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Abstract. Sufficient conditions for the exponential boundedress of first passage times of au-
toregressive (AR (1)) sequences are derived in this paper. An identity involving the mean of the first
passage time is obtained. Further, this identity is used for finding a logarithmic asymptotic of the
mean of the first passage time of Gaussian AR{1)-sequences from a strip. Accuracy of the asymptotic
approximation is illustrated by Monte Carlo simulations. A corrected approximation is suggested
to improve accuracy of the approximation. An explicit formula is derived for the generating func-
tion of the first passage time for the case of AR(1)-sequences generated by an innovation with the
exponential distribution. The latter formula is used to study an optimal stopping problerm.
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1. Introduction. The AR(1)-sequence is defined as a solution of the equation
(D Xpn=2AXn 1+, n=12.., Xi==z,

where {n,} is a sequence of independent identically distributed random variables
(innovation), and & and X are nonrandom constants.
Set

7, =1inf{n 2 0: X, >a} aud.Ta,b=inf{n§(}: X, >aor X, <b},

where we always assume inf{@} = oc.

For the case A = 1, that is, when X, is a random walk, there are many results
about properties of the distributions of 7, and the overshoot X, — a. One may
find expositions of the corresponding results {obtained mainly with the help of the
Wiener—Hopf factorization technique} in [4], [11], and many other monographs.

The following result about exponential boundedness is known for the stopping
time 7,5 (see {24], [26]): if A =1, then

(2} Pimp=0<l = Tap € Cr,

where Cr denotes the class of nonnegative random variables with a finite exponential
moment:

£eCr & Ee® <oo  forsome o >0

(the Cramér condition).
Note that if A = 0, then, obviously,

(3) PbsmSal<l = 73 € Cr
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420 A, A, NOVIKOV

Some results about the distribution of =, for the case A € (0,1} were obtained
in [14], [15], and [19i. In particular, it was shown in {19} that if

E(n;) <oco forsome 6>0
(where r~ = max{—=, 0)), then for a > 0
(1) P{mfa(l-XN} <l = 7, €Cr
furthermore, under the condition
(5) P(u) :=logEe® <o forall uel0,00),
the following identity holds:
du

1 e x
Epry = —— E,e%¥ma _ gt} g—d(u)
(6) Mog 1 fu (Eze e"le

where ¢(u) = X 5o ¥(A*u) and the symbol of expectation E,() corresponds to the
initial condition Xy = x. : ‘

In this paper we present a series of generalizations of the results of {19; in par-
ticular, for the case |[A| < 1 we present an analogue of the implication (4) for 7,4
(see Theorem 1 in section 2) and also obtain a formula for the expectation 755 (see
Theorem 2 in section 2). As a simple consequence of the latter result we obtain a
lower bound and’a logarithmic asymptotic for Ez(r; _,) as @ — oo for the case of
Gaussian innovation {n,} with zero mean (an upper bound for E;(7,,—.) in the case
under consideration was obtained in [10]).

In section 3 we consider the case when the innovation {,} has the exponential
distribution P{s, > y} = 7%, v > 0, and so assumption {5) does not hold. Here,
solving a corresponding integral equation, we derive explicit formulas for E,(67),
8 € (0,1), and E;(7,) (see Theorem 3; this result was presented without a proof in
the lecture notes [18]). Note that in [12], motivated by some applications in physics,
an explicit formula for Eo(7p) was obtained for the case when the innovation 7, has
the two-sided exponential distribution P{|n,} >y} =1e™¥, y > 0.

Theorem 3 can be used for analysis of some statistical charts used in quality
control when observed random variables have the exponential distribution (see some
details in [2]). Another application of Theorem 3 is presented in section 4, where an
optimal stopping problem is discussed for the case of AR(1)-sequences generated by
the exponentially distributed innovation.

In this paper we mainly use the martingale technique to study the distribution
of first passage times like 7,. The same technique was used for Ornstein—Uhlenbeck
{O-1J) processes (i.e., autoregressive processes with continuous time) in [14], [15], [17],
where some analytical approximations for the distribution of first passage time 7, were
derived. A survey of some results for the continuous time case was presented in [18].
Also, we would like to mention the recent papers [7] and {8] which contain more general
results for AR(1)-sequences and O-U processes for the case when the innovation has
a mixture-exponential distribution.

