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Abstract

The market maker plays an important role in price formation, but his/her behav-

ior and stabilizing impact on the market are relatively unclear, in particular in

speculative markets. This paper develops a financial market model that examines

the impact on market stability of the market maker, who acts as both a liquidity

provider and an active investor in a market consisting of two types of boundedly ra-

tional speculative investors—the fundamentalists and trend followers. We show that

the market maker does not necessarily stabilize the market when he/she actively

manages the inventory to maximize profits, and that rather the market maker’s im-

pact depends on the behavior of the speculators. Numerical simulations show that

the model is able to generate outcomes for asset returns and market inventories that

are consistent with empirical findings.
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1 Introduction

Models of the financial market require some process for the determination of the

market price. The two most frequently used mechanisms are the Walrasian auctioneer,

widely used in economic theory but which as O’Hara (1995) points out is used in only

one market (the market for silver in London), and the market maker mechanism, which

is close in spirit to the specialist system used in a number of financial markets.

A market maker can act as a liquidity provider, carrying some inventory in order to

accommodate transitory order imbalance, thereby stabilizing markets, as discussed for

instance by Wyss (2001). The market maker can also act as an active investor seeking to

maximize profits by actively managing his/her inventory. These two different roles of the

market maker may often not to be consistent with each other in general. However through

the analysis of a rigorous dynamic model with an optimizing market maker, Bradfield

(1979) shows that the existence of a target level of inventory that makes the two roles

of the market maker consistent with each other. By considering a dynamic model of the

market maker incorporating not only inventory but also information effects, Madhavan

and Smidt (1993) find that the optimal quotes of the market maker induce mean reversion

of his/her inventory towards the target determined by portfolio optimization. The speed

of the mean reversion can be different across different markets; it is slow for the New York

Stock Exchange (see Madhavan and Smidt (1993)) but relatively fast for the London Stock

Exchange (see Hansch, Naik and Viswanathan (1998)).

The market maker inventory can have different impacts on the market price. Empir-

ically, Snell and Tonks (1998) find strong evidence of inventory control effects on price

quote revisions on the London Stock Exchange. Madhavan and Sofianos (1998), in a study

based on specialist data covering a period of less than two years, find evidence that market

makers control their inventories through selectively timing the size and direction of their

trades rather than by adjusting their quotes. Recently, using 11 years of New York Stock

Exchange specialist data, Hendershott and Seasholes (2007) examine daily inventory and

asset price dynamics and find some stylized evidence on inventories, including that the

inventories of market makers are negatively correlated with contemporaneous returns and

past returns but positively related to subsequent returns.

In general, as indicated in Madhavan and Sofianos (1998), “although specialists play

an important role in price formation, we still know relatively little about their behavior

and its consequences”. Also, in the market inventory literature, much of the attention
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has been focused on the behaviour of the market maker while the behaviour of the other

market participants, called “outside customers” by Grossman and Miller (1988), is usually

ignored. However, if these are modelled as boundedly rational economic agents, as we

do here, then from the recent literature (cited below), we know that the behavior of the

outside customers can have a significant impact on the market.

Recent developments in the heterogeneous agent model literature have received much

attention as they provide a wide range of explanations of many types of market behaviour

and replicate many stylized facts in financial markets that traditional finance has difficulty

in explaining. The contributions to this literature are usually either theoretically oriented

(as, for example, in Day and Huang (1990), Kirman (1991), Chiarella (1992), Lux (1995),

Brock and Hommes (1997, 1998) and Chiarella and He (2001, 2002, 2003)) or computa-

tionally oriented (as, for example, in Chen and Yeh (2001, 2002), LeBaron (2001, 2002)).

We refer the reader to LeBaron (2006), Hommes (2006), Westerhoff (2008), Lux (2009)

and Chiarella, Dieci and He (2009) for recent surveys of the developments in this liter-

ature. In addition, using tools from statistical physics, recent literature in econophysics

has made significant contribution to replicating various stylized facts concerning power-

law behaviour observed in financial markets, see, for example, Iori (2002), Farmer and

Joshi(2002), Cont and Bouchaud (2000), Mantegna and Stanley (2000) and Lux (2009).

Many, though not all, of these models use market maker mechanism to derive the

market clearing price and the focus has been mainly on the market clearing role of the

market maker. There are few papers in the heterogeneous agent literature examining the

impact of investors’ positions or the market maker inventories on the market price. Sethi

(1996) and Franke and Asada (2008) incorporate the traders’ inventory accumulation and

cash flow into a Beja and Goldman (1980) framework. Gu (1995) and Day (1997) consider

the boundedness of the price adjustment process and the cost of carrying inventories of

the market maker. However this literature does not explicitly model the role of the market

maker as an active investor. The only exception is the study of Westerhoff (2003) who

examines the inventory management of market makers in a heterogeneous foreign exchange

market. Through numerical simulations, he shows that certain types of inventory control

from the market makers may amplify trading volume and market volatility, and lead to

market instability.

This paper is largely motivated by the above literature. The difference between this

paper and the current heterogeneous agent model literature is that we model explicitly the

role of the market maker as an active investor suggested by the empirical studies of market
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maker inventory. We differ from the traditional market maker inventory literature by

incorporating the behaviour of the “outside customers” into the formation of asset prices.

We develop a financial market model that examines the impact of a market maker who

acts as both a liquidity provider and an active investor on a market consisting of two types

of boundedly rational speculative investors, fundamentalists and trend followers. We show

that the market maker does not necessarily stabilize the market when actively managing

his/her inventory to maximize profit. Different from the traditional inventory literature,

the two roles of the market maker can be inconsistent. Depending on the behavior of the

fundamentalists and trend followers, the market maker may in fact destabilize the market

by actively managing his/her inventory. This paper contributes to an understanding of

the stabilizing role of the market maker, which is crucial to practical issues concerning

the nature and regulation of financial market design.

The rest of this paper is set out as follows. Section 2 outlines a market maker inventory

and boundedly rational heterogeneous agent model. Section 3 analyzes the complicated

market behavior in the corresponding deterministic “skeleton” of the model and examines

the stabilizing and profit maximizing roles of the market maker. Section 4 provides a

statistical analysis of the output of the stochastic version of the model and compares the

results to some of the observed empirical facts. Section 5 concludes with some discussion.

