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We present a fast and accurate method to calculate the vector-field distribution of a focused Gaussian beam.
This method is applied to calculate the second harmonic that is generated by such a beam from a sample in the

undepleted pump approximation.

These calculations can be used to model second-harmonic imaging in an

optical microscope with a wide aperture. © 2004 Optical Society of America

OCIS codes: 260.1960, 180.2520, 190.4350.

1. INTRODUCTION

Nonlinear microscopy originated in the 1970s from the
work of Hellwarth and Christensen.! Subsequently,
Gannaway and Sheppard® reported the production of mi-
croscope images from ecrystals, using scanning and
second-harmonic generation with a focused laser beam.
Sheppard and Kompfner® pointed out that the high mag-
nitudes of electric field produced at the focus of a focused
laser beam would be expected to result in the excitation of
a range of different nonlinear optical effects other than
second-harmonic generation, including the generation of
sum frequencies, Raman scattering, and two-photon fluo-
rescence. They described how the efficiency of genera-
tion is improved by short pulses. Widespread use of non-
linear microscopy therefore awaited the availability of
commercial ultrashort laser sources. Although two-
photon fluorescence microscopy is now a well-established
technique in biological studies, the use of harmenic gen-
eration in biological applications is still comparatively in
its infancy. Important applications are the enhancement
of contrast in unlabeled biological material,*~% imaging of
cell membranes™® and membrane potentials,9'10 and im-
aging of surfaces! and thin films.!'?

The theory of second-harmonic generation by weakly
focused Gaussian beams is well known.’® An important
property is that the Gouy phase shift experienced on tra-
versing the focus limits the thickness of a medium that
can efficiently generate second-harmonic radiation.
However, this theory assumes that the angular spectrum
of the incident radiation effectively propagates all at the
same angle relative to the material axes. Thus phase
matching can be achieved for the complete angular spec-
trum. This assumption is obviously not valid when using
a microscope objective of high numerical aperture.
Second-harmonic generation is also a vector effect, and it
is known that the polarization of a tightly focused laser
beam varies throughout the focal region, including both a
cross component and an axial component of polarization
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for illumination with a plane-polarized beam. In spite of
its importance, the vector theory of the multiple-photon
imaging has not been addressed so far.

Our aim here is to develop a general method that can
effectively calculate the nonlinear multiphoton imaging
generated by a tightly focused vignetted Gaussian beam.
Although the method is applied to second-harmonic imag-
ing by a focused vector Gaussian beam, it can straightfor-
wardly be extended to include other types of nonlineari-
ties. The structure of the paper follows. In Section 2,
we first present a method for accurate and fast calcula-
tion of a wave field of the vector focused Gaussian beam,
while in Section 3 we investigate the properties of the
second-harmonic generation produced by a beam. Fi-
nally, in Section 4 we discuss our results and conclude.

2. WAVE FIELD OF FOCUSED, VECTOR
GAUSSIAN BEAMS

Here we present an efficient and accurate method for cal-
culating the vector field in the focal region of a Gaussian
beam. There are a number of ways in which this can be
achieved. In the scalar approximation, the wave field at
the focus of a lens of large Fresnel number can be de-
scribed by the Debye integral."* More rigorous descrip-
tions that include the evanescent waves are given by the
Kirchoff and Rayleigh-Sommerfeld integrals.!> The De-
bye representation was extended to take into account the
vector nature of the electromagnetic waves by
Ignatovsky'® and by Richards and Wolf.!7 This extension
gives accurate account of the intensity distribution in the
focal region for many practical applications. Yoshida and
Asakura used this extension to calculate the electromag-
netic field of a focused vignetted Gaussian beam.!® In
the vector Debye approximation' for a linearly polarized
wave along the x axis, the components of the electric field
E at the focus can be written as

© 2004 Optical Society of America
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where A = kf/2. Here rp is the radius vector of the ob-
servation point measured from the focal spot, f is the focal
length, 2 = 27/\ is the wave number, B(4, ¢) is the dis-
tribution of the amplitude of the incident wave on the ap-
erture of the lens, tan ¢ = aff is the half of the angular
aperture seen from the focus, and a is the radius of the
aperture. Here the direction of the propagation is along
the z axis. In this paper, we consider only azimuthally
symmetric distributions, for which amplitude factor B
does not depend on the azimuthal angle ¢. The unit vec-
tor s determines the direction of the propagation of the
virtual rays originated at the surface of the lens. For a
Gaussian beam, B( 4, ¢) is given by

B(8, ¢) = exp(~ftan® H/W?), 4)

where W is the width. For an incident plane wave, where
B(#, ¢) = 1, the integrals (1)-(3) have been calculated in
the form of a series that involve Gegenbauer ultraspheri-
cal polynomials and spherical Bessel functions by Kant.'?
Sheppard and Tork®® noted that Gegenbauer polynomi-
als are closely related to the associated Legendre func-
tions P* and suggested that Kant’s expansion perhaps
could be interpreted in terms of multipole fields. In con-
trast to Sheppard and Térok,%® who use multipoles to find
the field at the focal points, here we used the multipole
expansions to calculate the diffraction integrals effi-
ciently. Below, we explicitly show how this connection
can be established.