2. The case |A] <1. The following result contains analogues of {2}, (3),
and (4).

THEOREM 1.

(a) IfIA| £1,b< 0 < q, then

PH1-NEmEal-N} <l = 7, Cr
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(b) If A € (~1,0), @ > 0, and for some 6 > 0

(7) Eim|® < o0,

then -

(8) Plm+impLal-2)} <l == 7, eCr
(e Ifxe{-1,0),a>0, and

(9) Elog (1+ |m]) < oo,

then

(10) P{m+ipSal-23)} <1 = E,n <.

Proof. {a) For the case A € {1, 0] we have for any n > 1

Plrap >n}=P{np>n—1, Xa1 € [b,a], Xu € [b,a], g = X — AXpn—1}
SP{rp>n—1, n. € p1-N), al -]}
=P{rp >n—1}P{B1-N) S n, Sall - N},

where the last inequality holds due to independency Xy and %, for & < n. By
induction,
’ n

P{rap>n} £ [P{B(1—X) S 7 S a1~ N)}]

This implies 7,4 € Cr in view of the assumption P{&(1 — A) S n, Sa(l—A)} < 1.
In the case A € (0,1} we can use (4). Since 7,5 = 74, by (4),

P{m Sa(l-A)} <1 = 7€ Cr
By the same consideration (and due to symmetry in notation) we obtain
P{m 2b{1-X} <1 = 7 €Cr
It remains to note that
PHA-NEmSel-N}<1=PHI-NEm}P{mSel-N}<l

The case A = 1 is described above in (2).
To prove (b) and (c) we note that (1} implies that

(11) Xop = X Xage—1y + Mok + Mpar—1, k=12,....

The sequence {7ax + Ae—1}, & = 1,2,..., is the innovation for Xap, k=1,2,....
Since the first passage time

7, = inf{k 2 0: Xg >a}

is not less than 7,/2, applying (4) for 7, we obtain (8). By the same consideration,
relation (10} holds in view of Theorem 3 of [19]. The proof is complete.

Further, in this section we assume that {A| < 1, A # 0, and the following condition
holds:

(12} Plu) = logEe*™ < oo  forall ué€ (—co,00).
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422 A. A. NOVIKOV

This condition implies, of course, the validity of condition (9).

Set

(13) Q) = —— / °° (64 — e4%) =908) 4 (v _ gmus) =o(-w)) du
[log A%| Jo u’
where
(14) $lu) = Z'x,!)()\ku) = 1h(u) + $(Au), % € (—eo, o).
k=0

THEOREM 2. Let |A| <1, A #0, b <0< @, let condition (12) hold; and let
(15) P{b1-A}Sm}<1l and P{mSa(l-N} <l
Then

E,7pp = E:Q(X,, ,) < 00

Proof. Here we present just a sketch of the proof because it is close to the proof
of Theorem 3 in [19].

At first we show that the process Q(X,,) — n is a martingale with respect to the
natural filiration 7, = o{Xo Xi,..., Xn}. For the case A € (0,1) this fact is imphied
by the relation

U

1 1 * —uX, —uzy —¢(—u) du
+2[|log)\]/n (e e e w

where the processes in the square brackets are martingales (see Proposition 2 and
Theorem 2 in [19]).

For the case A € (—1,0) we note that by using Lemma 1 of [19] one can easily
check that the integral in the definition of Q(y) above is finite under conditions (12)
and (15).