2 The Model

In this section, we present a heterogeneous agent model of asset price and market

maker inventory with a market maker who acts as both a dealer and an active investor.

As a dealer, the market maker provides liquidity and carries some inventory in order to

accommodate transitory order imbalances, thereby stabilizing markets, see Wyss (2001).

As an active investor, the market maker seeks to maintain a long-term target inventory

position resulting from his/her optimal portfolio decision to maximize utility or profit

(see Bradfield (1979), Madhavan and Smidt (1993) and Hansch, Naik and Viswanathan

(1998)). The market price is determined by the market maker in the way described below.

The Market—Consider a market with two assets, one risk-free and one risky (such

as stock), a market maker and a number of outside customers, so called by Grossman and

Miller (1988), consisting of H types of N (N ≥ H) investors with different expectations

on the future payoffs of the risky asset. Let the gross return of the risk-free asset be
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R = 1+r, where r is the risk-free rate per trading period. Let Pt and Dt be the price and

dividend of the risky asset in trading period t defined as [t, t+ 1). The dividend process

Dt is assumed to be an i.i.d. stochastic process with mean D, and all investors have an

unbiased estimate of Dt.

Portfolio Optimization and Market Aggregation—Our framework is that of a

repeatedly optimizing one-period dynamical model. Following the standard decision mak-

ing under uncertainty theory, we assume that all investors choose their optimal portfolio

of the risk free and risky assets so as to maximize their expected utility. More precisely,

let zs denote the total supply of the risky asset in quantity terms, which is assumed to

be fixed. Let Rt+1 = Pt+1 + Dt+1 − RPt be the excess return of the risky asset over the

trading period t + 1. Let zh,t be the number of shares held by a typical investor-h in

trading period t, based on the current market price Pt and historical prices, and Wh,t be

his/her wealth in trading period t. Given the market price Pt and the wealth Wh,t of

a typical investor h in trading period t, the portfolio wealth for the typical investor in

trading period t+ 1 is given by

Wh,t+1 = R(Wh,t − Ptzh,t) + (Pt+1 +Dt+1)zh,t = RWh,t +Rt+1zh,t. (2.1)

Let Eh,t(Xt+1) and Vh,t(Xt+1) be the beliefs or forecasts of type h investors about the

conditional expectation and conditional variance of quantity X over the trading period

t+1, based upon their information up to trading period t. Then it follows from (2.1) that

Eh,t(Wh,t+1) = RWh,t + Eh,t(Rt+1)zh,t and Vh,t(Wh,t+1) = Vh,t(Rt+1)(zh,t)
2. For traders

of type h, assume that their utility functions are given by Uh(W ) = −e−ahW with a

constant absolute risk aversion coefficient ah. Assume that Rt+1 is conditionally normally

distributed based on the information up to time t. By maximizing their expected utility

of wealth in trading period t+ 1, the optimal holding for the risky asset, denoted z∗h,t, of

type h investors in trading period t is determined as

z∗h,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (2.2)

Therefore, the aggregate holding (or demand) of the risky asset from the H types of

investors over the trading period t is given by

z∗t :=
H∑

h=1

nhz
∗

h,t =
H∑

h=1

nh

Eh,t(Rt+1)

ahVh,t(Rt+1)
, (2.3)
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where nh denotes the number of type-h investors over all trading periods and hence
∑H

h=1 nh = N .

Market Maker—The market maker is assumed to act as both a dealer and an active

investor. As an active investor, the empirical evidence suggests that the market maker

manages his/her portfolio so as to maintain a long-term target inventory position Id in

the risky asset which is consistent with his/her portfolio objective. More precisely, let It

be the inventory of the market maker in trading period t. Following Madhavan and Smidt

(1993), the desired inventory position of the market maker at the beginning of trading

period t+1, Id
t+1, is assumed to be a weighted average of the current inventory in trading

period t and the long-run desired inventory level Id, so that

Id
t+1 = It + α(Id − It), α ∈ [0, 1], (2.4)

where the coefficient α measures the speed of inventory adjustment of the market maker,

which may be related to the risk aversion of the market maker (see Bradfield (1979)).

When α = 0, Id
t+1 = It, meaning that the market maker does not adjust his/her position

actively to the target inventory level and hence the role of the market maker as an active

investor disappears. When α = 1, Id
t+1 = Id, implying that the market maker would like

to adjust immediately to his/her target inventory in the next trading period. The mean-

reverting process of the inventory documented in the inventory empirical literature is in

general characterized by α ∈ (0, 1). That is, the market maker wants to adjust his/her

current inventory position in trading period t to the target level for trading period t+ 1

in a smooth fashion. In this way, when It < Id(It > Id), the market maker smoothly

increases (decreases) the current inventory position towards the target inventory.

On the other hand, as a dealer, the market maker has an obligation to provide liquidity

and to stabilize the market by charging commissions. More precisely, the market maker

inventory It+1 of the risky asset at the beginning of trading period t+ 1 is given by

It+1 = zs − z∗t , (2.5)

where z∗t is the aggregate optimal demand of all H types of investors in trading period

t. That is, (2.5) states that the inventory of the market maker in period t + 1 is equal

to the total supply of the risky asset minus the investors optimal holding of the asset.

Taking into account the desired inventory Id
t+1 of the market maker as an active investor,
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the market excess demand for the risky asset in trading period t+ 1 can be written as

Id
t+1 − It+1 = z∗t − (zs − Id

t+1), (2.6)

where zs − Id
t+1 is the desired supply of the market maker to the outside investors. In

trading period t + 1, the market maker clears the market by taking an opposite long

(short) position when Id
t+1 − It+1 < 0 (> 0). In this paper we assume that the market

maker is able to take whatever position is required to clear the market and hence short

selling is permitted.

