68) into Eq. (65) yields

∂ωgα(σ̄) = Tr
[
χα(σ̄)ασ̄α∂ωσ̄

1−α
]

= Tr
[
χα(σ̄)ασ̄α(1 − α)σ̄−α(ω − σ̄)

]

= (1 − α)χα(σ̄)α Tr [ω − σ̄] = 0.
(69)

By Brouwer’s fixed-point theorem, the map in Eq. (66) is indeed the optimizer for Eq. (64). Further,
from Eq. (61), it is clear that

σ⋆ ≫ Wx, ∀x ∈ supp(P ), (70)

and thus item (iii) is proved.
Lastly, we show the uniqueness of the saddle-point. Since the map σ 7→ Dα(W‖σ|P ) is strictly concave

[31], the minimizer of Eq. (59) is unique for any α ∈ (0, 1). Then, it remains to prove the uniqueness of
the maximizer. Let σ⋆ attain the minimum in Eq. (59). By using the reparameterization again, we have

KR,P (s, σ⋆) = −sR + sD 1
1+s

(W‖σ⋆|P ) (71)

= −sR + s
∑

x∈X
P (x)D 1

1+s
(px‖qx) , (72)

where px, qx are the Nussbaum-Szko la distributions of Wx and σ⋆. The second-order partial derivative
can be calculated as

∂2KR,P (s, σ⋆)

∂s2
= − 1

(1 + s)3

∑

x∈X
P (x) Varq̂ 1

1+s
,x

[
log

qx
px

]
, (73)

where

q̂t,x(ω) :=
px(ω)1−tqx(ω)t∑

ω∈supp(px)∩supp(qx) px(ω)1−tqx(ω)t
, ∀ω ∈ supp(px) ∩ supp(qx), t ∈ [0, 1]. (74)

Now, we assume the right-hand side of Eq. (73) is zero, which is equivalent to

px(ω) = cx · qx(ω), ∀ω ∈ supp(px) ∩ supp(qx) (75)

for some constant cx > 0 and x ∈ supp(P ). From Eq. (70), one finds px ≪ qx. Summing the right-hand
side of Eq. (75) over ω ∈ p0x yields

1 = cx · Tr
[
p0xqx

]
, ∀x ∈ supp(P ). (76)

By combining Eqs. (75) and (76), one can verify

sup
s∈R>0

{
−sR + s

∑

x∈X
P (x)D 1

1+s
(px‖qx)

}
= sup

s∈R>0

{
−sR− s

∑

x∈X
P (x) log Tr

[
p0xqx

]
}

= 0, (77)

where we rely the fact R > R∞(W ) ≥ −∑x∈X P (x) log Tr
[
p0xqx

]
from Eq. (3). However, Eq. (77)

contradicts the assumption P ∈ PR(X ), which in turn implies that the right-hand side of Eq. (73) is
strictly negative. Therefore, the map s → KR,P (s, σ⋆) is strictly concave for all s ∈ R>0 and thus the
maximizer of Eq. (59) is unique. �
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B.2. Proof of Lemma 6. Let x
n(m) be the codeword encoding the message m ∈ {1, . . . , exp{nr}}. We

define a binary hypothesis testing problem as:

H0 : W⊗n
x
n(m); (78)

H1 : σn :=
n⊗

i=1

σi, (79)

where σn ∈ S (H⊗n) can be viewed as a dummy channel output. Since
∑M

m=1 β (Πn,m;σn) = 1 for any
POVM Πn = {Πn,1, . . . ,Πn,exp{nr}}, and β (Πn,m;σ⊗n) ≥ 0 for every m ∈ M, there must exist a message
m ∈ M for any code Cn such that β (Πn,m;σn) ≤ exp{−nr}. Let x

n := x
n (m) be the codeword for that

message m. Then

ǫmax (Cn) ≥ ǫm (Cn) = α
(
Πn,m;W⊗n

x
n

)
≥ α̂exp{−nr}

(
W⊗n

x
n ‖σn

)
. (80)

Since the above inequality (80) holds for every σn ∈ S (H⊗n), it follows that

ǫmax (Cn) ≥ max
σ∈S(H)

α̂exp{−nr}
(
W⊗n

x
n ‖σ⊗n

)
. (81)

�

B.3. Proof of Lemma 7. This lemma closely follows from Altuğ and Wagner’s [11, Lemma 9]. However,
the major difference is that we prove the claim using the expression φn as the error-exponent instead of
the discrimination function: min {D (τ‖ρ) : D (τ‖σ) ≤ Rn}. This expression is crucial to obtaining the
sphere-packing bound in Theorem 1 in the strong form of Gallager’s expression

For convenience, we shorthand r = Rn. From Lemma 5, it can be verified that

E0(s) := −1 + s

n
log Tr

[
(pn)

1
1+s (qn)

s
1+s

]
(82)

= −(1 + s)Λ0,P
x
n

(
s

1 + s

)
, (83)

where Eq. (83) follows from the definition of Λ0,P
x
n in Eq. (21). Then, we rewrite the error-exponent

function φn(r) by the Legendre-Fenchel transform of E0(s), i.e.,

φn (r) = sup
α∈(0,1]

