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Abstract

We characterize a class of probabilistic choice models where the choice prob-

abilities depend on two scales, one with a value for each available option and

the other with a value for the set of available options. Then, we develop similar

results for a task in which a person is presented with a profile of attributes,

each at a pre-specified level, and chooses the best or the best and the worst of

those attribute-level combinations. The latter design is an important variant

on previous designs using best-worst choice to elicit preference information, and

there is various evidence that it yields reliable interpretable data. Nonetheless,

the data from a single such task cannot yield separate measures of the “impor-

tance” of an attribute and the “utility” of an attribute-level. We discuss various

empirical designs, involving more than one task of the above general type, that

may allow such separation of importance and utility.

keywords: attribute choice, best-worst choice, importance, probabilistic choice,

profile
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1 Introduction

Over the past decade or so, a choice task in which a person is asked to select both

the best and the worst option in an available set of options has seen increased

applications over more traditional choice tasks, such as asking a person to choose

a) the best option; b) choose the worst option; c) rank the options; or d) rate

the options. Marley and Louviere (2005) summarized that work and developed

an integrative theoretical approach to three overlapping classes of probabilistic

models for best, worst, and best-worst choices, with the models in each class

proposing specific ways in which such choices might be related.

In this paper, we discuss a different task, and associated experimental de-

sign(s), that involves several profiles of attributes, with the levels of the at-

tributes varying between profiles. This type of task is commonly referred to

as a “conjoint task” (e.g., Louviere 1988). When the profiles are generated

by a suitable experimental design, such as a factorial design or an orthogonal

fractional factorial design, one can view each profile generated in this way as a

choice set of attribute levels1. When each profile is viewed as a choice set, and if

a person is asked to simultaneously choose the best and the worst attribute-level

(most and least attractive level or the attribute-level that, respectively, matters

most and least) in each profile, the task parallels that considered in Marley and

Louviere (2005). However, it differs empirically and theoretically in that in the

profile case each choice set is constrained to contain an attribute-level for each

attribute, whereas in the previously studied best-worst task, any combination

of choice options can occur as a choice set.

Although this type of choice task may sound unusual, evidence exists that it

yields reliable, interpretable data if one constructs the profiles using a suitable

experimental design (see Coast et al., 2006; Louviere 1994; McIntosh & Lou-

1 In the remainder of the paper, we use “attribute-level” for a specific level of an attributte.
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viere, 2002). We demonstrate that choice data from a single such task cannot

meaningfully separate the “importance” of each attribute and the “utility” as-

sociated with each level of an attribute. Towards the end of the paper, we [ajm:

summarize prior research on separating “weights” and “values” and then discuss

various discrete choice tasks] that may allow one to separate importance and

utility if repeated for different substantive choice contexts. The general issues

that arise are similar, but not identical, to those that arise when one studies the

identifiability of scale factors (vis, variance parameters) in underlying random

utility representations (see Louviere, Hensher & Swait, 2003, Chapters 8 and

13; Swait & Louviere, 1993).

Section 2 provides an illustration of the type of design that interests us

in this paper. Section 3 characterizes a class of probabilistic choice models

where the choice probabilities depend on two scales, one with a value for each

available option and the other with a value for the set of available options.

These characterizations guide us in the development in Section 4 of parallel

models where each option is specified in terms of a vector of attribute-levels. We

study the special case where a person has to select the best (and, possibly, the

worst) attribute-level of the presented option. Section 5 presents special cases of

these general models where the impact of each attribute-level is determined by

a product of an importance weight for the attribute and a utility value for the

specific level on that attribute. [ajm: Section 6 summarizes prior research on

separating “weights” and “values”, followed by a discussion of how one might

achieve such a separation using discrete choice tasks.]

Finally, we note that the notation and derivations are quite complex, but

we believe that they are necessary to reach the suggestions in Section 6.2 and

the conclusions in Section 7 regarding issues surrounding the measurement of

“importance.”
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2 An Illustration of Best-Worst Attribute-Level

Choice

Coast et al (2006) present a study of patients’ preferences for attributes of care

using best-worst attribute-level choice (the later is discussed below and defined

formally in Section 4.2). The context is the fact that, in the UK, general practi-

tioners with additional training in a specialist service are being used increasingly

to provide service in a primary, rather than a hospital, setting. Coast et al.’s

discrete choice experiment (DCE) involved varying levels of attributes of der-

matology care that were found to be important to patients (Table 1). The

attributes and levels were combined using a fractional factorial design to con-

struct 16 scenarios; the scenarios were presented to each of 60 participants who

provided complete data. The design used in the study enabled all main effects

to be estimated and would have allowed all two-way interactions to be estimated

had the utility of waiting time been linear in real time, which it was not. Table 2

shows a typical scenario, with a participant instructed to mark the “best thing”

and the “worst thing” in that scenario, plus say whether or not they would

attend an appointment that exhibited this combination of attribute-levels. The

choice data were analyzed using the attribute-level maxdiff model presented in

Section 4.2.

Using the term impact in the sense of “influence on the choices made” (dis-

cussed in more detail in Sections 4 and 5), and assuming that the attribute-level

maxdiff model (Section 4.2) holds, a researcher can measure2 the impact of each

attribute on the choices (Table 3) as well as the impact of each attribute-level

on the choices (Figure 1). In particular, the estimated impact of an attribute in

Table 3 is the average of the impacts for the attribute-levels of that attribute in

2These measurements are on a common ratio scale (see Section 4.2), with the results in
Tables 3 and 4 based on the log of that scale. This scale restriction is an important property
of the attribute-level maxdiff model.
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Figure 1. Note that in this example the attribute “expertise” of the doctor has

the most impact and the attribute “time waited” the least impact (Table 3).

Also note that attribute-levels “thorough” and “expert 5 yrs” each have a large

impact, while “not thorough” has little (least) impact (Figure 1)3. Please note

that we have been careful to use the term “impact” rather than “importance”

even though these terms might seem synonymous. The distinction is important

for our work in this paper, and the required distinction has a long, tortuous

history in psychological research, [ajm: some of which we summarize in Sec-

tion 6.1]. For instance, Shanteau (1980) says “Thus, the impact that a variable

has on a judgment can show up either in the weight or the scaling value (or

both)” (p. 6) and “There is, as yet, no known procedure that can provide . .

. an uncontaminated estimate of weight” (p. 33). Similarly, Flynn, Louviere,

Peters and Coast (2006) say “Statements like ‘quality of care is more highly

valued than waiting time’ can neither be supported nor refuted by comparisons

of utility parameters from a traditional discrete choice experiment (DCE)” (Ab-

stract).

In summary: An important goal of this paper is to contribute to our under-

standing of how we might measure separately the importance and the utility

of each level of an attribute using discrete choice experiments. Achieving such

understanding requires the clear formulation of the mathematical properties of

attribute based models of best, worst and best-worst choice. We approach such

understanding by, first, characterizing models for standard choice tasks where a

decision maker chooses one option from a set of available options, such as med-

ical appointments with different characteristics. Then, we adapt the notation

and results to choices from a set of attribute-levels, as exemplified by the above

medical appointments example.

3Coast et al (2006) restrict the term “impact” to the average of the scale values on an
attribute and use the term “utility” for the scale value of an attribute at a specific level. We
believe that “impact” is the appropriate term for both contexts.
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3 Set-Dependent Choice Models

Let T , with |T | ≥ 2, denote the finite set of potentially available choice options,

and for any subset X ⊆ T , with |X| ≥ 2, let BX(x) denote the probability

that the alternative x is chosen as best in X, WX(y) the probability that the

alternative y is chosen as worst in X, and BWX(x, y) the probability that,

jointly, the alternative x is chosen as best in X and the alternative y 6= x is

chosen as worst in X. Thus

0 ≤ BX(x),WX(y), BWX(x, y) ≤ 1

and X
x∈X

BX(x) =
X
y∈X

WX(y) =
X

x,y∈X
x6=y

BWX(x, y) = 1.

For simplicity, we assume that no choice probability equals 0 or 1. Extensions

to the general case can be made as in Luce (1959/2005).

Given T and a particular set X, X ⊆ T , we refer to the set {BX(x), x ∈ X},

{WX(y), y ∈ X}, {BWX(x, y), x, y ∈ X, x 6= y}, respectively, as a set of best,

worst, best-worst choice probabilities (on X). We have a complete set of best,

worst, best-worst choice probabilities, respectively, (on a master set T ) when we

have a set of best, worst, best-worst choice probabilities on each X, X ⊆ T .