Under the market maker scenario, the market maker sets the market price of the risky

asset according to the market excess demand. In trading period t, the market maker

announces the price of the stock Pt based on information of the previous trading period

t− 1. For the outside investors, based on the information available up to trading period

t and their heterogeneous beliefs about the price Pt+1 and dividend Dt+1, their aggregate

optimal demand z∗t for trading period t is determined by equation (2.3). In order to reach

their optimal holding for the current trading period t, the outside investors submit market

orders1 in the current trading period, and hence buy or sell the shares of the stock at price

Pt. The market maker then takes the opposite position to clear the market at the same

price Pt. As an active investor, the desired inventory Id
t+1 of the market maker for the

trading period t+1 is given by equation (2.4). By taking into account the fixed supply zs,

the excess demand of the risky asset in the market is given by equation (2.6). If the excess

demand z∗t − (zs − Id
t+1) is positive (negative), the market maker increases (decreases) the

market price from Pt to Pt+1 in trading period t + 1. The outside traders adjust their

holdings to their optimal demands in trading period t + 1 by submitting market orders

at price Pt+1 and the market maker takes an off setting position to clear the market at

the same price Pt+1. The market then moves to the next trading period t+ 2 and so on.

Figure 1 displays a time line that lays out the sequence of actions in the market, where

MM indicates an action by the market maker and O an action by the outside agents.

In order to avoid negative prices, we adopt the rule of relative price adjustment used

by Zheng (2007). Such a rule posits that the market maker adjusts the price so that the

return is an increasing function of the market excess demand, and the function is zero

when the excess demand is zero and bounded when the excess demand becomes infinite.

A typical example would be

Pt+1 = Pt

[
1 + ρ tanh

(
µ[z∗t − (zs − Id

t+1)]
)]
, (2.7)

1Note that here we consider a simple model that ignores limit orders.
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where µ > 0 determines the magnitude of sensitivity of the market maker to the excess

demand and ρ ∈ (0, 1] determines the upper and lower bounds of the adjustment when

the excess demand is large.

t t+ 1 t+ 2

trading period t︷ ︸︸ ︷
trading period (t+ 1)

︷ ︸︸ ︷

Id
t

(MM)
It

(MM)
Pt

(MM)
z∗t
(O)

Id
t+1

(MM)

Id
t+1 = It + α(Id − It)

It+1
(MM)

It+1 = zs − z∗t

Pt+1
(MM)

Pt+1 = Pt

[
1 + ρtanh

(
µ(Id

t+1 − It+1)
)]

z∗t+1
(O)

Figure 1: The sequencing of events in the market. Here MM indicates an action by the

market maker and O an action by the outside agents.

Rational Fundamental Equilibrium Price—In order to obtain a benchmark fun-

damental price, we first consider the case when all investors are homogeneous and have ra-

tional expectation. Following the framework of Brock and Hommes (1997, 1998), we thus

assume Eh,t(Rt+1) = Et(Rt+1), Vh,t(Rt+1) = Vt(Rt+1) = σ2, and ah = a for h = 1, · · · , H .

Thus the total demand of outside investors in the trading period t is given by

z∗t = N
Et(Rt+1)

aVt(Rt+1)
= N

Et(Pt+1) +D − RPt

aσ2
.

In a rational expectation equilibrium, the long-run fundamental equilibrium price P ∗

t of

the risky asset is determined when the demand equals the supply, so that

N
Et(P

∗

t+1) +D − RP ∗

t

aσ2
+ Id = zs,

leading to

P ∗

t =
1

R
[Et(P

∗

t+1) +D − s],
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where s = aσ2(zs − Id)/N . Then, under the assumption of the ‘no bubble’ condition

lim
k→∞

Et(P ∗

t+k
)

Rk = 0, the fundamental price is given by

P ∗

t = P ∗ =
D − s

r
. (2.8)

A Market Fraction Model—To model the impact of the outside customers in the

market, we follow He and Li (2007, 2008) and consider the simplest market fraction

heterogeneous agent model with two types of beliefs—these of the fundamentalists and

trend followers, which is a simple version of the adaptive heterogeneous agent model

introduced in Brock and Hommes (1998). As in Brock and Hommes (1998) and Hommes,

Huang and Wang (2005), we assume that a1 = a2 = a and V1,t(Rt+1) = V2,t(Rt+1) = σ2,

but that fundamentalists and trend followers have different beliefs in the first moment of

excess return Rt+1.

Fundamentalists—Following He and Li (2008), we assume that fundamentalists have

superior information on the fundamental value, P ∗

t , of the risky asset. They believe that

the stock price may be driven away from the fundamental value in the short-run, but will

eventually converge back to the fundamental value in the long-run. This fundamental price

may reflect not only the future dividends but also other information such as earnings and

P/E ratio. In this paper, we assume that the fundamental price follows a random walk

process starting at the constant fundamental price P ∗, so that

P ∗

t+1 = P ∗

t [1 + ǫ̃t+1], ǫ̃t ∼ N (0, σ2
ǫ ), σǫ ≥ 0, P ∗

0 = P ∗ =
D − s

r
> 0, (2.9)

where ǫ̃t is i.i.d. normal random variable with zero mean and a constant variance σ2
ǫ . This

specification ensures that high kurtosis, fat tails and power-law behaviour in asset returns

are not brought about by the exogenous news arrival process reflected in the fundamental

value. Hence the emergence of any correlation pattern of the asset return and market

maker inventory and the autocorrelation patterns in the inventories, returns, absolute

and squared returns discussed in Section 4 would be driven by the trading process itself,

rather than the process for the fundamental value. We assume that the fundamentalists

calculate the conditional mean of the future price according to

E1,t(Pt+1) = Pt + k′(Et(P
∗

t+1) − Pt) = Pt + k′(P ∗

t − Pt), (2.10)
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where the parameter k′ ∈ [0, 1] is the speed of price adjustment of the fundamentalists to-

wards the fundamental value, which also measures the fundamentalists level of confidence

in the fundamental value. In particular, for k′ = 1, the fundamentalists are fully confident

about the fundamental value and adjust their expected price next period instantaneously

to the expected fundamental value. For k′ = 0, the fundamentalists become naive traders.

