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We prove that the states secretly chosen from a mixed state set can be perfectly discriminated if
and only if these states are orthogonal. The sufficient and necessary condition when nonorthogonal
quantum mixed states can be unambiguously discriminated is also presented. Furthermore, we
derive a series of lower bounds on the inconclusive probability of unambiguous discrimination of
states from a mixed state set with a prior probabilities.
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Quantum state discrimination is an essential problem
in quantum information theory. Perfect discrimination
among nonorthogonal pure states is, however, forbidden
by the laws of quantum mechanics. Nonetheless, if a
non-zero probability of inconclusive answer is allowed,
one can distinguish with certainty linearly independent
pure states. This strategy is usually called unambiguous
discrimination. Unambiguous discrimination among two
equally probable nonorthogonal quantum pure states was
originally addressed by Ivanovic [1], and then Dieks [2]
and Peres [3]. Jaeger and Shimony [4] extended their re-
sult to the case of two nonorthogonal pure states with un-
equal priori probabilities. Chefles [5] showed that n quan-
tum pure states can be unambiguously discriminated if
and only if they are linearly independent. For the gen-
eral case of unambiguous discrimination between n pure
states with a prior probabilities, it was shown in [6] and
[7] that the problem of optimal discrimination, in the
sense that the success probability is maximized, or equiv-
alently, the inconclusive probability is minimized, can be
reduced to a semidefinite programming (SDP) problem,
which has only numerical solution in mathematics. On
the other hand, Zhang et al [8] and Feng et al [9] de-
rived two lower bounds on the inconclusive probability
of unambiguous discrimination among n pure states.

Somewhat surprisingly, it is only recently that the
problem of unambiguous discrimination between mixed
states is considered. In Ref. [10], the optimal unam-
biguous discrimination between a pure state and a mixed
state with rank 2 was examined. Rudolph et al [11] de-
rived a lower bound and an upper bound on the maxi-
mal probability of successful discrimination of two mixed
states. Raynal et al [12] presented two reduction theo-
rems to reduce the optimal unambiguous discrimination
of two mixed states to that of other two mixed states
which have the same rank. In the general case of n mixed
state discrimination, Fiurasek and Jezek [13] and Eldar
[14] gave some sufficient and necessary conditions on the
optimal unambiguous discrimination and some numerical
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methods were discussed.
In this paper, we consider first the distinguishability

of any mixed state set. We prove that any state chosen
from a mixed state set can be perfectly discriminated
if and only if the set are orthogonal, in the sense that
any state in the set has support orthogonal to those of
the others. For the case of nonorthogonal mixed state
set, the sufficient and necessary condition of when states
from it can be unambiguously discriminated is that any
state in the set has the support space not totally included
in the supports of the others. Furthermore, we consider
the problem of discriminating unambiguously of n mixed
states with a prior probabilities and present a series lower
bounds on the inconclusive probability.

Suppose a quantum system is prepared in a state se-
cretly drawn from a known set ρ1, . . . , ρn, where each ρi
is a mixed state in the Hilbert space H. The task of dis-
crimination is to obtain as much information about the
identification of the state as possible. In what follows,
by perfect discrimination we mean that one can always
get the correct answer while by unambiguous discrimina-
tion we mean that except a maybe nonzero inconclusive
probability, one can identify the state without error. It
is obvious that perfect discrimination is necessarily an
unambiguous one, but the reverse is not true in general.
To unambiguously discriminate ρ1, . . . , ρn, one can con-
struct a most general positive-operator valued measure-
ment (POVM) comprising n+ 1 elements Π0,Π1, . . . ,Πn

such that

Πi ≥ 0, i = 0, 1, . . . , n

n∑
i=0

Πi = I (1)

where I denotes the identity matrix in H. Each POVM
element Πi, i = 1, . . . , n corresponds to identification of
the corresponding state ρi, while Π0 corresponds to the
inconclusive answer. For the sake of simplicity, we often
specify only Π1, . . . ,Πn for a POVM since the left ele-
ment Π0 is uniquely determined by Π0 = I −

∑n
i=1 Πi.