Unless stated otherwise, in the basic theoretical developments we assume that we

have a complete set of best, worst, best-worst choice probabilities, respectively,

on a finite master set T with |T | ≥ 2.

In fact, we concentrate on models for best and best-worst choices, with

those for worst choices being exactly parallel. Although we focus on complete

sets of choice probabilities, in practice many applications study a sample of the

complete set of probabilities. Typically, the sample is based on an appropriate
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experimental design for testing various models, such as a 2n fractional factorial,

which ensures that each option, and each pair of distinct options, is presented

equally often across the selected subsets of average size n/2 of the master set

(Finn and Louviere, 1992). Similarly, designs known as balanced incomplete

block designs (e.g., Street & Street, 1987) are used often to construct choice

sets, all of equal size, so as to ensure that all options appear equally often

across all choice sets, and each pair of distinct options also jointly occur equally

often across all choice sets. Such designs do not present all possible subsets of

the master set T , i.e., they do not provide a complete set of choice frequencies

(probabilities) on T , and so further theoretical work is needed to relate the

present results to the properties of such designs. Also, the design issues are

somewhat more complex for our main focus here, namely best-worst attribute-

level choice, but are, nonetheless, well-understood (see Louviere & Woodworth,

1983; Louviere, 1988; and Louviere, Hensher & Swait 2003).

3.1 Set-dependent Luce model

We begin with models for best choices, then consider their extension to best-

worst choices. Exactly parallel results can be developed for worst choices.

Definition 1 A complete set of best choice probabilities on a finite set T sat-

isfies a set-dependent Luce model iff there exist a positive scale b on T and

a positive scale ϕ on the subsets of T with two or more elements such that for

every x ∈ X ⊆ T, |X| ≥ 2,

BX(x) =
b(x)ϕ(X)P
z∈X b(z)ϕ(X)

. (1)

It satisfies Luce’s model iff ϕ(X) = 1 for every X ⊆ T, |X| ≥ 2.
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Note that if (1) holds with ϕ(X) = c, c > 0, for every X ⊆ T, |X| ≥ 2, then

if we define the positive scale b0 by b0 = bϕ(X), then (1) holds with b replaced

by b0 and ϕ(X) = 1 for every X ⊆ T, |X| ≥ 2. Thus, no generality is lost in the

way that we have defined Luce’s model, which, in fact, agrees with the standard

representation of that model.

In the following, we use the concepts of a log-interval and a ratio scale: A

scale is a log-interval scale if the admissible transforms are functions of the form

αxβ , α, β > 0 and a ratio scale if the admissible transforms are functions of the

form γx, γ > 0. We say that a ratio scale has a unit that is the reciprocal of that

of a log-interval scale when the admissible transforms are linked via γ = 1/β.

Now, we show that the following condition characterizes the set-dependent

Luce model, Def. 1.

Definition 2 A complete set of best choice probabilities on a finite set T sat-

isfies the set-dependent constant ratio rule iff for all X ⊆ T , Y ⊆ T ,

|X| ≥ 2, |Y | ≥ 2, r, s, u, v ⊆ X ∩ Y ,

log BX(r)
BX(s)

log BY (r)
BY (s)

=
log BX(u)

BX(v)

log BY (u)
BY (v)

. (2)

It satisfies the constant ratio rule iff each of the (overall) ratios in (2) equals

1.

Theorem 3 A complete set of best choice probabilities on a finite set T satisfies

a set-dependent Luce model, Def. 1, iff it satisfies the set-dependent constant

ratio rule, (2). The scale b is a log-interval scale and the scale ϕ is a ratio scale

with unit the reciprocal of that of b. The set satisfies Luce’s model iff it satisfies

the constant ratio rule.

All proofs are in Section 8.
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3.2 Set-dependent maxdiff model

Now, we present an extension of the set-dependent Luce model (for best choices)

to best-worst choices.

Definition 4 A complete set of best-worst choice probabilities on a finite set T

satisfies a set-dependent maxdiff model iff there exist a positive scale b on

T and a positive scale φ on the subsets of T with two or more elements such

that for every x, y ∈ X ⊆ T , x 6= y, |X| ≥ 2,

BWX(x, y) =
[b(x)/b(y)]φ(X)P

r,s∈X
r 6=s

[b(r)/b(s)]φ(X)
(x 6= y). (3)

It satisfies the maxdiff model iff φ(X) = 1 for every X ⊆ T, |X| ≥ 2.

Note that if (3) holds with φ(X) = c, c > 0, for every X ⊆ T, |X| ≥ 2, then

if we define the positive scale b0 by b0 = bφ(X), then (3) holds with b replaced

by b0 and φ(X) = 1 for every X ⊆ T, |X| ≥ 2. Thus, no generality is lost in

the way that we have defined the maxdiff model, which, in fact, agrees with the

standard representation of that model as given in Marley & Louviere (2005).

We now state conditions that characterize the set-dependent maxdiff model.

Definition 5 A complete set of best-worst choice probabilities on a finite set T

satisfies the set-dependent best-worst constant ratio rule iff for all X ⊆ T ,

Y ⊆ T , |X| ≥ 2, |Y | ≥ 2, r, s, u, v ∈ X ∩ Y ,

log BWX(r,s)
BWX(s,r)

log BWY (r,s)
BWY (s,r)

=
log BWX(u,v)

BWX(v,u)

log BWY (u,v)
BWY (v,u)

. (4)

It satisfies the best-worst constant ratio rule iff the each of (overall) ratios

in (4) equals 1.
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Definition 6 A complete set of best-worst choice probabilities on a finite set T,

|T | ≥ 2, satisfies 2−invertibility iff for all X ⊆ T , |X| ≥ 2, and r, s, u, v ∈ X,

r 6= s, u 6= v,

BWX(r, s)BWX(s, r) = BWX(u, v)BWX(v, u). (5)

Definition 7 A complete set of best-worst choice probabilities on a finite set

T, |T | ≥ 3, satisfies 3−reversibility iff for all X ⊆ T , |X| ≥ 3, and distinct

r, s, t ∈ X, r 6= s, s 6= t, t 6= r,

BWX(r, s)BWX(s, t)BWX(t, r) = BWX(r, t)BWX(t, s)BWX(s, r). (6)

Note that constraints such as r 6= s in (5) could be omitted as they are

implicit in the fact that r is best and s is worst. However, we retain such

constraints throughout the paper as it is necessary to ensure that they hold in

various constructions that arise in the proofs.

For simplicity, in the statement of the following theorem we assume that

3−reversibility holds vacuously when |T | = 2.

Theorem 8 A complete set of best-worst choice probabilities on a finite set

T , |T | ≥ 2, satisfies a set-dependent maxdiff model, Def. 4, iff it satisfies

the set-dependent best-worst constant ratio rule, (4), 2−invertibility, (5), and

3−reversibility, (6). The scale b is a loginterval scale and the scale φ is a

ratio scale with unit the reciprocal of that of b. The set satisfies the maxdiff

model iff it satisfies the best-worst constant ratio rule, 2−invertibility, (5), and

3−reversibility, (6) in which case b is a ratio scale.
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4 Probabilistic Models of Best and Best-Worst

Choice for Attribute-Level Profiles

We now develop models for a rather different type of task. However, the results

are stated and proved in a manner analogous to those already presented.

For clarity, we first present notation and models for best choices between a

set of options, each of which is specified in terms of a vector of attribute-levels.

This task parallels that presented in the previous section. Then, we turn to our

main focus, namely, best-worst choice between a set of attribute-levels.

We assume the following: there are m ≥ 2 attributes, and we let M =

{1, ...,m}. Attribute i, i = 1, ...,m, has q(i) levels, and we let Q(i) = {1, ..., q(i)}

and Q =
Qm

i=1Q(i). A profile is anM -component vector with each component

i taking on one of the q(i) levels for that component. Thus we have Q possible

profiles. We denote a typical profile by

z = (z1, ..., zm), (7)

where zi, i = 1, ..,m, denotes the level of attribute i in profile z. As previously,

we call each such zi an attribute-level 4 .

Thus, Q, with |Q| ≥ 2, is the finite set of potentially available profiles, i.e.,

in (7), z ∈ Q. We let X ⊆ Q, |X| = n ≥ 2, denote a typical subset of these

profiles. Proceeding as earlier, with x, y ∈X, let BX(x) denote the probability

that the profile x is chosen as best in X, WX(y) the probability that the profile

y is chosen as worst in X, and BWX(x,y) the probability that, jointly, the

profile x is chosen as best in X and the profile y 6= x is chosen as worst in X.