Accordingly, the optimal demand of the fundamentalists for the risky asset is given by

z∗1,t =
E1,t(Rt+1)

aV1,t(Rt+1)
=
E1,t(Pt+1 − Pt) +D − rPt

aV1,t(Rt+1)
=
k′(P ∗

t − Pt) +D − rPt

aσ2
. (2.11)

Trend Followers—Unlike the fundamentalists, trend followers are technical traders

who believe that the future price change can be predicted from various patterns or trends

generated from past prices. We also assume that the trend followers expect that the price

trend will continue when the deviation of the current market price from the latest price

is small but become more cautious the further the deviation goes beyond some threshold

value. The expectation of the trend followers is based on the same idea as in Chiarella,

Dieci and Gardini (2002), but the idea of cautiousness is similar to that used by Westerhoff

(2004) and Zheng (2007), however here it is applied in a different way. More precisely the

conditionally expected price change of the trend followers is assumed to evolve over time

based on the past price change by

E2,t(Pt+1 − Pt) = a′(Pt − Pt−1)e
−c(Pt−Pt−1)2+b(Pt−Pt−1), (2.12)

where parameter a′ > 0 denotes the intensity of extrapolation of the trend followers, the

parameter b ∈ R captures the asymmetry of beliefs about the condition of the market

(b > 0 for a bull market and b < 0 for a bear market), and the parameter c > 0 indicates

the intensity of asymmetric reaction of the trend followers’ extrapolation on the past price

change. The expression (2.12) indicates that if Pt − Pt−1 > 0 the trend followers expect

an increase in price if the past price change Pt − Pt−1 is smaller than some threshold

value (calculated below), but beyond it they believe that they are in a price bubble that

will soon burst and so expect lower future price trends. A similar argument applies when

Pt − Pt−1 < 0. Of course, they react symmetrically to the price changes if b = 0.

Let y(x) = axe−cx2+bx with x = Pt − Pt−1 and y denoting E2,t(Pt+1 − Pt), then the

threshold values are given by x∗
±

= [b ±
√
b2 + 8c]/(4c) and ymax = y(x∗+), ymin = y(x∗

−
).

For a′ = 1, b = −1, c = 2, the function y(x) is plotted in Fig. 2. In this case, x∗+ =

0.39, x∗
−

= −0.64 and ymax = 0.1948, ymin = −0.535. In this example, |x∗
−
| > |x∗+|,
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the trend followers are more bearish than bullish and they become cautious only when

negative price changes are larger than positive price changes.

Thus using (2.12) the optimal demand for the trend followers on the risky asset in

trading period t is given by

z∗2,t =
E2,t(Rt+1)

aV2,t(Rt+1)
=
E2,t(Pt+1 − Pt) +D − rPt

aV2,t(Rt+1)

=
a′(Pt − Pt−1)e

−c(Pt−Pt−1)2+b(Pt−Pt−1) +D − rPt

aσ2
. (2.13)

x

y

x
+

x
−

y
max

y
min

→

↑

 O

Figure 2: The expectation function y = xe−2x2
−x of the trend followers. In the example

illustrated here the trend followers are more bearish than bullish. Note that x = Pt−Pt−1

and y = E2,t(Pt+1 − Pt).

Noise Traders—In addition, in order to capture unexpected market news or other

noise traders in the market, we introduce a noisy demand term δ̃t which is an i.i.d.

normally distributed random variable with δ̃t ∼ N (0, σ2
δ).

The Price and Inventory Dynamics—Hence based on (2.5), the aggregate demand

of outside traders in trading period t and the market maker inventory at the beginning

of trading period t+ 1 are given by

z∗t = n1z
∗

1,t + n2z
∗

2,t + δ̃t+1, (2.14)

It+1 = zs − z∗t = zs − n1z
∗

1,t − n2z
∗

2,t − δ̃t+1. (2.15)
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Substituting (2.2), (2.4) and (2.14) into (2.7), we find that the price and the inventory dy-

namics under a market maker scenario are determined by the random discrete dynamical

system






Pt+1 = Pt

[
1 + ρ tanh

(
µ(n1z

∗

1,t + n2z
∗

2,t + It + α(Id − It) − zs + δ̃t+1)
)]
,

It+1 = zs − n1z
∗

1,t − n2z
∗

2,t − δ̃t+1,

P ∗

t+1 = P ∗

t (1 + ǫ̃t+1),

(2.16)

where z∗1,t and z∗2,t are defined by (2.11) and (2.13), respectively.

In the following sections we undertake theoretical analysis and numerical simulations of

the model (2.16). For convenience of analysis and notation, we let n1 := n1

N
, n2 := n2

N
, It :=

It

N
, Id := Id

N
, zs := zs

N
, δ̃t+1 =

eδt+1

N
, µ := µN . Thus n1 + n2 = 1 and P ∗ = D−aσ2(zs−Id)

r
. In

order to understand the impact of the market maker on market stability, in Section 3, we

first analyze the dynamics of the deterministic version of the model (2.16) by assuming

σδ = σǫ = 0, and hence the fundamental price is constant. Using numerical simulation,

we also analyze in Section 3 the impact of the two noise processes on the deterministic

dynamics and the deviation of the market price from the fundamental price. In particular,

we examine the roles of the market maker in stabilizing the market and maximizing profit.

3 The Stabilizing Role of the Market Maker

In order to obtain some theoretical understanding of the stochastic model, we first

examine the underlying deterministic model. By assuming σδ = σǫ = 0, we have P ∗

t = P ∗,

δ̃t = 0, then the stochastic model (2.16) becomes the deterministic model





Pt+1 = Pt

[
1 + ρ tanh

(
µ
(
n1z

∗

1,t + n2z
∗

2,t + It + α(Id − It) − zs

))]
,

It+1 = zs − n1z
∗

1,t − n2z
∗

2,t,
(3.1)

where z∗1,t and z∗2,t are defined by (2.11) and (2.13), respectively. Let a = µρP ∗a′n2

aσ2 and

k = µρP ∗(k′n1+r)
aσ2 , which are respectively the extrapolation rate of the trend followers and

the speed of mean reversion of the fundamentalists, adjusted by population proportion,

variance, risk aversion and the market maker’s speed of price adjustment. Our main

results can be stated as follows.