In view of (1), (12), (14}, and by the Fubini theorem

E(Q(Xn)_nlf ml}
_ 1 & A Knab(n) _ uzmy o (u)
B |logA2|fu [t e

_1 1 * uXn uzy —@{u) du
Q(Xn)_ﬂ_g[“OSM/O (e —e")e ——n

_ 1 o [(¥¥Knm1 - umy g b0) L (gmehXnms _ gmhum) d(—hu)] du _
B [log A%] Jg © ) ) w "
0 U

—_ Q(X _1) —n
f [eu T—d(Au) 4 pmudz—@(—du) _ jur—dlu) _ e—'mﬂ—fﬁ(—")] =
o

| log A%| ‘ u
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The last term is equal to 1 since it can be written in the form of the well-known
Frullani integral (see [9, section 12.16]). This leads to the fact that the sequence
Q(X.) —n is a martingale and, hence, by the martingale stopping theorem

Ey7ap = lim E:GQ(Xmin(Talh,n))-
n-—00 X
The final step of the proof consists of a verification of the equality

lim E:BQ(Xmin{'r“,b,n)) = E:I:Q(X'ra,b)

H—o0

and i can be done analogously o a similar step in [19)].
CorOLLARY 1. Let|A| <1, A#£0,a>0,m 4 —m (i.e., by distribution), and

P{p Sa(l- N} <L
Then

16)  Bura—a= o [ (Bacosh(uX h(uz)) e~# 2
(16) m?’a,_a—m A (E; cosh(uX, _,) — cosh(uz)) e —

1 o du
> — —plu) 22
17 2 |log|)\|i,/(; ( cosh{ua) — cosh(uz)) e —

Proof. To verify (16) one needs only to note that ¢(u) = ¢(—u) and then make
simplifications in (13). Inequality {17) is due to the lower bound cosh(uX,, _.) =
cosh{ua).

Consider now the case of the Gaussian innovation n, ~ N(0,£?). For this case
by direct calculations one can easily obtain that

1.L-2€2
2{1 - a2y
The problem of finding an asymptotic expansion for Ey7, o a5 & — 0 for the

case of the Gaussian innovation was studied in {10], where, in particular, it was shown
that for |z <1

$lu) =

1-— )2

(18) limsupe® logEpry 1 S

g—0

{see Theorem 2 in the corrected version of [10] and the abstract of the talk [21]). With
the help of Corollary 1 we now obtain the following result.
COROLLARY 2. Let |N <1, A#0, |z] <1, ; ~ N(0,£%). Then

1— 22
5

(19) lin‘é g2 logE 1=

Proof. By Corollary 1

u?e? du
(20) Em'rl 1 = |1og 1Ai f COShU - COSh(uZ)) exp { —m} ?

1—)\2 Va2
1 ~ (e ] ( -5 ”))

£
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where (e.g., with help of the package Mathematica)

F(w) = f (COSh{’u.’L’) — ]_) e_“2/2 % = / f Sinh(uz) 8_u2/2 dudz
0 Q 0

_ T[T e | 2
\/;]0 & Erf[ﬁ] dz.

Since Erf[z/+/2] — 1 as z — 00, (e.g., with help of the L’Hospital rule}

7 [* 2272 T zZ/2
Flxz) ~ 2/ e 2dz ~ oo as - oo,

The latter relation, together with (20) and (18}, implies (19). Corollary 2 is proved.

Using the self-similarity property of the Gaussian distribution one can easily show
that Ey(ry,—1) for the case e = 1/a is equal to Ege(7q,—q) for the case e = 1.

Tables 1 and 2 contain the results of Monte Carlo simulations for log{Eq(7z,—a))
and the corresponding logarithms of the lower bound (20} for A = 0.75 and 0.9 for
the case of the Gaussian innovation #; ~ N(0,1}.

For comparison we also included logarithms F{{(a+ 0.5826)v'1 — A2)/11log|Al| (we
call this the “corrected approximation” for nga,_a). This approximation is based
on the assumption that when a is large and A is close to 1, the expectation of the
overshoot of AR(1)-sequence X, is close to the well-known constant C = 0.5826...
(this is the limit of the expectation of the overshoot (X, — @) as @ — oo for the
Gaussian random walk 5 7_; m; see, e.g., [23]).