4A more complete notation would have extra subscripts, e.g., rz = (r1,z1 , ..., rm,zm), where
z = (z1, ..., zm) is the vector of attribute-levels. We do not believe that any confusion arises
with the simpler notation.
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Thus

0 ≤ BX(x),WX(y), BWX(x,y) ≤ 1

and X
x∈X

BX(x) =
X
y∈X

WX(y) =
X
x,y∈X
x6=y

BWX(x,y) = 1.

For simplicity, we assume that no choice probability equals 0 or 1. Extensions

to the general case can be made as in Luce (1959/2005).

Now, we can develop models for a complete set of best, worst, best-worst

probabilities for choices from such profiles exactly paralleling those introduced

above for choices from generic options. We do not do so because, without further

assumptions about the representation of profiles, such results add nothing to

those we have already presented. Instead, in the following section, we consider

the case where at each choice opportunity the choice set consists of a single

profile, say z = (z1, ..., zm), selected from a set, P , of possible profiles, and the

participant has to indicate the best and the worst attribute-level in that profile.

The available empirical results indicate that participants understand the task

and give reliable data (Coast et al., 2006; Louviere, 1994). The notation then

is: for a typical profile z ∈ P and i ∈ M , BWz(zi) is the probability that the

attribute-level zi is chosen as best in z, and for i, j ∈ M , i 6= j, BWz(zi, zj) is

the probability that, jointly, the attribute-level zi is chosen as best in z and the

attribute-level zj is chosen as worst in z. Also,

0 ≤ BWz(zi), BWz(zi, zj) ≤ 1

and X
i∈M

BWz(zi) =
X
i,j∈M
i6=j

BWz(zi, zj) = 1.
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4.1 Attribute-level Luce model

Now, we develop models for choices between attribute-levels, first for best

choices to illustrate the theoretical approach, then for best-worst choice, the

case of real interest to us.

Definition 9 A set of best choice probabilities5 on a finite set, P , of profiles

satisfies an attribute-level Luce model iff there exists a positive scale b on

the attributes such that for every profile z ∈ P with attribute-levels zi, i ∈M ,

Bz(zi) =
b(zi)P

j∈M b(zj)
. (8)

The structure of the conditions that characterize this model are similar in

form to those for the set-dependent maxdiff model of Section 3.2. Nonetheless,

we restate them here as the notation, and thus the proofs, differ.

It is likely useful when studying the following definition to consult the sum-

mary notation following the definition. Also, an intuitive understanding of the

conditions in the definition can be obtained by noting that when the attribute-

level Luce model, (8), holds, then, for each equation in the following definition,

the product of the terms in the numerator (respectively, denominator) on the

left- and right-hand-sides are equal, and so the conditions hold for that model.

This observation applies throughout the remainder of the paper. Also, in the

following definition and later related ones, we use “invertibility” and “reversibil-

ity” for properties similar to those of Defs. 6 and 7. No confusion should arise

from this duplicate usage.

Definition 10 A set of best choice probabilities on a finite set of profiles P

5A more complete phrasing would be “best attribute-level choice probabilities.” We do not
think the more compact phrasing leads to confusion here, or in parallel later definitions.
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satisfies 2−reversibility iff for all profiles r, s with ri = si, sj = rj, i 6= j,

Br(ri)Bs(sj) = Br(rj)Bs(si) (9)

It satisfies 3−reversibility iff for all profiles r, s, t with ri = ti, sj = rj,

tk = sk, i 6= j, j 6= k,

Br(ri)Bs(sj)Bt(tk) = Br(rj)Bs(sk)Bt(ti). (10)

It satisfies 4−reversibility iff for all profiles r, s, t, u, with ri = ui, sj = rj,

tk = sk, ul = tl, i 6= j, j 6= k, k 6= l

Br(ri)Bs(sj)Bt(tk)Bu(ul) = Br(rj)Bs(sk)Bt(tl)Bu(ui) (11)

Note that 4−reversibility includes 3− and 2−reversibility as special cases:

first, take l = i to get 3−reversibility, then add i = k to get 2−reversibility.

Nonetheless, we retain i−reversibility, i = 2, 3, 4, as separate conditions for

clarity in the proof of the following theorem.

Also, the form of 2−reversibility is more transparent if we let •i = ri = si,

•j = rj = sj , which reduces it to

Br(•i)Bs(•j) = Br(•j)Bs(•i),

and, with •i = ri = ti, •j = rj = sj =, •k = sk = tk, 3−reversibility reduces to

Br(•i)Bs(•j)Bt(•k) = Br(•j)Bs(•k)Bt(•i),

with a similar notational version of 4−reversibility. However, we retain the

detailed versions so that the proof of the following theorem is clear.
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Theorem 11 A set of best choice probabilities on a finite set of profiles P

satisfies an attribute-level Luce model, Def. 9, with b a ratio scale, iff it satisfies

2−, 3− and 4−reversibility, Def. 10.

Next, we define impact, which we used informally in Section 2 as meaning

“influence on the choices made,” and which is important for our later discussion

of how one might separate the contributions of the “importance” of an attribute

from the “utility” of an attribute-level: Given an attribute-level Luce model,

Def. 9, with b a ratio scale, then, for each attribute i ∈ M and each attribute-

level zi, b(zi) is the impact of the attribute-level zi, and the (arithmetic or

geometric) average of b(zi) over the attribute-levels zi for attribute i is the

(average) impact of the attribute i. We can estimate the scale values b(zi), i.e.,

the impacts, from data, and, importantly, they are all measured on a common

ratio scale. To our knowledge, this is the first demonstration of a model, and an

associated experimental procedure, that allows such measurement of attribute-

levels on a common scale across attributes.

4.2 Attribute-level maxdiff model

Now we extend the definitions and results for best (attribute-level) choices to

best-worst (attribute-level) choices.

Definition 12 A set of best-worst choice probabilities on a finite set of profiles

P satisfies an attribute-level maxdiff model iff there exist a positive scale b

on the attributes such that for every profile z ∈ P and i, j ∈M , i 6= j,

BWz(zi, zj) =
b(zi)/b(zj)P

k,l∈M
k 6=l

[b(zk)/b(zl)]
(i 6= j). (12)

The structure of the conditions that characterize this model parallels those

for the set-dependent maxdiff model in Section 3.2. Nonetheless, the notation,
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and thus the proofs, differ. As in that case, it is likely useful when studying

the following definitions to consult the summary notation introduced following

the definitions. Also, as stated previously, an intuitive understanding of the

conditions in the definition can be obtained by noting that when the attribute-

level maxdiff model, (12), holds, then, for each equation in the definition, the

product of the terms in its numerator (respectively, denominator) on the left-

and right-hand-sides are equal, and so the conditions hold for that model.

Definition 13 A set of best-worst choice probabilities on a finite set of profiles

P satisfies 2−invertibility iff for every profile r ∈ P, and attribute-levels ri, rj,

rk, rl , i, j, k, l ∈M , i 6= j, k 6= l

BWr(ri, rj)BWr(rj , ri) = BWr(rk, rl)BWr(rl, rk). (13)

Definition 14 A set of best-worst choice probabilities on a finite set of profiles

P satisfies 3−reversibility iff for all profiles r, s, t with rj = sj , sk = tk, ti = ri,

i 6= j, j 6= k,

BWr(ri, rj)BWs(sj , sk)BWt(tk, ti) (14)

= BWt(ti, tk)BWs(sk, sj)BWr(rj , ri).

It satisfies 4−reversibility iff for all profiles r, s, t, u, with , rj = sj, sk = tk,

tl = ul, ui = ri, i 6= j, j 6= k, k 6= l

BWr(ri, rj)BWs(sj , sk)BWt(tk, tl)BWu(ul, ui)

= BWu(ui, ul)BWt(tl, tk)BWs(sk, sj)BWr(rj , ri). (15)

Note that we cannot obtain 3−reversibility as a special case of 4−reversibility

by setting i = l because BWu(ui, ui) is undefined, or, conceptually, it equals 0.

17



Also, the form of 3−reversibility reduces to

BWr(•i, •j)BWs(•j , •k)BWt(•k, •i)

= BWt(•i, •k, )BWs(•k, •j)BWr(•j , •i),

with a similar notational version of 4−reversibility.

However, we retain the detailed versions so that the proof to the following

theorem is clear.

Theorem 15 A set of best-worst choice probabilities on a finite set of profiles

P satisfies an attribute-level maxdiff model, Def. 12, with b a ratio scale iff it

satisfies 2−invertibility, Def 13, and 3− and 4−reversibility, Def. 14.