It is then straightforward that a POVM Π1, . . . ,Πn,∑n
i=1 Πi ≤ I, can perfectly discriminate ρ1, . . . , ρn if and

only if

Tr(ρiΠj) = δij
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while can unambiguously discriminate ρ1, . . . , ρn if and
only if

Tr(ρiΠj) = piδij

for some pi > 0, where i, j = 1, . . . , n.
Since the intersection of the kernels of all ρi, i =

1, . . . , n, is not useful for the purpose of unambigu-
ous discrimination, sometimes we can assume without
loss of generality that each Πi, i = 1, . . . , n, is in
supp(ρ1, . . . , ρn). Here supp(ρ1, . . . , ρn) is defined by the
Hilbert space spanned by eigenvectors of the matrices
ρ1, . . . , ρn with nonzero corresponding eigenvalues.

The following lemma is a necessary condition of a
POVM to unambiguously discriminate a given mixed
state set.

Lemma 1 Suppose Π1, . . . ,Πn are POVM elements and∑
i Πi ≤ I. If for any i, Πi can unambiguously discrim-

inate ρi, then Πjρi = 0 for any i 6= j.

Proof. Suppose for any i, Πi can unambiguously dis-
criminate ρi, then we have Tr(Πjρi) = piδij for some
pi > 0. Let

ρi =

ni∑
k=1

rki |ψk
i 〉〈ψk

i | (2)

for some rki > 0 be the spectrum decomposition of ρi,
then for any i 6= j

0 = Tr(Πjρi) =

ni∑
k=1

rki 〈ψk
i |Πj |ψk

i 〉 (3)

and 〈ψk
i |Πj |ψk

i 〉 = 0 for k = 1, . . . , ni from the fact rki >
0. That implies Πj |ψk

i 〉 = 0 and so Πjρi = 0. �

It is well known that perfect pure state discrimination
is possible if and only if the states to be discriminated
are orthogonal to each other. In the case of mixed state,
we have a similar result as the following theorem.

Theorem 1 The quantum mixed states ρ1, ρ2, . . . , ρn
can be perfectly discriminated if and only if they are or-
thogonal, that is, ρiρj = δijρ

2
i .

Proof. If ρiρj = δijρ
2
i , then supp(ρi) ⊥ supp(ρj) for

any i 6= j. We choose Πi as the projector onto supp(ρi).
Obviously

∑
i Πi = Is and Tr(Πiρj) = δij , where Is is

the identity matrix in supp(ρ1, . . . , ρn). That indicates
Π1, . . . ,Πn can perfectly discriminate ρ1, . . . , ρn.

Conversely, if ρ1, ρ2, . . . , ρn can be discriminated per-
fectly, then there exist POVM elements Π1, . . . ,Πn,∑

k Πk = I, such that for any i = 1, . . . , n, Πi can per-
fectly (so unambiguously) discriminate ρi. From Lemma
1, we have Πjρi = 0 for any i 6= j. So ρiρj =
ρi(

∑
k Πk)ρj = δijρ

2
i . �

The above theorem gives us a sufficient and necessary
condition when mixed states can be discriminated per-
fectly. That is, they must be orthogonal to each other. In

the case when the states are nonorthogonal, a strategy is,
as in pure state situation, unambiguous discrimination.
While a set of pure states can be unambiguously discrim-
inated if and only if they are linearly independent [5], the
unambiguous discrimination between mixed states has a
stronger requirement, as the following theorem indicates.

Theorem 2 The quantum mixed states ρ1, . . . , ρn can be
unambiguously discriminated if and only if for any i =
1, . . . , n, supp(S) 6= supp(Si), where S = {ρ1, . . . , ρn}
and Si = S\{ρi}.

Proof. “=⇒”. Suppose ρ1, . . . , ρn can be unambigu-
ously discriminated, then there exist POVM elements
Π1, . . . ,Πn such that

∑
i Πi ≤ I and Tr(Πiρj) = piδij for

some pi > 0. Let |ψk
i 〉, k = 1, . . . , ni, be the eigenvectors

of ρi with the corresponding eigenvalues larger than 0.
Then there exists 1 ≤ hi ≤ ni such that 〈ψhi

i |Πi|ψhi
i 〉 > 0

and from Lemma 1, for any 1 ≤ j ≤ ni, 〈ψj
i |Πk|ψj

i 〉 = 0
provided that i 6= k.