Proposition 1 For 0 < α < 1, the model (3.1) has a fundamental equilibrium steady

state (P̄1, Ī1) = (P ∗, Id) and a non-fundamental equilibrium (P̄2, Ī2) = (0, zs − k′n1P ∗+D
aσ2 ).
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The non-fundamental equilibrium is always unstable, while the fundamental equilibrium

(P̄1, Ī1) is locally asymptotically stable if the parameters (α, a, k) lie inside the region D,

where

D(α, a, k) = {(α, a, k) : 0 < a ≤ 1, 0 < k < 2
2−α

+ 2a;

or 1 < a < 1
1−α

, 0 < k < min{ 2
2−α

+ 2a, a−1−α(1−α)a2

(1−α)(1−a)
}}.

In addition,

• for 0 < a ≤ 1, the fundamental equilibrium becomes unstable through the flip bifur-

cation boundary defined by k = 2
2−α

+ 2a;

• for 1 < a < 1
1−α

, the fundamental equilibrium becomes unstable through either the

flip bifurcation boundary defined by k = 2
2−α

+2a or the Neimark-Sacker bifurcation

boundary defined by k = a−1−α(1−α)a2

(1−α)(1−a)
.

Proposition 1 gives the explicit conditions for the local stability of the fundamental

equilibrium and the induced bifurcation in terms of the three key parameters α, a and k,

which characterise the activities of the market maker, the trend follows and the funda-

mentalists, respectively.2 The proof of the proposition and a more systematic theoretical

analysis of the different roles of various parameters and the complexity of the dynam-

ics due to different types of bifurcations can be found in Chiarella, He, Wang and Zhu

(2008). The parameter α corresponds to the speed of mean-reversion of the inventory to

the target long-term inventory level, measuring the activity of the market maker as an

active investor. It is determined by the portfolio decision of the market maker in general.

As a dealer, the market maker is expected to provide liquidity to the market and hence

to stabilize the market. In the following discussion, we first focus on the stabilizing role

of the market maker who acts as an active investor, that is the stabilizing effect of the

parameter α. We will see that, depending on the activity of the fundamentalists and

2The parameters µ and ρ play the following roles. Since a and k are both monotone increasing functions

of µ and ρ, Proposition 1 implies that for given α, (a, k) cross the flip or Neimark-Sacker boundary and

move in to the unstable region as µ or ρ increases. That is, the fundamental equilibrium (P ∗, Id) becomes

unstable through the flip or the Neimark-Sacker bifurcation as µ or ρ increases. These results are also

consistent with those on the speed of price adjustments of the market maker in the previous literature

(see for example, Chiarella and He (2003)) and the motivation of setting the limit of price change (hope

to stabilize the market).
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P ∗ ρ µ n1 n2 zs Id r D̄ aσ2 b c

10 0.1 2 0.5 0.5 1 0.1 0.0002 0.902 1 -1 0.1

Table 1: The common set of parameter values used in the numerical analysis.

trend followers, an increase of α can destabilize the market, pushing the market price

away from the fundamental price and generating excess volatility.

In order to see the impact of the speed of the inventory adjustment of the market

maker α on the stability of the fundamental equilibrium, we use the results of Proposition

1 to plot in Fig. 3 cross-sectional diagrams of the local stability regions D in (α, k)

parameter space for three different values of a.
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Figure 3: The local stability regions (shaded) and bifurcation boundaries in (α, k) param-

eter space with different values of a: (a) a = 0.5, instability occurs via a flip bifurcation,

(b) a = 1.13, instability occurs via Neimark-Sacker bifurcations, and (c) a = 1.7, the

Neimark-Sacker bifurcation boundary diminishes and the stability region disappears.
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Figure 4: The bifurcation diagram of the market price Pt with respect to parameter α,

here ā = 1.13, k̄ = 1.5.

The Stabilizing Role of the Market Maker—Fig. 3 shows different stability

regions with respect to α, depending upon the relative strength of the reaction of the

14



fundamentalists and trend followers. For fixed ā = 0.5, Fig. 3 (a) demonstrates the

stabilizing role of the market maker by showing how the stability region of k̄ becomes

larger as α increases. As ā increases to 1.13, Fig. 3 (b) shows that the stabilizing role of

the market maker is effective only when α is neither too low nor too high. This implies

that, when the trend followers are relatively more active, the market maker destabilizes

the market when his/her speed of mean-reversion to the target inventory is either too

slow or too fast. This is verified by the bifurcation diagram with respect to the parameter

α in Fig. 43. When the trend followers become even more active, Fig. 3 (c) shows that

the market becomes unstable almost independently of α.

α 0.1 0.3 0.5 0.7 0.9

(a, k) = (0.5, 2.5) 0.4247 0.3085 0.2148 0 0

(a, k) = (1.13, 1.5) 0.2007 0 0 0 0.1452

Table 2: Deviations of the market prices from the fundamental price SDPP ∗ of the de-

terministic model in the two cases (a, k) = (0.5, 2.5) and (1.13, 1.5) for five values of

α.

In order to provide a quantitative description on the effects of the market maker on

the market stability, in Table 2, we show the standard deviations of the market prices

from the fundamental prices SDPP ∗ over the time period4 T for changing α in the two

cases of (ā, k̄) for the deterministic model, where SDPP ∗ is defined by

SDPP ∗ =

√√√√ 1

T

T∑

t=1

(Pt − P ∗
t )2.

For the first case (ā, k̄) = (0.5, 2.5), it reflects the fact that the trend followers are less

active and the fundamentalists are relatively more active. For the deterministic model,

from Table 2, we see that the deviation of the market prices from the fundamental prices

SDPP ∗ diminishes as α increases. This result is consistent with the stabilizing role as

α increases illustrated in Fig. 3 (a). In the second case (ā, k̄) = (1.13, 1.5), the trend

followers become more active but the fundamentalists are relatively less active. In this

3All the numerical results except for those on profits in this section are based on the common set of

parameters in Table 1.
4Given that we are mainly concerned about the long run asymptotic properties, we take T = 10, 000

by dropping the first 1,000 of 11,000 observations in our statistical analysis of market stability and the

profit of the market maker.
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case, from Table 2, we see that either large or small α leads to instability of the market,

which is consistent with Fig. 3 (b) and Fig. 4.
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(d) SDPP∗ (σǫ, σδ) = (0.01, 0.005)

Figure 5: Mean and standard deviation of the Pt − P ∗

t : (a)-(b) deterministic model and

(c)-(d) stochastic model with (a, k) = (0.5, 2.5).