Given an attribute-level maxdiff model, Def. 12, with b a ratio scale, then,

using the terms as for the attribute-level Luce model, Def. 9, for each attribute

i ∈ M and each attribute-level zi, we can estimate the impact b(zi) of the

attribute-level zi, and calculate the (arithmetic or geometric) average of b(zi)

over the attribute-levels zi for attribute i, which is the (average) impact of

attribute i. This is exactly the terminology and interpretation of the data

presented in the dermatology example6 in Section 2.

5 Weight Estimation in Attribute-Level Models

Now, we turn to identifiability issues in models for the selection of the best

attribute-level in a profile of attribute-levels when we assume that a typical

attribute-level scale value b(zi) is a function of the “importance” of attribute i

and the “utility” of level zi on attribute i. We explore various ideas concerning

how they may be made identifiable, obtaining very useful direction from the

6As noted earlier, Tables 3 and 4 use the values of log b(zi) and their arithmetic mean.
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recent related work of Louviere et al (2002), Louviere (2004) and Louviere and

Islam (2007). Similar issues arise in the separation of importance and utility

in best-worst attribute-level choice models, which we illustrate briefly with the

approach that appears to have the most potential.

We begin with what we believe is the appropriate extension of the attribute-

level Luce model (for best choices).

5.1 Weighted Attribute-Level Luce Model

Definition 16 A set of best choice probabilities on a finite set of profiles P

satisfies a weighted attribute-level Luce model iff there exist a positive

scale eb on the attributes and positive constants βi, i ∈ M , such that for every

profile z ∈ P and attribute-level zi, i ∈M ,

BWz(zi) =
eb(zi)βiP

j∈M
eb(zj)βj . (16)

It satisfies an attribute-level Luce model iff βi = 1 for every i ∈M .

Note that, with

b(zi) = eb(zi)βi , (17)

(16) becomes

BWz(zi) =
b(zi)P

j∈M b(zj)
, (18)

i.e., an attribute-level Luce model, Def. 9. Thus, the “weights” βi and “utility”

values eb(zi) are not separately identifiable from a single design involving a finite
set of profiles7. Nonetheless, for each such design, and for each i ∈ M , we can

estimate the impact b(zi) of each attribute-level zi, and, thus, also, the average

impact of attribute i.

7We call the βi weights, rather than exponents, becuse if we let u(ri) = log b(ri), then we
obtain b(ri) = expβiu(ri). The latter form is the one that is often used when the model is
derived as a random utility model (see Coast et al, 2006; Marley & Louviere, 2005).
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Therefore, we explore possible designs for collecting data that may allow

such a separation. However, first we define the corresponding version of the

maxdiff model and show it has a parallel limitation.

5.2 Weighted Attribute-Level Maxdiff Model

Definition 17 A set of best-worst choice probabilities on a finite set of profiles

P satisfies a weighted attribute-level maxdiff model iff there exist a pos-

itive scale eb on the attributes and positive constants βi, i ∈ M , such that for

every profile z ∈ P and attribute-levels zi, zj, i, j ∈M ,

BWz(zi, zj) =
eb(zi)βi/eb(zj)βjP

k,l∈M
k 6=k

[eb(zk)βk/eb(zl)βl ] (i 6= j). (19)

It satisfies an attribute-level maxdiff model iff βi = 1 for every i ∈M .

Note that, with b(zi) = eb(zi)βi , (19) becomes
BWz(zi, zj) =

b(zi)/b(zj)P
k,l∈M
k 6=l

[b(zk)/b(zl)]
(i 6= j), (20)

i.e., an attribute-level maxdiff model, Def. 12. Thus, as with the weighted

attribute-level Luce model, the weights βi and utility values eb(zi) are not sepa-
rately identifiable from a single design involving a finite set of profiles. Nonethe-

less, as in that case, for each such design, and for each i ∈M , we can estimate

the impact b(zi) of each attribute-level zi, and, thus, also, the average impact

of attribute i.
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6 Separating Importance Weights and Utility

Values

[ajm: The following section is the new material, with some additional

revisions marked [ajm:]

6.1 Previous methods

The problem of separating importance weights and scale values remains largely

unresolved, despite considerable research. Two notable streams of [ajm: re-

vised: relevant research stemmed from Anderson’s (1970) information inte-

gration theory, namely, Norman’s (1976a,b,c) method of relative information

and Birnbaum’s (1976 and later - see below) work related to the differentially

weighted averaging model. Following Anderson’s (1970) classic exposition of in-

formation integration theory, various papers examined conditions under which

one can separate weight and scales. For example, Anderson (1973), in comment-

ing on a paper by Schoenemann, Cafferty and Rotton (1973), acknowledged that

[ajm: scale values must be equal across attributes - I do not understand that

phrase - or Anderson’s (1973) parallel statement “...the scale values,

or at least their differences, are constant across position...” - “posi-

tion” on what - each attribute?] for weights to be identified in the constant

weight averaging model. This assumption was relaxed by [ajm: Please check

that I have the correct cite: Norman (1976a)] where he systematically var-

ied the presence/absence of attribute information to study differential weighting

and noted also that non-additive integration processes would pose problems for

his approach.]

Birnbaum (1976), Birnbaum and Wong (1976) and Birnbaum and Stegner

(1979, 1981) describe experiments that tested additive, constant weight, and
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relative weight averaging models. Birnbaum and Zimmerman (1998) report a

further series of experiments to test the differentially weighted averaging model

and discriminate among other competing process models. Although these papers

deal at least in part with the problem of separating weights and scales, they are

only tangentially relevant to our best-worst choice work for the following reasons:

[ajm: 1) Our focus is choice, in contrast to, say, rating. 2) the response method

involved category rating scales or judgments on response scales that are assumed

continuous or at least monotonically related to the latent dimension of interest;

3) the stimulus component involved numerical, continuous attributes where it

is reasonable to assume that one can specify weights and/or scale values to be a

function of the underlying physical dimension;][ajm: delete, or rephrase as

we now admit this as a possible approach: 4) Birnbaum and Stegner and

Birnbaum and Zimmerman focus on showing that context manipulations can be

used to vary weights and scales;] 5) Birnbaum and Stegner attempted to relate

differences in weights to estimates of weights directly elicited from rating tasks;

[ajm: however, ratings are subject to several criticisms (e.g., see Louviere and

Islam 2008).]

Additionally, Luce (1981) [ajm: presents axioms that are sufficient to sep-

arate weight and scale in an averaging representation, noting] that “with an

adequate amount of data, the weights of the averaging model are perfectly iden-

tifiable.” What is relevant for our work on discrete choice processes applied to

factorial and fractional factorial combinations of attribute levels is his further

observation that “what is not yet clear is how to axiomatize averaging in the

actual finite factorial designs usually used.”

[ajm: added: Finally, there is one type of task where the separation of

weights and values appears to be feasible, especially in choice tasks. This oc-

curs when the “weights” and “values” are associated with separate variables that
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can be independently manipulated. An important such case is choice between

gambles, where, in each gamble, each consequence (say, an amount of money) is

associated with a separate event (say, a particular face occurring on the toss of

a die). Birnbaum has empirical results in this domain that give support for his

configural weighted utility model - see Marley and Luce (2005) for an integra-

tive theoretical framework for the major contemporary theories in this domain,

including the configural weighted utility model, and a summary of the status of

these theories vis-a-vis data. Importantly, those models assume deterministic

choice.]

[ajm: In summary, our work differs from that of Birnbaum and colleagues

in that we focus on a specific type of “pick-any” discrete choice task in which

individuals, at each choice opportunity, select the best/most attractive and

worst/least attractive levels/cues from a profile of attributes levels. We do

not see how to identify/separate weights and scales in the context of a single

factorial or fractional factorial choice experiment of the type considered in this

paper, in agreement with the final quote from Luce (1981), above. However,

in the next section, we consider cases where one might also manipulate context

or other relevant information that might change the way in which individuals

respond to the choice task. In that sense, we agree with Birnbaum and his

coauthors that manipulation of external factors such as decision context and/or

varying/obtaining extra information may enable one to separate weights and

scale values. Nonetheless, we conclude that the relevant discrete choice tasks

are fraught with difficulty, paralleling those mentioned above for rating and

other more classical methods.]
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6.2 Possible methods using discrete choice experiments

We discuss four approaches that give hope of separating importance weights

and utility values in probabilistic models of best attribute-level choice and, by

extension that we illustrate, in probabilistic models of best-worst attribute-level

choice. Each approach requires considerable further theoretical and empirical

study. Throughout, we assume that we have a set of profiles, with a typical

example being that describing a possible trip with the (m =six) attributes

being location, airline, duration, cost, travel time, date, and with an appropriate

number of levels on each attribute. For simplicity, we begin with a discussion of

best attribute-level choice, and later give an example with best-worst attribute-

level choice.