TABLE 1. A= 0.75, (1 — A?)/2 = 0.215.

a 4 5 6 T 8
log{lowbound)/a? 0.257 | 0.234 | 0.22¢ | 0.219 | 0.217
log(corrected appr.}/a? | 0.317 | 0.283 | 0.265 | 0.255 | 0.248
log(simulation)/a® 0.325 | 0.288 | 0.268 | 0.258 | 0.249

TABLE 2. A = 0.9, (1 — A?)/2 = 0.095.

a 4 6 -1 10
log{lowbound)/a® 0.203 | 0.140 | 0.116 | 0.106
log(corrected appr.)/a® | 0.234 | 0.157 | 0.12¢ | 0.116
log(simulation) /a? 0.236 | 0.158 | 0.130 | 0.117

Tables 1 and 2 demonsirate that the “corrected approximation” is a better ap-
proximation for the results of simulation compared with the lower bound and, of
course, much better compared with the limiting value (1 — A2)/2.

3. The case of exponentially distributed innovation. We use here stan-
dard notation of the theory of g-series (see [1]) and, in particular, the g-Pochhammer

symbol

H(1 —pN Y = (3 m, (A =1

=1

Using this notation we have, in particular,

™

(A Mm = [ [ @ = 2.

j=1
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ON FIRST FASSAGE TIMES AND OPTIMAL STOPPING OF AR(1) 425

Set

(22) Np(z}zi&ﬂ—)%{)—;)\—)k, 0<p<l,

k=0

THEOREM 3. LetO<A<1l,z€([0,a,e>0,P{m >yl=e"% y>0. Then
(a) for any p € (0,1)

(23) E,p™ = If,ﬁff/";));

(b) Eyrp = H(a) — H{Ax} +1.
Proof. Set ¢o(x) = Eg(p™) and note that

$o(z) = Po{X) > a} p+ B (I{X) £ a} ),
where by a Markov property of X,,
E:(I{X1 S a}p™) = B [I{X1 £ o} (Ep™ | X1)] = pE: (I{X1 S a}e(X1)).
Hence, ¢,(z) is a solution of the following integral equation: for z < a
$o(z} = pP2{X1 > a} -+ pE (I{X1 £ a} 6,(X1))-

Since Pz{X1 > y} = e**~¥ for y > Az, the latter equation can be written in the
following form: :

(24) e gple) = pe 0 [ Sp(w)evdy,
Az

Differentiating both parts with respect to z for z € (0,e) we obtain

d

— (e7%¢,(2)) = —Aop(Az) e~

(25) -

or, equivalently,
(26) ¢,(z) = Ad,y(z) — Apd, (Ax).

We solve this equation by the power series method setting ¢,(z) = C3 1o ek,
cp = 1, where ' is a positive constant. After substituting this series into (26), we
obtain

> erpr(kr 1)z = aA(l - pA¥) 2.
k=0 k=0

Equating the coeflicients in the left and right sides, we obtain cpyi(k + 1) =
cxA{L — pA¥). This implies ¢, = A*(p; A)/k! and, hence, according to our notation,

¢plz) = CN,(x).
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426 A. A NOVIKOV
To find the constant C, at first we note that in view of (24) with £ = 0 we have
a
(27) C=pe® +pC/ Ny(y) e Vdy.
0

To find f; No(y)e Ydy in an explicit form, note that the function N,(z) is an
analytical functmn for all |z| < oo and satisfies (25}, that is,

%(E"A”Np{:c)) = =g N,(Az)e =
Integrating both parts of this equation on the interval = € (z1,z2} we obtain
Ao
(28) o[ Nofy)eVdy= e N, (@) — e =N, (w2).
Axy

In particular, for 1 = 0 and g = a/A we get pfoa' No(y)e ¥dy = 1 — e ®Ny(a/A).
This and (27) imply C = p/N,(e/\}. Hence, (23) is proved.

In order to prove the second part of Theorern 3, consider the asymptotic expansion
for Ex(p™) as p — 1. Note that (1 — Ex{p™))/{1 — p) — Ey(7,}. On the other hand,
note that (p; A)x/(1 — p) — (A A)k—1 and, hence,

Nofz)=1+{1—p (/\I+Z )\m) AA )+o(1—p).
This implies
LI—Ezp Y af g Ma/kl = o 3o (@))% (o A)x/E!