First, we expand the plane wave exp(iks-rp), where
ke = ks in Eqs. (1)~(3) in the series?!

<

exp(iks-rp) = 472, i'j(krp)
=0
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where the Y, are the spherical harmonics defined as in
Jackson,? while dp and ¢p are the spherical angles of the
observation point rp. After substitution of Eq. (5) into
Egs. (1)-(3) and integration over the azimuthal angle ¢,
the components of the electric field E can be written as an
absolutely convergent series by the properties of the

spherical Bessel functions,?? as
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where P{¥(x) represents generalized Legendre polynomi-
als. For the incident Gaussian beam (4), the amplitude
distribution B takes the form

B(x) = exp[—f*(1 - x®/(W3x?)]. (12)

To calculate field, the series (6)—(8) must be truncated
at some value ! = [, , where [ ., is determined by

Lo = krp. (13)

In most applications, including that of interest here, one
is interested in the distribution of the wave field in the fo-
cal region. When evaluating the field using the series
(6)-(8), we require approximately krp terms, where rp is
the distance from the focal point. Since the region of in-
terest here extends several wavelengths out from the fo-
cal point, krp = 10-20, and we have found that 30 terms
gives sufficient precision for each field point. In contrast,
for the direct evaluation of (1)-(3), the integrands of
which are strongly oscillatory, we require a two-
dimensional integration through the entire focal region.
Since we require roughly 20 integration points per wave-
lengths for accurate evaluation, the two-dimensional inte-
gral requires approximately 100 X 100 = 10* function
evaluations. Therefore the evaluation via the absolutely
convergent series (6)-(8) is much more efficient.

The integrals Ii” — I!* in Egs. (9)-(11) can be calcu-
lated numerically. They are oscillating functions of [,
and some difficulties can be associated with their calcula-
tion for large values of [ (I = 30). However, this is
never a significant issue, because in most applications
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z/A
Fig. 1. Intensity distribution in the xz plane near the focus of a
convergent Gaussian beam. The initial Gaussian beam is taken
to be linearly polarized along the x axis.

z/ A

As in Fig. 1, but in the yz plane.

only the field in the vicinity of the focus is needed, where
condition (13) holds. Note that the main advantage of
Eqgs. (6)—(8) over the direct integration of Egs. (1)-(3)'*
is that it is not necessary to calculate highly oscillating
integrals like Eqs. {1)—(3) for every observation point. So
once the amplitudes of the multipoles 7}’ are calculated,
the field distribution at the focus can be determined by
the summation of the absolutely convergent series (6)-(8).
Thus the method is highly accurate and numerically ef-
fective.

As an example, we consider an incoming vector Gauss-
ian beam that is linearly polarized in the x direction and
that is focused by a lens of focal length f and aperture ra-
dius « that is positioned at the beam waist, which has a
radius W. The lens has a numerical aperture sin«
= a/\,’m“fw = (.5, and we choose W such that the vi-
gnetting of the intensity level of the Gaussian beam at the
edge of the aperture is exp(—2a¥W?) = 0.7, so that W/a
~ 2.38. Finally, we take f/\ = 577. These are the
typical parameters used in a nonlinear microscope. In
Figs. 1-3, we plot the logarithm of the intensity distribu-
tions log o BE*) of the field 3n the vicinity of the focus for
the xz, yz, and xy main sections. The intensity distribu-
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tion is symmetric with respect to the focal plane (see Figs.
1 and 2), which is a consequence of the Debye approxima-
tion. The typical Airy rings of the intensity distribution
are clearly seen in the focal plane (z = 0) in Fig. 3. Note
that the field intensity is mostly concentrated near the fo-
cal region. In Fig. 4, we plot the intensity distribution
|E|? along x and y axes at the focal plane z = 0. The in-
tensity along the x axis, the polarization direction of the
mmcident wave, is slightly wider than along the y axis. In
Fig. 5 we plot the same dependence, but along the z axis.
Note that in actual units, rather than the dimensionless
units used in Figs. 4 and 5, the wave-field distribution
along the optical z axis is much wider than that in the
transverse direction.