In what follows, we prove that for any i = 1, . . . , n,
|ψhi

i 〉 cannot be written as a linear combination of the

states |ψj
k〉 for k 6= i and j = 1, . . . , nk, that will imply

the result supp(Si) 6= supp(S). Suppose

|ψhi
i 〉 =

∑
k 6=i,j

aik,j |ψ
j
k〉

for some aik,j , then

Πi|ψhi
i 〉 =

∑
k 6=i,j

aik,jΠi|ψj
k〉 = 0, (4)

which contradicts with 〈ψhi
i |Πi|ψhi

i 〉 > 0.
“⇐=”. Suppose supp(S) 6= supp(Si), then supp(ρi) 6⊆

supp(Si). It follows that there exists a state |φi〉 such
that |φi〉 6⊥ supp(ρi) but |φi〉 ⊥ supp(Si). That is
〈φi|ρi|φi〉 > 0 but 〈φi|ρk|φi〉 = 0 for any k 6= i. Let
Πi = qi|φi〉〈φi|, where qi is sufficient small but positive
such that

∑n
i=1 Πi ≤ I, we can check easily that the

POVM elements Π1, . . . ,Πn can unambiguously discrim-
inate ρi with a positive probability pi = qi〈φi|ρi|φi〉 > 0
for any i = 1, . . . , n. �

When ρ1, . . . , ρn are all pure states, the requirement of
them to be unambiguously distinguishable presented in
the above theorem is exactly that they should be linearly
independent, just as we all know. This is because if ρi =
|ψi〉〈ψi| for some state |ψi〉 then supp(S) 6= supp(Si) for
any i if and only if |ψ1〉, . . . , |ψn〉 are linearly independent.

In general, however, the requirement of ρ1, . . . , ρn to
be unambiguously distinguishable is more strict than just
linear independence. To see this, for any i = 1, . . . , n,
suppose supp(S) 6= supp(Si), we show ρi cannot be writ-
ten as a linear combination of ρj , where j 6= i. In fact, if
ρi =

∑
j 6=i a

i
jρj for some aij , let |φi〉 be a state orthogonal

to supp(Si) but not orthogonal to supp(ρi), then

0 < 〈φi|ρi|φi〉 =
∑
j 6=i

aji 〈φi|ρj |φi〉 = 0.
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This contradiction indicates that ρ1, . . . , ρn are linearly
independent. The converse, however, does not necessar-
ily hold. That is, the linear independence of ρ1, . . . , ρn
cannot guarantee that supp(S) 6= supp(Si). To see this,
let us give a simple example. Suppose ρ1 and ρ2 are
two different density matrices with rank m in an m-
dimensional Hilbert space. It is obvious that ρ1 and
ρ2 are linearly independent but supp(ρ1) = supp(ρ2) =
supp(ρ1, ρ2). So in general the linear independence of cer-
tain mixed states cannot ensure the existence of a POVM
to unambiguously discriminate between them.

We now turn to consider the problem of unambigu-
ously discriminating between n quantum mixed states
with a prior probabilities. The aim is to optimize the
discrimination by choosing appropriate measurements to
maximize the success probability, or equivalently, mini-
mize the inconclusive probability. For the general case of
unambiguous discrimination between n pure states, the
optimization problem can be reduced to a semidefinite
problem [6], which has no analytic solution. So the bound
on the success (or inconclusive) probability for any unam-
biguous discrimination process becomes very important.
A lot of works such as Ref. [8] and Ref. [9] dedicate to
this field. In the following, we derive a lower bound on
the inconclusive probability of unambiguous discrimina-
tion between n mixed states using a method similar to
that in Ref. [9].

Theorem 3 Suppose a quantum system is prepared in
one of the n mixed states ρ1, . . . , ρn with a prior prob-
abilities η1, . . . , ηn. Then a lower bound on the incon-
clusive probability P0 of unambiguous discrimination be-
tween these states is

P0 ≥
√

n

n− 1

∑
i 6=j

ηiηjF (ρi, ρj)2

where F (ρi, ρj) is the fidelity of ρi and ρj.

Proof. For any POVM elements Π1, . . . ,Πn,
∑

i Πi ≤
I, which can unambiguously discriminate ρ1, . . . , ρn, we
have Tr(Πiρj) = piδij for i, j = 1, . . . , n. Define Π0 =
I −

∑n
i=1 Πi ≥ 0, then P0 =

∑
i ηiTr(Π0ρi). So

P 2
0 =

∑
i

η2i (Tr(Π0ρi))
2 +

∑
i 6=j

ηiηjTr(Π0ρi)Tr(Π0ρj).