The stabilizing role of the market maker on the market price in both the deterministic

and stochastic models is further illustrated in Figs 5 and 6 for two sets of values of (a, k)

with α ∈ (0, 1). The deviation of the market price from the fundamental price is measured

at both mean and standard deviation levels. In the first case when (a, k) = (0.5, 2.5), for

the deterministic model, the market becomes unstable as α decreases, demonstrated by

large mean and standard deviation levels as α decreases in Figs 5 (a) and (b). For

the corresponding stochastic model, Figs 5 (c) and (d) demonstrate a similar feature.

This indicates that, when the trend followers are less active and the fundamentalists are

relatively more active, an increase in α stabilizes the market price to the fundamental

price, indicating the stabilizing role of the market maker as he/she becomes more active.

However, the stabilizing role of the market maker does not hold in the second case of
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(a, k) = (1.13, 1.5) when the trend followers become more active and the fundamentalists

are relatively less active, as illustrated in Fig. 6. In this case, for the deterministic model,

the market price is stable only when the value of α is away from 0 and 1, see Figs 6 (a)

and (b). The similar feature displays for the corresponding stochastic model.
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Figure 6: Mean of Pt − P ∗

t and standard deviation SDPP ∗: (a)-(b) deterministic model

and (c)-(d) stochastic model with (a, k) = (1.13, 1.5).

The above analysis demonstrates that the stabilizing role of the market maker is

rather subtle and depends on the activities of the outside customers. However, when

the market becomes unstable, there is a common feature shared in both cases. It is the

negative deviation of the market price from the fundamental price, demonstrated by the

negative mean values in Figs 5 and 6. The negative mean values are underlined by the

asymmetric belief of the trend followers which is characterized by the parameter b. For

given b = −1, this represents a bearish belief of the trend followers about the future market

prices. To see more clearly the impact of the bearish belief of the trend followers on the

market price and the role of the noises processes, we consider two different parameter sets
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(α, a, k) = (0.83, 1.13, 2.5), (0.83, 1.7, 2.5) with two sets of noises for the fundamental price

and the market noise (σǫ, σδ) = (0.01, 0.005), (0.01, 0.5). We plot the time series of the

price and the corresponding phase plot in price and inventory space in the deterministic

cases (when (σǫ, σδ) = (0, 0)) and the time series of the price with two combinations of

noises in Figs 7 and 8 for the two cases.
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Figure 7: (a), (c), (d): Time series of fundamental price (red) and market price for the

parameters indicated; (b) phase diagram of market price and market maker inventory of

the deterministic model, where α = 0.83, a = 1.13, k = 2.5.

In the first case (α, a, k) = (0.83, 1.13, 2.5), the relative reaction of the trend followers

is not very strong. Based on the stability region plot in Fig. 3 (b), we know that

the fundamental equilibrium is unstable for this case via a Neimark-Sacker bifurcation,

leading the market price and inventory to oscillate around the fundamental equilibrium

aperiodically, characterized by the quasi-periodic time series in Fig. 7 (a) and the closed

cycle of the phase plot in Fig. 7 (b). When the fundamental and market noises are present,

the downward tendency that is driven by the bearish beliefs of the trend followers becomes

more significant, generating large deviation of the market prices from the fundamental
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prices and high volatility. In the second case (α, a, k) = (0.83, 1.7, 2.5) when the activity

of the trend followers becomes stronger (so that a increases from 1.13 to 1.7), the market

displays very complicated dynamics characterized by irregular time series in Fig. 8 (a)

and phase plot with a strange attractor in Fig. 8 (b), where the corresponding parameters

are located far away from the Neimark-Sacker bifurcation boundary of the local stability

region in Fig. 3 (c). Similarly, when the fundamental and market noises are present, the

downward tendency that is driven by the trend followers becomes even more significant,

generating large deviation of the market prices from the fundamental prices and high

volatility. This analysis illustrates the significant impact of the asymmetric beliefs of the

trend followers on the market price movement and volatility.
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(c) Time series (σǫ, σδ) = (0.01, 0.005)
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Figure 8: (a), (c), (d): Time series of fundamental price (red) and market price; (b) phase

diagram of market price and market maker inventory of the deterministic model, where

α = 0.83, a = 1.7, k = 2.5.

The Effects of α on the Average Profit of the Market Maker—As a dealer,

the market maker has the obligation of maintaining a stable and orderly market. As an

active investor, the market maker would like to maximize his/her profit. The question
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is: are the two roles of the market maker consistent with each other? In other words,

in an effort to maximize his/her profit, is it possible that the market maker may prefer

an unstable rather than a stable market? In order to answer these questions, we explore

the relationship between the profits of the market maker and the speed of market maker

inventory adjustment α.

Similar to Gu (1995) and Day (1997), the profits of the market maker are assumed

to be made up of a positive revenue, a variable cost, and a fixed cost. The positive

revenue comes from commissions 5. The variable cost consists of the loss he might suffer

in carrying inventories. The fixed cost includes any fees he/she pays to maintain a seat

on the exchange. Thus the profit function of the market maker is expressed as

ωα(t) = ψPtπt + (Pt +Dt − (1 + r)Pt−1)It − F, (3.2)

where ψ is the coefficient capturing commissions, πt ≡ n1|z∗1,t − z∗1,t−1|+ n2|z∗2,t − z∗2,t−1|+
|δ̃t+1 − δ̃t| is the number of shares traded in period t, Pt +Dt − (1 + r)Pt−1 is the capital

return per share in period t, and F is the fixed cost. Here for convenience of analysis, and

without loss of generality, we take F = 0. For given α, the average profit over T periods

is

ϕα(T ) = ϕα,1(T ) + ϕα,2(T ) =
1

T

T∑

t=1

ωα(t), (3.3)

where

ϕα,1(T ) =
1

T

T∑

t=1

ψPtπt, ϕα,2(T ) =
1

T

T∑

t=1

(Pt +Dt − (1 + r)Pt−1)It.