3. SECOND-HARMONIC GENERATION BY
A FOCUSED VECTOR GAUSSIAN
BEAM

In this section, we calculate the second-harmonic genera-
tion by the focused Gaussian beam considered in the pre-

Fig. 3. As in Fig. 1, but in the xy plane. The Airy pattern is
clearly seen.
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Fig. 4. Intensity distribution I = |E}* along x (dashed curve
and y axes (solid curve) in the focal planez = 0. We use the op-
tical coordinate scale v = k\x% + yZ sin a, and we normalize the

intensity with respect to the value at the focus.
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Fig. 5. Intensity distribution I = |E|? along the optical z axis.
We used optical coordinate scale v = kz sin® a, and we normalize
the intensity with respect to the value at the focus.

vious section in Eqgs. (6)-(8). The electric field E,, of the
rnth harmonic in the undepleted pump approximation sat-
isfies the equation®

z 4

“n o a)ﬁ (NL)
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¢ c

(14)

Here E, is the amplitude of the nth harmonic, *(w,) is
the linear part of the dielectric constant of the medium,
which we considered here to be isotropic and dispersive,
and P{"V(r) is the nonlinear part of the polarization ten-
sor. From Eq. (14), the amplitude of the electric field for
the second harmonic Ey(wy = 2w) can be written as

2

167k .
VXV XEy— ky’Ey = ——PN(r), (15
e“”(m)

where k45 = 2wyeV(wy)/e is the wave number of the sec-
ond harmonic, and 2 = wJeD(w)/c is the wave number
of the focused Gaussian beam, while PNV (r) is the non-
linear polarization of the second harmonic given by

Pyiws) = xH(wg; 0, 0)Ef0)E(0), (16)

with a summation over repetitive indices.
The formal solution of Eq. (15) can be written as

167k?2

= j(}(r; r) - PNYEHAV, (17
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where G(r; ') is the free space Green tensor,?* given by

exp(iks|r — r'[)

_ / 1
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ko
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where I is the unit tensor.

As mentioned in Section 1, the field is mostly concen-
trated at the focal spot. This region therefore contributes
mostly to the second-harmonic generation from Eq. (16).
Thus for a nonlinear medium of large extent, we can re-
strict the region of the integration in Eq. (17) to the neigh-
borhood of the focus. In fact, for the numerical integra-
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tion V', we choose here a prism around the focus, while
the use of a spherical integration volume is discussed in
Section 4.

For simplicity, we take the dielectric constant of the
sample to be unity €'V(w); thus we disregard the Fresnel
reflection of the converging Gaussian beam at the surface
of the sample. However, we can take into account the ef-
fects of the dispersion and investigate the consequences of
phase matching k, = 2k, when € V(wy) = ¢P(w), and
phase mismatching, when €P(w,) # (), but we use
the former only.

Below, we take x'?’ to be real, although our method also

applies to complex y'*'. There are various symmetry re-

lations between the different components of ngk) 23 Be-
cause the components of the tensor x'?’ for most biological
tissues are not well known, and vary spatially in any
case, as an example, we consider the second-harmonic
produced by BaTiO; erystals. This crystal belongs to the
group of crystals with tetragonal C,, point symmetry.

The largest elements of the nonlinear susceptibility ten-

sor are®
@) 2 D) )
Xis1 = X113 = X232 = Xoa3 = —82,
(2) — 2y — _
X311 = Xszm = —86,

Xaas = —16, 19

in 10 % esu. To find the values of x'?' tensor in SI system
of units, its components need to be multiplied by 47/(3
X 10%) = 4,189 X 107* to obtain ¥ in units of m/V.%®
We calculate the intensity distribution of the second-
harmonic generation produced by the focused Gaussian
beam discussed in Section 2. The orientation of the crys-
tal with respect to the optical axis of the system is as fol-
lows: «l13, yli1, zI2. The optical axis of the system is
parallel to the z axis, and the incident field is linearly po-
larized along the x axis. The numerical integrations in
Eq. (17) are carried out over the rectangular prism with
the sides x/\ =[-2:2], y/A =[-2:2], and =z/\
= [—3:3]. This region corresponds to the maximum in-
tensity at the focus, and hence only this part of the
sample contributes substantially to the generation of the

-800 -400 0 400 800

X/A

Fig. 6. Distribution of logyy|E 5|2 in the xy plane at z/\ = 577
from the focus. The coordinates x and y are measured in terms
of the wavelength.
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Fig. 7. Asin Fig. 6, but for IongE_‘,Q]Z component of the second
harmonic.
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Fig. 8. As in Fig. 6, but for logy/E,2|* component of the second
harmonic.
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Fig. 9. Intensity distribution log,g|E,|? of the second harmonic
in the xy plane.

second harmonic. We consider the case in which the
phase-matching condition holds (2, = 2k), and we calcu-
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Fig. 10. Section of Figs. 6-8 versus y/\ for |E,,|? (solid curve),
for |E,s|? (dotted curve), and for |E,,|? (dashed curve).

late the intensity distribution in the plane z/A = 577,
which is one focal length away from the focus.