{
α− 1

α

(
r −

∑

x∈X
Px

n(x)Dα (px‖qx)

)}
(84)

= sup
s≥0

{−sr + E0(s)} . (85)

Direct calculation shows that

∂E0(s)

∂s
= −Λ0,P

x
n

(
s

1 + s

)
− 1

1 + s
Λ′
0,P

x
n

(
s

1 + s

)
, (86)

∂2E0(s)

∂s2
= − 1

(1 + s)3
Λ′′
0,P

x
n

(
s

1 + s

)
. (87)

Now assume the second-order derivative Λ′′
0,P

x
n

(t) in right-hand side of Eq. (87) is zero for some t ∈ [0, 1].
This is equivalent to

px(ω) = qx(ω) · e−Λ′
0,x(t), ∀ω ∈ px, ∀x ∈ supp(Px

n). (88)

Summing the right-hand side of Eq. (88) over ω ∈ px gives

1 = Tr
[
p0xqx

]
e−Λ′

0,x(t). (89)
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Then, Eqs. (88) and (89) imply that

φn(r) = sup
0<α≤1

α− 1

α

(
r −

∑

x∈X
Px

n(x)Dα (px‖qx)

)
(90)

= sup
0<α≤1

α− 1

α

(
r +

∑

x∈X
Px

n(x) log Tr
[
p0xqx

]
)

= 0, (91)

where in Eq. (91) we use the fact that r > −∑x∈X Px
n(x) log Tr

[
p0xqx

]
; see Eq. (3). However, from

Lemma 5 we know that φn(r) = Esp(R) > 0, which leads to a contradiction. Hence, we obtain

Λ′′
0,P

x
n
(t) > 0, ∀t ∈ [0, 1], (92)

and prove item (i).
From Eqs. (87) and (92), the objective function −sr + E0(s) in Eq. (85) is strictly concave in s for

s ∈ R+. Further, by recalling that φn(r) = Esp(R) > 0, s = 0 will not be an optimum in Eq. (85). We
deduce that there exists a unique maximizer s⋆ ∈ R>0 such that

r =
∂E0(s)

∂s

∣∣∣∣
s=s⋆

, (93)

φn(r) = E0(s⋆) − s⋆
∂E0(s)

∂s

∣∣∣∣
s=s⋆

, (94)

if r lies in the range:

− 1

n
log Tr

[
(pn)0qn

]
= lim

s→+∞
∂E0(s)

∂s
≤ r ≤ ∂E0(s)

∂s

∣∣∣∣
s=0

=
1

n
D (pn‖qn) , (95)

where the boundary values − 1
n log Tr

[
(pn)0qn

]
and 1

nD (pn‖qn) can be obtained from Eqs. (86), (19) and
(20). Substituting Eq. (93) into (86) gives

r = −Λ0,P
x
n

(
s⋆

1 + s⋆

)
− 1

1 + s⋆
Λ′
0,P

x
n

(
s⋆

1 + s⋆

)
. (96)

Further, Eqs. (85), (83), (96) imply that

φn(r) = −s⋆r + E0(s⋆) (97)

=
s⋆

1 + s⋆
Λ′
0,P

x
n

(
s⋆

1 + s⋆

)
− Λ0,P

x
n

(
s⋆

1 + s⋆

)
. (98)

By comparing Eqs. (96) and (98), we obtain

Λ′
0,P

x
n

(
s⋆

1 + s⋆

)
= φn(r) − r (99)

which is exactly the optimum solution to the Fenchel-Legendre transform Λ∗
0,P

x
n

(z) in Eq. (22) with

t⋆ =
s⋆

1 + s⋆
∈ (0, 1), (100)

z = φn(r) − r. (101)

From Eqs. (22), (99) and (98), we conclude the item (i) of Lemma 7:

Λ∗
0,P

x
n

(φn(r) − r) = t⋆z − Λ0,P
x
n (t⋆) (102)

=
s⋆

1 + s⋆
(φn(r) − r) − Λ0,P

x
n

(
s⋆

1 + s⋆

)
(103)

=
s⋆

1 + s⋆
Λ′
0,P

x
n

(
s⋆

1 + s⋆

)
− Λ0,P

x
n

(
s⋆

1 + s⋆

)
(104)

= φn(r). (105)
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Item (ii) follows from item (i), the symmetry Λ0,xi
(t) = Λ1,xi

(1 − t) and Λ′
0,xi

(t) = −Λ′
1,xi

(1 − t),and

Eq. (22). Λ∗
1,P

x
n

(r − φ(r)) = r.

For the item (iii), the positivity of Λ′′
0,P

x
n

(t), for t ∈ [0, 1], implies that the objective function tz −
Λ0,P

x
n (t) in Eq. (22) is strictly concave in t for t ∈ [0, 1]. Hence, by Eq. (100), the optimizer t⋆ ∈ (0, 1)

exists uniquely. By recalling Eq. (99), we complete the claim in item (iii). �
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