The following analysis of the profit focuses on the case (a, k) = (0.5, 2.5) shown6 in

Fig. 9. For other cases we have similar results. In this case, Fig. 5 (d) indicates that

the deviation of the market price from the fundamental price increases as α decreases.

Correspondingly the trading becomes more active. As shown in Fig. 9 (a), the average

profit of the market maker from commissions ϕα,1 increases as α decreases. However, Fig.

9 (b) reveals that the market maker suffers a loss in carrying inventory on average. But

5The commissions can also include the bid-ask spread if we take into account the more general fees

and assume that the bid-ask spread is constant, as in Gu (1995).
6Here we take zs = 0.01, Id = 0.001 in order to make the mean of dividends much smaller. Dt ∼

U(0, 0.022) is uniformly distributed on the interval [0, 0.022] with a mean of D = 0.011. In fact, on a

daily basis, the dividends effect is very small, indeed our numerous simulations reveal that the dividends

hardly effect the average profits.
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Figure 9: (a)-(b) The average profit of the two parts; (c) the total average profits, where

(a, k) = (0.5, 2.5), ψ = 0.014, zs = 0.01, Id = 0.001, (σǫ, σδ) = (0.01, 0.005) and other

parameters are the same as Table 1.

the loss becomes smaller as α increases. The total average profit ϕα displayed in Fig. 9

(c) shows that, with ψ = 0.014 (a commission fee of about 1.4%), the profit ϕα of the

market maker reaches its maximum for α about 0.2. From Figs 5 (b) and (d), we know

that, for α about 0.2, the market price is unstable with relatively large deviation from

the fundamental price. This implies that it is possible that the market maker prefers

an unstable market in order to maximize his/her own profits. A similar result is also

obtained in Gu (1995) who studies the effects of the price adjustment speed of the market

maker on his/her average profit without modelling the market maker inventory.

In summary, the impact of the market maker on the market is rather subtle, depending

on the behaviour of other market participants. The asymmetric beliefs of the trend

followers has a significant impact on the market price. Also, there is a conflict in the roles

of the market maker as both a dealers and an active investor. This is to say that the

maker maker may have an incentive to destabilize the market if that helps his/her own

profit situation.

4 Statistical Analysis of the Stochastic Model

In this section we carry out a statistical analysis of the stochastic version of the model

given by (2.16) for α = 0.2 and 0.4. The analysis focuses on the time series properties

of the market price and inventory when the fundamental equilibrium of the underlying

deterministic model is stable. In particular, it would be very interesting to know if the

model is able to generate the stylized facts of returns, the empirical patterns concerning
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P ∗ k′ a′ b c µ ρ n1 n2 zs Id r D aσ2

10 0.38 0.2 -0.8 0.16 2 0.1 0.5 0.5 1 0.1 0.0002 0.902 1

Table 3: The common parameter values for the simulations of the stochastic model.

inventory (see Hasbrouck and Sofianos (1993)) and its relation to returns observed in

financial markets that we discussed in the introductory section.
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Figure 10: The time series of (a) the fundamental prices (red) and market prices, (c) the

target inventory (red) and market inventories, with T = 11, 000; and time series of (b)

the fundamental prices (red) and market prices, (d) the target inventory (red) and market

inventories, with T = 200 and three sets of different initial values, where α = 0.2.

For the selected parameters in Table 3, it can be verified that for any α ∈ (0, 1]

the underlying deterministic model has a stable fundamental equilibrium in both price

and market inventory. Consider first a special case α = 0.2. Given noisy perturbations

to the fundamental price with σǫ = 0.01 and from noise traders with σδ = 0.005 and

α = 0.2, Fig. 10 plots the time series of the fundamental prices (Fig. 10 (a)) and tar-

get inventory (Fig. 10 (c)) in the red curves and the market prices (Fig 10. (a)) and
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inventories (Fig. 10 (c)) with three sets of different initial values (P (1), I(1), P (0)) =

(9.5, 0.5, 10), (10.5, 0.3, 10.5), (4.5, 0.3, 6.5) for T = 11, 000 time steps. These figures show

that the price and inventory fluctuate around the fundamental price and the target in-

ventory level, as has been shown in Hasbrouck and Sofianos (1993) and Hendershott and

Seasholes (2007). In order to see the asymptotic behavior of the model in the long run,

we choose the three sets of different initial values but the same realizations of the noise

processes and plot the time series for the first 200 steps in Figs 10 (b) and 10 (d). These

latter figures demonstrate the path-wise convergence of the time series with different ini-

tial values to the same random path, which implies the existence of random fixed points

(see Arnold (1998)) in both price and market inventory. The connection between the

dynamics of the deterministic and random models is a rather complicated issue and is

beyond the scope of this paper and we refer the reader to He and Li (2008) for related

discussion.

Next we examine the statistical properties of the returns calculated by rt = Pt/Pt−1−1

and inventories (and the relationship between them) produced by the time series in Fig.

10. The time series of returns in Fig. 11 (a) displays the volatility clustering observed

in financial markets. Compared with the corresponding normal distribution, the return

distribution in Fig. 11 (b) shows a high degree of kurtosis and fat tails. Furthermore the

plots of autocorrelations (ACs) of returns, absolute returns and squared returns in Figs

11 (c-e) show (almost) insignificant higher-order ACs but with significant ACs for lags

up to 7 for the raw returns7, but significant AC patterns for the absolute and squared

returns across long lags. This demonstrates that the model is able to generate some of the

stylized facts and long-rang dependence in return volatility observed in financial markets,

as mentioned by Mantegna and Stanley (2000) and Lux and Ausloos (2002). We also

calculate the ACs of inventories in Fig. 11 (f), showing a positive decaying pattern with

lags up to 50. This result is consistent with the empirical findings in Hasbrouck and

Sofianos (1993) who find that inventories of many stocks are positively autocorrelated

with lags of about 10-50 days.

Further, we use the stochastic model to examine the relationship between returns and

inventories, which is shown in the second row of Table 4. We calculate the correlation

coefficients of rt and It−It−1, rt and It, It and rt+1, and rt−1 and It, respectively. We find

that the returns are negatively related to the contemporaneous (changes of) inventories.