6.2.1 Approach 1

Here, the experimental task involves presentation of a single profile including

all the attributes at each choice opportunity, with each participant selecting

the best attribute-level. We assume that each participant carries out the task

under two different instructions, namely to consider the trip for business and for

vacation8. We assume that the weighted attribute-level Luce model, Def. 16,

holds for each task, with a common utility scale eb but possibly with different
weights for each task. We show that, if the weights do differ (which is testable),

then the scale values and weights may be separately identifiable.

The essential step is to recognize that it follows from (17) that the weights

β
(π)
i , π = 1, 2, i ∈M , for the two tasks, have to satisfy, for all zi,

β
(1)
i

β
(2)
i

=
log b(1)(zi)

log b(2)(zi)
, (21)

8Pretesting would be needed to decide whether or not both instructions could be mixed in
a single design.
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where b(π), π = 1, 2, are the scale values in (8) that we can estimate using the

theoretical results of Section 4.1, and data analysis methods that have been

developed for this and related models (see Louviere et al, 2003). Then (21)

requires that, for every i ∈M and all attribute-levels ri, si,

log b(1)(ri)

log b(2)(ri)
=
log b(1)(si)

log b(2)(si)
. (22)

The above is a necessary condition to be able to estimate the weights, which

differ across the two contexts whenever the ratios in (22) are not all equal to

1. Although it does not add much, it is worth noting that (22) can be written

in terms of observable data by substituting the scale values b(π)(zi), π = 1, 2,

defined in (36) of Section 8, in (22).

Now, we require that each β
(π)
i ≥ 0, π = 1, 2, i ∈ M , and, for simplicity,

we assume that all the inequalities are strict, i.e., β(π)i > 0, π = 1, 2, i ∈ M .

These restrictions, combined with (22), yield the following necessary condition

for separation of weights and utilities: for all ri, si, i ∈M ,

log b(1)(ri)

log b(2)(ri)
=
log b(1)(si)

log b(2)(si)
> 0. (23)

However, we can now easily show that this necessary condition is also sufficient

for the desired weights to exist. First, take a fixed z = (z1, ..., zi, ..., zm), and,

for i ∈M , select arbitrary constants β(2)i > 0 and then set

β
(1)
i = β

(2)
i

log b(1)(zi)

log b(2)(zi)
. (24)

Using these definitions and (23), it is clear that, as required, (21) and (22) hold

for all attribute-levels ri, si, i ∈M .
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Finally, the scale values required in (19) are given by

eb(zi) = b(1)(zi)
1

β
(1)
i = b(2)(zi)

1

β
(2)
i ,

with the equality of these two values following from (24).

However, it is customary to require that, for π = 1, 2,
mP
i=1

β
(π)
i = 1, and it

is not obvious whether or not (23) is sufficient for weights to exist satisfying

these constraints as well as (22) for all attribute-levels ri, si, i ∈M . In fact, if

we restrict our attention to the case where each profile has two attributes, i.e.,

m = 2, and there are two different instructions, then solving for the β(π)i requires

solving a nonlinear programming problem with the constraints: for i, π = 1, 2,
mP
i=1

β
(π)
i = 1 and β

(π)
i > 0. We have derived the explicit solution, which exists

only when there are specific relations between the values of

log b(1)(ri)

log b(2)(ri)

for i = 1, 2. It is not obvious how to derive the corresponding constraints for

general values of m and this may require the use of general nonlinear program-

ming methods.

Thus, an open problem is to characterize the (best) weighted attribute-level

Luce model.

Of course - and this is true of all the approaches that we discuss in this

section - we could assume that the relevant theoretical assumptions are valid,

in particular that the importance weights (possibly) vary across tasks and the

utility values remain the same across tasks, and find the best fit to the data under

these assumptions. However, without a clear understanding of the theoretical

properties underlying the data, it may be difficult to reach clear conclusions

about the adequacy of various fits to the data.
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A parallel open problem and issues apply to the weighted attribute-level

maxdiff model.

6.2.2 Approach 2

Here, in addition to the tasks in Section 6.2.1, participants are asked to evaluate

the six attributes using a constant sum scale (100 points) to indicate how im-

portant each attribute (not attribute-level) is relative to the other attributes in

each task separately, i.e., under each of the two different instructions - business

or pleasure (for an example with one task instruction, see Louviere & Islam,

2007). We can now proceed, as in Section 6.2.1, to check whether or not those

importance weights can be used, with utility values unchanged across the two

tasks, to fit the (best) attribute-level Luce model to the best data under each of

the two task instructions. Notice that we can carry out such fits in a standard

way, such as maximum likelihood, since here we are assuming that the impor-

tance weights involved in each best attribute-level task are those obtained from

the constant sum task. Thus, we do not need, though we will still like to have, a

characterization of the attribute-level Luce model to test these ideas. Of course,

if the importance weights obtained from the constant sum tasks are essentially

the same for both tasks, then, as before, we cannot estimate the utility value

for each attribute-level. Also, conceptually, this approach makes more sense in

fitting the data of individual participants than in fitting group data, though it

will be of interest to consider the latter and think more about when this type

of approach might be valid for such fits.

[ajm: A variant of this approach involves an experimental design where

subsets of the six attributes are presented for evaluation - see the related material

in Section 6.2.4.]
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6.2.3 Approach 3

A variant on the approach used in Section 6.2.2 to obtain importance weights is

to use best-worst designs where appropriately balanced subsets of the attributes

(not attribute-levels) are presented to each participant who is instructed to select

the most important and the least important attribute in each subset under

each task instruction, i.e., business and pleasure (with one task instruction, see,

for example, Finn & Louviere, 1992; Louviere & Islam, 2007). These best-

worst attribute, not attribute-level, data are fit by the maxdiff model, with the

resulting scale values being interpreted as the importance weights in the best-

worst attribute-level tasks. One then proceeds as in Section 6.2.2, with parallel

concerns.

It is important to note that, in this approach, it is assumed that the impor-

tance weights (may) depend on the task instruction (business versus pleasure)

but do not depend on the currently presented subset of attributes. Next, we

consider a related best-worst attribute task where we do assume that the im-

portance weights (may) depend on the (sub)set of attributes presented.

6.2.4 Approach 4

Here, an experimental design is constructed that involves a set of partial profiles

- that is, profiles where only a subset of the full attribute set is present in each

profile. We assume that this set of partial profiles includes all attributes and all

levels in a balanced manner across presentations - for instance, the attributes of

the partial profiles can be selected according to a 2n, n ≤ m, fractional factorial

design. For each partial profile, a participant selects the best and the worst

attribute-level of that profile (for a similar design for attributes, not attribute-

levels, see Louviere and Islam, 2007).

Now, assume that there is a (fixed) set of importance weights βk > 0,
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k = 1, ...,m, with
mP
k=1

βk = 1, that apply when, as in Section 6.2.1, a full

profile is presented to the participant under a specific task instruction (e.g.,

vacation or business trip). Then a first assumption to consider is that the

importance weights in a partial profile under the same task instruction are

given by applying the Luce (MNL) choice model (Luce, 1959/2005) to these

weights. To develop this assumption, for each partial profile Π, define the vec-

tor a(Π) = (a1(Π), ..., am(Π)) by

ai(Π) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if attribute i occurs in partial profile Π

0 otherwise

,

and assume that, when partial profile Π is presented, the importance weights,

which may be called relative, are given by

βi(Π) =
ai(Π)βi

mP
j=1

aj(Π)βj

(i ∈M). (25)

Note that the definition of the vector a(Π) implies that ak(Π) = 0 for any

attribute k that is not present in the partial profile Π and that the sum of the

weights βi(Π) over the attributes that are present in the partial profile Π equals

1.

Now, assume that the weighted attribute-level maxdiff model, (19), holds

for the best-worst attribute-level choice probabilities on the full profiles P and

that the best-worst attribute-level choice probabilities for each partial profile Π

are represented by the attribute-level maxdiff model with the same scale eb but
with weights (exponents) βi(Π) given by (25).

Then, by assumption, the relative importance weights in (25) satisfy the

constant ratio property of the Luce (or MNL) choice model (Luce, 1959/2005) -
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in particular, for every partial profile Π and all attributes i, j ∈ {1, ...,m} that

occur in the partial profile Π,

βi(Π)

βj(Π)
=

βi
βj

, (26)

where βk, k = 1, ...,m, are the weights when all the attributes are present.