(5)
By Cauchy inequality, we have

∑
i

η2i (Tr(Π0ρi))
2 ≥ 1

n− 1

∑
i 6=j

ηiηjTr(Π0ρi)Tr(Π0ρj).

(6)
Substituting Eq.(6) into Eq.(5) we have

P 2
0 ≥

n

n− 1

∑
i 6=j

ηiηjTr(Π0ρi)Tr(Π0ρj). (7)

Furthermore, using Cauchy inequality again, we have

Tr(Π0ρi)Tr(Π0ρj)

= Tr(U
√
ρi
√

Π0

√
Π0
√
ρiU

†)Tr(
√
ρj
√

Π0

√
Π0
√
ρj)

≥ (Tr(U
√
ρiΠ0

√
ρj))

2

= (Tr(U
√
ρi(I −

∑n
k=1 Πk)

√
ρj))

2

(8)
for any unitary matrix U . From Lemma 1, we have√
ρiΠk

√
ρj = 0 for any i 6= j and k = 1, . . . , n. Notice

also that

F (ρi, ρj) = max
U

Tr(U
√
ρi
√
ρj)

where the maximum is taken over all unitary matrix U .
It follows that for any i 6= j,

Tr(Π0ρi)Tr(Π0ρj) ≥ F (ρi, ρj)
2 (9)

Taking Eq.(9) back into Eq.(7) we derive the lower bound
on P0 as

P0 ≥
√

n

n− 1

∑
i 6=j

ηiηjF (ρi, ρj)
2. (10)

That completes the proof of this theorem. �

When n = 2, the lower bound we presented above re-
duces to P0 ≥ 2

√
η1η2F (ρ1, ρ2), which partially coincides

with the bound given in [11]. On the other hand, when
ρ1, . . . , ρn are all pure states, then the lower bound re-
duces to the one derived in Ref. [9].

What we would like to point out here is that from the
proof of the above theorem, we can derive a series of lower
bounds on the inconclusive probability. In fact, if let

Ak =
∑
i

η2ki (Tr(Π0ρi))
2k

and

Bk =
∑
i 6=j

ηki η
k
j (Tr(Π0ρi))

k(Tr(Π0ρj))
k

then by Cauchy inequality, we have Ak ≥ Bk/(n − 1).
Using these notations, the key steps Eq.(5)-(7) in the
proof of the above theorem can be reexpressed as

P 2
0 = A1 +B1 ≥

n

n− 1
B1 (11)

which implies the lower bound

P0 ≥ P (1)
0

.
=

√
n

n− 1
C1 (12)

as in Eq.(10), where Ck is defined by

Ck =
∑
i6=j

ηki η
k
j F (ρi, ρj)

2k
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Now, if we notice the fact that A2
k = A2k + B2k, then

we can first consider the term A1 and derive that A1 =√
A2 +B2, so we can rewrite Eq.(11) as

P 2
0 =

√
A2 +B2 +B1 ≥

√
n

n− 1
B2 +B1.

which implies another lower bound

P0 ≥ P (2)
0

.
=

√
C1 +

√
n

n− 1
C2. (13)

One can easily prove that the bound presented in Eq.(13)
is better than that in Eq.(12) by Cauchy inequality.

Similarly, we can derive a series of lower bounds on the
inconclusive probability of unambiguous discrimination
between n mixed states as follows

P0 ≥ P (k)
0

.
=

√√√√C1 +

√
. . .+

√
n

n− 1
Ck. (14)

We can also prove that P
(1)
0 ≤ P

(2)
0 ≤ . . ., that means

when k increases, the lower bounds become better and

better in the sense that they are closer and closer to the
real optimal inconclusive probability. On the other hand,

since the increasing sequence {P (k)
0 , k = 1, 2, . . .} has an

upper bound 1, they definitely converge at a limit P
(∞)
0 ,

which is the best lower bound we can derive using this
method.

To summarize, we prove that any state chosen from a
mixed state set can be perfectly discriminated if and only
if the set are orthogonal. For the case of nonorthogonal
mixed state set, the sufficient and necessary condition of
when states from it can be unambiguously discriminated
is that any state in the set has the support space not
totally included in the supports of the others. We con-
sider also the problem of discriminating unambiguously
of n mixed states with a prior probabilities and present
a series of lower bounds on the inconclusive probability.
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