7If desired, the low-order ACs could be driven down to insignificant level by increasing the size of

noise traders. However, this will make high kurtosis less obvious.
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In addition, inventories have a positive impact on the returns of the next period, while

the past high returns may lead to low current inventories. Our results are consistent with

the empirical findings of Hendershott and Seasholes (2007), who use 11-year inventory

data from the New York Stock Exchange to empirically explore the relationship between

returns and inventories. This indicates that our stochastic model is capable of generating

theoretical support for the empirical findings related to the inventory and its relation to

the returns. Similar to He and Li (2007), we could conduct Monte Carlo simulations and

various statistical tests in order to check the robustness of these results, but we leave this

task to future research.

The Effects of α on the Statistical Properties—To demonstrate the robustness

of the statistical results reported above for changing α, we first conduct the same analysis

by replacing α with α = 0.4. In this case, we can obtain the same time series feature

shown in Fig. 10. Fig. 12 displays the statistical properties of returns and inventories.

Comparing with Fig. 11, we observe that, as α increase, the lags of the significant ACs

of returns and inventories decrease. Especially, the lags of significant ACs for inventories

decreases from 55 to 15. This implies that the adjustment speed of the market maker

inventory has an important impact on the autocorrelation of inventory. A lower speed

of inventory adjustment tends to generate significant ACs for market maker inventory

over longer lags. Fig. 12 also shows that in the case that both the fundamentalists and

trend followers are less active so that the deterministic model is stable, the behavior of

the market maker has a relatively small effect on the statistical properties.

In Table 4, we present the various correlations between returns and inventories for

α = 0.1, 0.3 and 0.4. It clearly shows that as α increases, the correlations between returns

and contemporary changes of inventories and between current inventory and future returns

become weaker, but the correlations between returns and contemporary inventories and

between past returns and the current inventories become stronger. We give an intuitive

explanation of these changes. For the correlations between returns and contemporary

changes of inventories, as α increases, the effect of α(Id − It) on the desired supply of

the market maker It − It+1 +α(Id − It) becomes large and hence the negative correlation

between rt+1 and It+1 − It decreases. Furthermore, as α increases, the effect of (1 − α)It

on the desired supply of the market maker −It+1 + (1 − α)It + αId decreases. Thus

the negative correlation between rt+1 and It+1 becomes large but the positive correlation

between rt+1 and It becomes small. In addition, following the same calculation in Section

3, we can obtain the results that SDPP ∗ = 0.3354 for α = 0.2 and SDPP ∗ = 0.2531 for
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α correl(rt, It − It−1) correl(rt, It) correl(It, rt+1) correl(rt−1, It)

0.1 -0.9854 -0.4556 0.1388 -0.2682

0.2 -0.9659 -0.6113 0.1349 -0.3641

0.3 -0.9378 -0.7178 0.0920 -0.4315

0.4 -0.9020 -0.8008 0.0360 -0.4748

Table 4: Correlation coefficients for four values of α.

α = 0.4. That is, the deviation between the market prices and the fundamental prices

for α = 0.4 is smaller than that for α = 0.2. This indicates that as α increases from 0.2

to 0.4, the demand of the fundamentalists decreases and hence the effect of n1z
∗

1,t on the

inventory It+1 decreases and the relative effect of n2z
∗

2,t on the inventory It+1 increases,

where n2z
∗

2,t is positively related to rt. Hence the negative correlation between rt and It+1

increases.

In a word, our model can replicate most of the stylized facts in financial markets.

Furthermore, as the parameter α changes in a certain range, the statistical properties can

basically remain, except that the (auto)correlations coefficients of returns and inventories

undergo some changes.

5 Conclusion

In this paper we develop a heterogeneous agent model of asset price and inventory

in a market where price clearing is via a market maker mechanism. In setting the price

each period the market maker takes account not only of the excess demand of the outside

agents, who are modelled using the fundamentalist and chartist approach of the boundedly

rational heterogeneous agent model literature, but also his/her inventory position, for

which the market maker has some desired target level. Noise enters into the model

through the fundamental price and market noise traders.

We find that the stabilizing role of the market maker can be very subtle and depends

upon different levels of activity of the fundamentalists and trend followers. When the

trend followers are relatively less active comparing with the fundamentalists, the market

maker, as an active investor, can stabilize the market (when α increases). However, the

stabilizing role of the market maker does not hold when the trend followers becomes rela-

tively more active comparing with the fundamentalists. We also find that the asymmetric

beliefs of the trend followers have a great impact on the market price deviation from
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the fundamental price and bearish beliefs of the trend followers have more impact when

the market goes down. By examining the profitability of the market maker, we found

that the market maker has an incentive to destabilize the market in order to maximize

the profit. Furthermore, the corresponding random model exhibits many of the stylized

facts of returns and inventories observed in empirical studies. Our model can produce the

stylized facts of returns including high kurtosis, fat tails, volatility clustering. power-law

behaviour of returns. It can also yield the decaying positive autocorrelation of inventories

and the various relations of returns and inventories consistent with empirical findings.

That is, the returns are negatively related to contemporaneous (changes of) inventories.

In addition, inventories have a positive impact on the returns of the next period, while

the past high returns may lead to low current inventories. Furthermore, as the parameter

α changes in a certain range, the statistical properties can basically remain. The analysis

and results obtained in this paper improve our understanding of the role of the market

maker in setting the market price and his/her impact on market price volatility. Such

an understanding is crucial to practical issues concerning market design, regulations and

stability.

In future research, it would be of interest to build up a forecasting model on future

inventory imbalances for the market maker, by which the market maker determines the

parameters of the price and inventory adjustment.
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Figure 11: Time series of the returns (a), distribution of the returns (b), autocorrelations

for the returns (c), the absolute returns (d) and the squared returns (e), autocorrelation

of the inventories (f), where α = 0.2.
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Figure 12: Time series of the returns (a), distribution of the returns (b), autocorrelations

for the returns (c), the absolute returns (d) and the squared returns (e), autocorrelation

of the inventories (f), where α = 0.4.
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