Thus, one can fit the best-worst attribute data for the various (partial) profiles

assuming that the importance weights are constrained by (26) and that the

utility values remain constant across (partial) profiles.

Norman (1980) developed essentially this approach, but in terms of variance

accounted for by each attribute for each partial profile context (in a rating

task), rather than (best-worst attribute-level) choice. He found support for the

constant ratio rule in his own study of the rating of job candidates, plus 22

other data sets.

7 Discussion and Conclusions

The results in this paper extend Marley and Louviere’s (2005) results for best

and best-worst choice among objects to best and best-worst choices among lev-

els of attributes in experimentally designed profiles. The archetypal application

of our work would be to one-at-a-time conjoint measurement/conjoint analysis

profiles where individuals are asked to evaluate several combinations of attribute

levels constructed from an orthogonal array (e.g., Green 1974; Louviere 1988;

Luce & Tukey 1969). Our results demonstrate that if individuals make choices

in best-worst choice tasks according to the models derived in this paper, one

can measure the attribute levels of all attributes on a common underlying scale,

allowing inter-dimensional latent scale comparisons within individuals. We be-

lieve that our results constitute the first demonstration that an elicitation task
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and associated choice model can be used to estimate subjective attribute level

values on such a common scale.

We hope that eventually the theory and data of the type described in this pa-

per can be used to separate attribute weights and utility values in various prob-

abilistic models of best and best-worst attribute-level choices. The challenge is

to demonstrate that there are models and designs like the ones described in the

paper that, in theory and in practice, are sufficient to separate these factors.

Norman’s (1980) early contribution, and Louviere and Islam’s (2007) recent

work, encourage us in our belief that this is possible [ajm: delete: , even

whilst we acknowledge the long history of failed attempts in this area]. Mar-

ley (1991) summarizes earlier work on context dependent probabilistic choice

models that may suggest ways to approach the theoretical challenge. The asso-

ciated empirical challenge will be to collect sufficiently reliable data to evaluate

the models.

[ajm: delete the following paragraph, as per Referee 1 (or re-

vise and place elsewhere):] Finally, it is worth noting that the best-worst

choice tasks discussed in the paper produce sufficient data to allow one to de-

rive estimates for individuals. Naturally, the “quality” of the resulting estimates

will depend on the quantity (the sample size) and quality (reliability and va-

lidity) of the choice data. However, the empirical experience of one of the

authors is that typically the resulting estimates are sufficient to allow a wide

variety of additional analyses to be performed on the estimates, such as various

clustering methods to identify groups, testing for relationships with covariates

that describe differences in individuals and the like. Thus, it is likely that the

attribute-level estimates described in this paper will eventually be as useful as

the object based estimates described by Marley and Louviere (2005) that now

are routinely used in many marketing and survey research applications.]
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8 Proofs

Theorem 3

Proof. It is routine to check that if set of best choice probabilities on a finite set

T satisfies a set-dependent Luce model, (1), then it satisfies the set-dependent

constant ratio rule, (2), and that if it satisfies Luce’s model, then it satisfies the

constant ratio rule. So it remains to prove the converses.

First assume that the set-dependent constant ratio rule holds and for z ∈ T ,

let

bT (z) = BT (z)

and for {r, s} ⊆ Z ⊆ T , |Z| ≥ 2, let

ϕT (Z) =
log BZ(r)

BZ(s)

log BT (r)
BT (s)

(r 6= s).

The function ϕT is well-defined since, by the set-dependent constant ratio rule,

(2), it is independent of the selected elements r, s ∈ Z, r 6= s. Note that

ϕT (T ) = 1. Also, T is fixed throughout the development so from here on we

write b(z) for bT (z) and ϕ(Z) for ϕT (Z). Using all of these properties, we have

for X ⊆ T , |X| ≥ 2, x, y ∈ X, x 6= y,

ϕ(X) log
b(y)

b(x)
=

log BX(y)
BX(x)

log BT (y)
BT (x)

. log
BT (y)

BT (x)

= log
BX(y)

BX(x)
,

i.e. for x 6= y,
BX(y)

BX(x)
=

∙
b(y)

b(x)

¸ϕ(X)
.

Clearly, the above formula also holds when x = y, and summing over y ∈ X, we
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have

1

BX(x)
=

X
y∈X

BX(y)

BX(x)
=
X
y∈X

∙
b(y)

b(x)

¸ϕ(X)

=

P
y∈X b(y)ϕ(X)

b(x)ϕ(X)
,

i.e.,

BX(x) =
b(x)ϕ(X)P
y∈X b(y)ϕ(X)

, (27)

which is the representation for a set-dependent Luce model.

Now, we show that b is a loginterval scale and ϕ a ratio scale with the unit

of ϕ the reciprocal of the unit of b. So suppose that b0, ϕ0 are another pair of

functions such that for each x ∈ X ⊆ T ,

BX(x) =
b0(x)ϕ

0(X)P
y∈X b0(y)ϕ0(X)

. (28)

In particular, for each x ∈ T ,

b(x) = BT (x)

=
b0(x)ϕ

0(T )P
y∈T b0(y)ϕ0(T )

.

Letting

a0 =
1P

y∈T b0(y)ϕ0(T )
, α0 = ϕ0(T ),

then we have

b = a0(b0)α
0
, (29)

i.e., b is a loginterval scale.
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Also, using (29) with (27), (28), we obtain: for x, y ∈ X, x 6= y,

µ
b0(x)

b0(y)

¶ϕ0(T )ϕ(X)
=

µ
b(x)

b(y)

¶ϕ(X)
=

BX(x)

BX(y)
=

µ
b0(x)

b0(y)

¶ϕ0(X)
,

i.e., ϕ = ϕ0

ϕ0(T ) =
ϕ0

α0 is a ratio scale, with the unit of ϕ, i.e., 1/α
0, the reciprocal

of the unit of b, i.e., α0.

Finally, when the constant ratio rule holds, the above proof gives, for all

Z ⊆ T , ϕ(Z) = ϕT (Z) = 1, and the representation reduces to that of Luce’s

model.

Theorem 8

Proof. Remember that we are assuming that 3−reversibility hold vacuously

when |T | ≥ 2.

It is routine to check that if set of best-worst choice probabilities on a finite

set T , |T | ≥ 2, satisfies a set-dependent maxdiff model, (3), then it satisfies the

set-dependent best-worst constant ratio rule, 2−invertibility and 3−reversibility,

and that if it satisfies the maxdiff model, then it satisfies the best-worst con-

stant ratio rule, 2−invertibility and 3−reversibility. So it remains to prove the

converses.

Fix xo ∈ T and for arbitrary z ∈ T , let

bT (z) =

⎧⎪⎨⎪⎩ 1 if z = xo.³
BWT (z,x0)
BWT (x0,z)

´ 1
2

if z 6= x0.
(30)

and for Z ⊆ T , |Z| ≥ 2, r, s ∈ Z, r 6= s, let

φT (Z) =
log BZ(r,s)

BZ(s,r)

log BT (r,s)
BT (s,r)

(r 6= s). (31)

The function φT is well-defined since, by (4), it is independent of the selected
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elements r, s ∈ Z, r 6= s. Note that φT (T ) = 1. Also, T is fixed throughout the

development so from here on we write b(z) for bT (z) and φ(Z) for φT (Z).

We show first that (30) with 3−reversibility, (6), implies that for all r, s ∈ T ,

r 6= s,

b(r)

b(s)
=

µ
BWT (r, s)

BWT (s, r)

¶ 1
2

. (32)

For clarity, we separate the case |T | = 2 from |T | ≥ 3.

Case 1. |T | = 2.

First, using (30), it is easily checked that (32) holds if r or s is x0 and so

(32) holds if |T | = 2.

Case 2. |T | ≥ 3.

Again, using (30), it is easily checked that (32) holds if r or s is x0. So

consider r 6= x0, s 6= x0. Then] using (30) with 3−reversibility, (6), for X = T ,

we have

b(r)

b(s)
=

µ
BWT (r, x0)

BWT (x0, r)
.
BWT (x0, s)

BWT (s, x0)

¶ 1
2

=

µ
BWT (r, s)

BWT (s, r)

¶ 1
2 .

,

and so (32) holds for all r, s ∈ T.

We now use the properties of b, (32), and the definition of φ, (31), to obtain

the representation for the set-dependent maxdiff model, (3), for arbitrary T, |T |

≥ 2.