1-p (1= p) Xpeg a®(p, A/ R!
14+ 3001 (@ (A Ase—a /! — (2A)* (A AJi—1/RY) + (1 — p)
B 1+0(1)

— H{a)— H(Xz) +1 =E;7,.

Theorem 3 is proved.

Remark 1. In {8] Jacobsen obtained closed-form representations for the joint
Laplace transform of 7, and the overshoot X, — ¢ in the case when the innovation -
of AR(1)-sequences has a mixture-exponential distribution. For the particular case
of innovation with exponential distribution, the representation for the joint Laplace
transformation for 7, and the overshoot X, — a obtained in [8] implies two important
facts:

(29) X, —aZm; X, and 7, are independent.

For the case of random walks (i.e., A = 1) these results are known and can be found,
e.g., in [4].

4. An optimal stopping problem for AR(1)-sequences. Here we consider
the problem of finding the value function

Vaml(z) = sup Eq {p""g(X.,.) Hr < Oo}]’
TEM

where g € (0,1), g{z) is a nonnegative reward function, M is a class of stopping
‘times with respect to the natural filtration F, = o{Xg X1,...,Xs}, and X, is an
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AR(1)-sequence. Typically, M stands for M, that is, the class of all stopping times
or for the class

Mp={reM: r <T}

The exposition of the general theory of optimal stopping problerns with a number
of examples is presented in [6]; see also [22], {5], [20]. In particular, it is known
that Voz(x) is a solution of the Wald—Bellman equation which for the case under
consideration has the following form:

(30) Vigi(z) = max {g(z), pE.Vigr(Az +m) }.

" Further we consider the case of innovations {n,} with P{m >y} =e ¥, ¢y > 0.
By Fatou's lemma,

g(Xmin(T 'r))
Vig(z) £ sup supE —
M e a0 Np(Xmintre, 7))

sup sup Ez [pmin(’rm’f)Np (Xmin('rn,'r)” A,
7€M ax>0

pmin('rn.y'r) Np (Xmin(‘l'a:'r))

A

where A = sup,.o(g(y)/Np(y)). Note that seiting 21 = =, 23 = co in (28) and
omitting the last term, we obtain the following inequality:

(4]
o f N,(y)e~Vdy < e N, (z),
Az

which is equivalent to the inequality pE,N,(X1) £ Ny(z). The latter implies, ob-
viously, the supermartingale property of the process p"N,(X5) and, thus, for any
stopping time v € M

Eq [p™ D N, (Xin(re,r)] S Np(@)-
Using the inequalities (p; Moo exp{iy} = No(y) S exp{Ay} (these inequalities are
easily derived from {22)), one can see now that the constant A is finite when the

reward function g{x) is continuous and satisfies the condition

(31) lim sup g(z) exp{--Az} < cc.

To obtain a lower bound for Viz(x), note
(32} Vﬁ(m) Z Slilu) E; [ang(X'ra)]a .
a

where, by using Theorem 3 and Remark 1 (see (29)), we have

: . e B Eg(a+m)

(3) B (079 (X0 )] = Bap™Bag(Xy,) = pNy(w) < o™

Since Vozr{z) 2 g(x), now (32) and (33) imply the following lower bound:
B Egla +mn:)

B Vi) 2 6) = max{a(e), o) sep )

The latter result motivates the conjecture that the optimal stopping time in the
class M (maybe under some additional limitations on g{z)) is the first passage time
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over the level a* which is a maximum point of the function B(a) = Eg{a+m)/N,(a/)).
One of the possible ways to verify this conjecture consists of showing that the func-
tion G{x) from the lower bound (34) is a unique solution (in a proper class of func-
tions} of the Wald-Bellman equation (30). Another way consisis of verifying that
the lower bound (34) is alsc the upper bound for the value function (this approach
is used, e.g., in [20] for random walks). Note that some results about the optimality
of threshold-type stopping times in the class M are known, for example, for general-
ized Ornstein-Uhlenbeck processes without positive jumps; see [3] (where the results
of [13] and [16] were used).
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