In Figs. 6-9, we plot the distribution of the field com-
ponents of the generated second harmonic |E 5|, |E,5|%,
|E,5|?, while Fig. 10 shows the total intensity distribution
|Eol2. In this way, we present the data in a form that is
easily compared with experiment.” For this orientation
of the crystal and incident field, we observe that the vari-
ous components of the second-harmonic field satisfy
|E,s| < |E,5| < |E|. Hence the dominant contribution
comes from the E,, component, even though it is gener-
ated via the smallest of the quadratically nonlinear ten-
sor elements X%g [see Eq. (20)}. This is seen in Fig. 10,
where we plot the section of Figs. 6-9 along the y axis.
The second-harmonic field decreases at the points closer
to the optical axes z axis (see Fig. 10).

4. DISCUSSION AND CONCLUSIONS

The contribution to the second harmonic is dominated by
the E, component of the field, which is also the polariza-
tion direction of the incoming fundamental field. The rel-
evant element of the nonlinear susceptibility is x333,
which is more than a factor of 5 smaller than the other
nonzero tensor elements [see Egs. (20)]. This is also the
only contribution that arises in the scalar approximation
to the electric fields. However, in the vector treatment
given here, the second harmonic is generated in all field
components. They components are generated by the xyy
component of the x'® tensor. This contribution is ex-
pected to be small since it relies on the minor y-polarized
component of the incoming fundamental field. In addi-
tion, the contributions from the two positions (x, y, 2)
and (—x, —y, z) are o out of phase and thus cancel on the
z axis, as seen in Fig. 7. Thus, even though the relevant
x? element is more than a factor of 5 larger than that
used for generating the x-polarized second harmonic, the
y-polarized second-harmonic field is very small compared
with that polarized in the x direction. The z component
of the second-harmonic field is due to the xzz and zxz el-
ements of x?, and it relies not only on a minor field com-
ponent of the fundamental field, but also on a minor com-
ponent of the second-harmonic field. The latter can be
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understood intuitively by the observation that the xzz
and zxz elements generate dipoles that point in the z di-
rection and oscillate at the second-harmonic frequency.
Clearly the coupling of this radiation into a wave propa-
gating in the z direction is inefficient.

We thus find that, even though the scalar-allowed
second-harmonic generation process makes use of a small
¥'* tensor element, it nonetheless leads to the largest
contribution to the second-harmonic intensity. The
y-polarized minor second-harmonic component may be de-
tected behind a high-quality polarizer. The information
that is obtained would be complementary to that obtained
using the major second-harmonic field component.

Even though we have taken the nonlinear optical me-
dium here to be crystalline, nonlinear microscopy is usu-
ally applied to biological samples, which are unlikely to be
crystalline. An analysis of such a system is more difficult
than the present one, and we do not consider this case
here. However, we note that the method developed here
does apply to this case.

We have presented an effective and accurate method of
calculation of the wave field of the vector focused Gauss-
ian beam at the focal region and calculated the second-
harmonic generation produced by this beam. The
method is highly accurate and robust. It takes only 30 s
to calculate plots as in Fig. 4 with 301 X 301 resolution
on a personal computer with a 700-MHz processor. This
speed allows us to carry out the integration in Eq. (17)
with high accuracy and high resolution. The integration
process in Eq. (17) can be further improved if one chooses
the integration region in Eq. (17) as a sphere. Then it is
possible to integrate the angular variables in Eq. (17) in
closed form in terms of the Wigner 3 — j coefficients and
products of three spherical Bessel functions. The re-
maining radial part integration can then also be done in
closed form for some values of the angular momentum.
However, such calculations are outside the scope of this
paper.

The method presented here is flexible and can be ap-
plied to calculate the field distribution from the reflection
from a paraboloidal mirror, mixed dipole radiation, and
others. Although we took the incident field to be linearly
polarized, the method ean be applied to arbitrary incident
polarization, and the polarization of the resulting second-
harmonic field can be presented in a number of ways.
Here we have chosen to express it in terms of the compo-
nents pointing in the x, y, and 2 directions determined by
the propagation and polarization directions of the incom-
ing field. Although we could have expressed them
straightforwardly in terms of s and p components, it was
pointed out by Moreaux that the present representation is
most convenient when comparing with experiment.” Fi-
nally, the method can also be applied to nonuniform
samples, or to samples with complex x'*' (Ref. 25), and to
model nonlinear multiphoton imaging using third-%® and
higher-harmonic generation.
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