We have: for X ⊆ T , |X| ≥ 2, r, s ∈ X,

φ(X) log
b(r)

b(s)
=

log BWX(r,s)
BWX(s,r)

log BWT (r,s)
BWT (s,r)

.
1

2
log

µ
BWT (r, s)

BWT (s, r)

¶
=

1

2
. log

BWX(r, s)

BWX(s, r)
.
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i.e., µ
b(r)

b(s)

¶φ(X)
=

µ
BWX(r, s)

BWX(s, r)

¶ 1
2

.

Then, for given x, y ∈ X, x 6= y, we have

P
r,s∈X
r 6=s

³
b(r)
b(s)

´φ(X)
³
b(x)
b(y)

´φ(X) =

P
r,s∈X
r 6=s

³
BWX(r,s)
BWX(s,r)

´ 1
2

³
BWX(x,y)
BWX(y,x)

´ 1
2

=
1

BWX(x, y)
.
X
r,s∈X
r 6=s

[BWX(x, y)BWX(y, x)]
1
2

µ
BWX(r, s)

BWX(s, r)

¶ 1
2

.

(33)

Thus, if we can show that

X
r,s∈X
r 6=s

[BWX(x, y)BWX(y, x)]
1
2

µ
BWX(r, s)

BWX(s, r)

¶ 1
2

= 1, (34)

then (33) gives, for x 6= y,

BWX(x, y) =

³
b(x)
b(y)

´φ(X)
P

r,s∈X
r 6=s

³
b(r)
b(s)

´φ(X)
which is the representation for the set-dependent maxdiff model, (3). So we now

show that (34) holds. Using 2−invertibility, (5),

X
r,s∈X
r 6=s

[BWX(x, y)BWX(y, x)]
1
2

µ
BWX(r, s)

BWX(s, r)

¶ 1
2

=
X

r,s∈X
r 6=s

[BWX(r, s)BWX(s, r)]
1
2

µ
BWX(r, s)

BWX(s, r)

¶ 1
2

=
X

r,s∈X
r 6=s

BWX(r, s) = 1,
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as desired.

We now show that b is a loginterval scale and φ a ratio scale. So suppose

that b0, φ0 are another pair of such functions. We first consider z ∈ T − {x0},

and consider the special case z = x0 at the end of the argument. For z 6= x0,

b(z) =

µ
BWT (z, x0)

BWT (x0, z)

¶ 1
2

=

⎡⎢⎣
³

b0(z)
b0(x0)

´φ0(T )
³
b0(x0)
b0(z)

´φ0(T )
⎤⎥⎦

1
2

=

"µ
b0(z)

b0(x0)

¶2φ0(T )# 1
2

=
b0(z)φ

0(T )

b0(x0)φ
0(T )

.

Now let

a0 =
1

b0(x0)φ
0(T )

, α0 = φ0(T ).

Then, remembering that we have assumed that z 6= x0, we have b(z) = a0[b0(z)]α
0

for z 6= x0 and φ = αφ0. However, it is obvious, using the fact that b(x0) = 1,

that we also have b(x0) = a0[b0(x0)]
α0 . Therefore

b = a0(b0)α
0
, (35)

i.e., b is a loginterval scale.

Also, using (35) with the set-dependent maxdiff model, (3), for each of the

pairs (b, φ) and (b0, φ0), we obtain: for x, y ∈ X, x 6= y,

µ
b0(x)

b0(y)

¶2φ0(X)
=

BWX(x, y)

BWX(y, x)
=

µ
b(x)

b(y)

¶2φ(X)
=

µ
b0(x)

b0(y)

¶2φ0(T )φ(X)
,

i.e., φ = φ0

φ0(T ) =
φ0

α0 is a ratio scale, with the unit of φ, i.e., 1/α
0, the reciprocal
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of the unit of b, i.e., α0.

Finally, when the best-worst constant ratio rule holds, the above proof gives,

for all Z ⊆ T , φ(Z) = φT (Z) = 1, so the representation reduces to the maxdiff

model. Also, using notation as in the above proof, this implies that φ(T ) = 1 =

φ0(T ) for any pair of representations. However, in that proof φ0(T ) = α0, hence

α0 = 1, so (35) reduces to b = a0b0, i.e., b is a ratio scale.

Theorem 11

Proof. It is routine to check that if a set of best choice probabilities on a finite

set of profiles P satisfies an attribute-level Luce model, (8), with b a ratio scale,

then it satisfies 2−, 3−, and 4−reversibility, Def. 10. So it remains to prove the

converse.

Let ∗ = (∗1, ..., ∗m) denote a fixed vector of attribute-levels and so ∗j is the

level of ∗ on the jth attribute. For any attribute-level vg, let ∗\vg denote the

vector that agrees with ∗ except - possibly - on attribute-level vg. The reason

for the parenthetic “possibly” is that if ∗g 6= vg then ∗\vg differs from ∗, whereas

if ∗g = vg then ∗\vg is identical to ∗ - and each case occurs.

Now define the scale b by the following9: for g ∈M

b(vg) =

⎧⎪⎨⎪⎩
B∗\vg (vg)

B∗\vg (∗m)
if g 6= m.

B∗\vg (vg)

B∗\vg (∗h)
B∗(∗h)
B∗(∗m) (h 6= m) if g = m.

(36)

Note that when g = m and vg = ∗m, the second line of (36) gives b(vg) =

b(∗m) = 1.

1. We first show that 2−reversibility, (9), implies that (36) does not depend
9We could define the scale values by the single condition

b(vg) =
B∗\vg (vg)

B∗\vg (∗h)
B∗(∗h)
B∗(∗m)

(h 6= g),

which includes our split condition as a special case. However, the proof would then need to be
carried out using “5−reversibility”, the obvious generalization of n−reversibility, n = 2, 3, 4.
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on the selected attribute h 6= m for the case g = m. (There is nothing to prove

when g 6= m.)

Ifm = 2, then the only possible value for h is h = 1 and so there is nothing to

prove. For m > 2, take h 6= h0 with each different from m. Then, remembering

that g = m, the value of b(vg) is independent of h iff, when h 6= h0,

B∗\vm(vm)

B∗\vm(∗h)
B∗(∗h)
B∗(∗m)

=
B∗\vm(vm)

B∗\vm(∗h0)
B∗(∗h0)
B∗(∗m)

,

which reduces to

B∗(∗h)B∗\vm(∗h0) = B∗(∗h0)B∗\vm(∗h).

However, this equality holds as it is the special case of 2−reversibility, (9), with

r = ∗, s = ∗\vm, i = h, j = h0, and so ri = si = ∗h and rj = sj = ∗h0 .

2. Next, we show that (36) with 3− and 4−reversibility, (10) and (11),

implies that for all v,

b(vi)

b(vj)
=

Bv(vi)

Bv(vj)
, (37)

and from this obtain the desired representation.

It is clear that (37) holds when i = j, so in the remainder of the proof we

assume that i 6= j.

Case 1. i = m, j 6= m. (The case i 6= m, j = m is equivalent to this

one.) This case includes that where m = 2, since in that case i 6= j forces

i = m, j 6= m (or the equivalent i 6= m, j = m). Now, consider 4−reversibility,

(11), with r = ∗\vi, s = ∗, t = ∗\vj , u = v, and let k = m, l = j. Then,

because i = m, j 6= m, we have, as required by 4−reversibility, i 6= j, j 6= k and

k 6= l. Also, ri = ui = vi, sj = rj = ∗j , tk = sk = ∗m, ul = tl = vj and so
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4−reversibility becomes

B∗\vi(vi)B∗(∗j)B∗\vj (∗m)Bv(vj)

= B∗\vi(∗j)B∗(∗m)B∗\vj (vj)Bv(vi)

The above equality, with (36) for g = i = m, h = j 6= m and, separately, for

g = j 6= m, gives

b(vi)

b(vj)
=

µ
B∗\vi(vi)

B∗\vi(∗j)
B∗(∗j)
B∗(∗m)

¶
B∗\vj (∗m)
B∗\vj (vj)

=
Bv(vi)

Bv(vj)

Case 2. i 6= m, j 6= m. We showed that if m = 2, then Case 1 holds, so

here we can assume that m ≥ 3. Now, 3−reversibility, (10), with k = m, r = v,

s = ∗\vj , t = ∗\vi and so ri = vi, sj = vj , tk = sk = ∗m, gives i 6= j, j 6= k and

Bv(vi)B∗\vj (vj)B∗\vi(∗m)

= Bv(vj)B∗\vj (∗m)B∗\vi(vi),

which with (36) for g = i 6= m, and, separately, for g = j 6= m, gives

b(vi)

b(vj)
=

B∗\vi(vi)B∗\vj (∗m)
B∗\vi(∗m)B∗\vj (vj)

=
Bv(vi)

Bv(vj)
.

3. Using the result that (37) holds for all i, j, we have for each profile z = (z1, ..., zm),P
j∈M b(zj)

b(zi)
=
X
j∈M

b(zj)

b(zi)
=
X
j∈M

Bz(zj)

Bz(zi)
=

P
j∈M Bz(zj)

Bz(zi)
=

1

Bz(zi)
,
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i.e.,

Bz(zi) =
b(zi)P

j∈M b(zj)
,

which is the representation of the attribute-level Luce model, (8).

4. Finally, we show that b is a ratio scale. If b0 is another such function, then

when j 6= m,

b(vj) =
B∗\vj (vj)

B∗\vj (∗m)

=
b0(vj)

b0(∗m)
= a0b0(vj),

with a0 = 1/b0(∗m).

Similarly, when j = m, there is h 6= m with

b(vj) =
B∗\vh(vj)

B∗\vh(∗h)
B∗(∗h)
B∗(∗m)

=
b0(vj)

b0(∗h)
b0(∗h)
b0(∗m)

=
b0(vj)

b0(∗m)
= a0b0(vj),

with a0 = 1/b0(∗m).

Thus, b = a0b0, so b is a ratio scale.

Theorem 15

Proof. It is routine to check that if a set of best-worst choice probabilities on a

finite set of profiles P satisfies a maxdiff weighted attribute-level choice model,

(12), then it satisfies 2−invertibility, Def. 13, and 3− and 4−reversibility, Def.

14. So it remains to prove the converse.

As in the proof of Theorem 11, let ∗ denote a fixed vector of attribute-levels,
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and define the scale b by the following:

b(vg) =

⎧⎪⎨⎪⎩
³
BW∗\vg (vg,∗m)
BW∗\vg (∗m,vg)

´ 1
2

if g 6= m³
BW∗\vg (vg,∗h)
BW∗\vg (∗h,vg)

BW∗(∗h,∗m)
BW∗(∗m,∗h)

´ 1
2

(h 6= m) if g = m

. (38)

Note that, when g = m and vg = ∗m, the second line of (38) gives b(vg) =

b(∗m) = 1.

1. We show first that a special case of 4−reversibility, (15), implies that (38)

does not depend on the selected attribute h 6= m for the case g = m. (There is

nothing to prove when g 6= m).

If m = 2, then the only possible value for his h = 1 and so there is nothing

to prove. For m > 2, take h 6= h0 with each different from m. Then the value of

b(vg) is independent of h iff, when h 6= h0 and g = m,

BW∗\vm(vm, ∗h)
BW∗\vm(∗h, vm)

BW∗(∗h, ∗m)
BW∗(∗m, ∗h)

=
BW∗\vm(vm, ∗h0)
BW∗\vm(∗h0 , vm)

BW∗(∗h0 , ∗m)
BW∗(∗m, ∗h0)

,

i.e., iff

BW∗\vm(vm, ∗h)BW∗(∗h, ∗m)BW∗(∗m, ∗h0)BW∗\vm(∗h0 , vm)

= BW∗\vm(vm, ∗h0)BW∗(∗h0 , ∗m)BW∗(∗m, ∗h)BW∗\vm(∗h, vm)

However, the equality holds as it corresponds to the special case of 4−reversibility,

(15), with u = r = ∗\vm, s = t = ∗ and j = h 6= m, l = h0 6= m, i = k = m.

In particular, we have i 6= j, j 6= k, k 6= l, as required in the definition of

4−reversibility.

2. Now we show that (38) with 3− and 4−reversibility, (14) and (15), implies

that, for all v and vi, vj ,
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b(vi)

b(vj)
=

µ
BWv(vi, vj)

BWv(vj , vi)

¶ 1
2

. (39)

It is clear that (39) holds when i = j, so in the remainder of the proof we assume

that i 6= j.

Case 1. i = m, j 6= m. (The remaining case, i 6= m, j = m, is equivalent to

this case). This case includes that where m = 2 since in that case i 6= j implies

i = m, j 6= m (or the equivalent i 6= m, j = m). Now, consider 4−reversibility,

(15), with r = v, s = ∗\vj , t = ∗, u = ∗\vi and k = m, l 6= m. Then

ri = ui = vi, sj = rj = vj , tk = sk = ∗m, ul = tl = ∗l, i 6= j, j 6= k, k 6= l ,

which gives

BWv(vi, vj)BW∗\vj (vj , ∗m)BW∗(∗m, ∗l)BW∗\vi(∗l, vi)

= BW∗\vi(vi, ∗l)BW∗(∗l, ∗m)BW∗\vj (∗m, vj)BWv(vj , vi).

The above equality, and (38) with g = i = m, h = l 6= m and, separately,

g = j 6= m, together give

b(vi)

b(vj)
=

µ
BW∗\vi(vi, ∗l)
BW∗\vi(∗l, vi)

BW∗(∗l, ∗m)
BW∗(∗m, ∗l)

¶ 1
2
µ
BW∗\vj (∗m, vj)
BW∗\vj (vj , ∗m)

¶ 1
2

=

µ
BWv(vi, vj)

BWv(vj , vi)

¶ 1
2

Case 2. i 6= m, j 6= m. We showed that if m = 2, then Case 1 holds, so here

we can assume that m ≥ 3. Now, consider 3−reversibility, (14), with r = v,

s =∗\vj , t =∗\vi and k = m. Then ri = ti = vi, sj = rj = vj , sk = tk = ∗m,
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i 6= j, j 6= k, which gives

BWv(vi, vj)BW∗\vj (vj , ∗m)BW∗\vi(∗m, vi)

= BW∗\vi(vi, ∗m)BW∗\vj (∗m, vj)BWv(vj , vi).

The above equality, with (38) and g = i 6= m and, separately, g = j 6= m, gives

b(vi)

b(vj)
=

µ
BW∗\vi(vi, ∗m)
BW∗\vi(∗m, vi)

¶ 1
2
µ
BW∗\vj (∗m, vj)
BW∗\vj (vj , ∗m)

¶ 1
2

=

µ
BWv(vi, vj)

BWv(vj , vi)

¶ 1
2

.

Thus, we have (39) for all v and i, j ∈M , i 6= j.

3. Using the fact that (39) holds, we have for a each profile z = (z1, ..., zm),

P
k,l∈M
k 6=l

³
b(vk)
b(vl)

´
³
b(vi)
b(vj)

´ =

P
k,l∈M
k 6=l

³
BWv(vk,vl)
BWv(vl,vk)

´ 1
2

³
BWv(vi,vj)
BWv(vj ,vi)

´ 1
2

=
1

BWv(vi, vj)

×
X

k,l∈M
k 6=l

[BWv(vi, vj)BWv(vj , vi)]
1
2

µ
BWv(vk, vl)

BWv(vl, vk)

¶ 1
2

.

(40)

Thus, if we can show that

X
k,l∈M
k 6=l

[BWv(vi, vj)BWv(vj , vi)]
1
2

µ
BWv(vk, vl)

BWv(vl, vk)

¶ 1
2

= 1, (41)
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then (40) gives

BWv(vi, vj) =

³
b(vi)
b(vj)

´
P

k,l∈M
k 6=l

³
b(vk)
b(vl)

´ ,
which is the representation of the attribute-level maxdiff model, (12). So we

now show that (41) holds. Using 2−invertibility, (13),

X
k,l∈M
k 6=l

[BWv(vi, vj)BWv(vj , vi)]
1
2

µ
BWv(vk, vl)

BWv(vl, vk)

¶ 1
2

=
X

k,l∈M
k 6=l

[BWv(vk, vl)BWv(vl, vk)]
1
2

µ
BWv(vk, vl)

BWv(vl, vk)

¶ 1
2

=
X

k,l∈M
k 6=l

BWv(vk, vl) = 1,

as desired.

4. Finally, we show that b is a ratio scale. If b0 is another such function, then

when i 6= m,

b(vi) =

µ
BW∗\vi(vi, ∗m)
BW∗\vi(∗m, vi)

¶ 1
2

=
b0(vi)

b0(∗m)
= a0b0(vi),

with a0 = 1/b0(∗m).
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Similarly, when i = m, there is h 6= m with

b(vi) =

µ
BW∗\vi(vi, ∗h)
BW∗\vi(∗h, vi)

BW∗(∗h, ∗m)
BW∗(∗m, ∗h)

¶ 1
2

=
b0(vi)

b0(∗h)
b0(∗h)
b0(∗m)

=
b0(vi)

b0(∗m)
= a0b0(vi),

with a0 = 1/b0(∗m).

Thus, b = a0b0, so b is a ratio scale.
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