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Abstract 

Thermochromic VO2 is of interest for energy efficient glazing, and for fast 

telecommunications because it optically switches in the near IR. Despite extensive study 

several aspects of its apparently diverse behaviour have not been explained satisfactorily.  

The visible-NIR permittivity and dc electrical conductivity of high quality thin films of 

VO2, across the metal-insulator phase transition and well into the metallic phase to 

temperatures up to 100°C above Tc are studied as a function of temperature and grain 

size. Experimental behaviour is partly explained with effective medium models, existing 

band structures and classical transport theory. Anomalies however include: unphysically 

fast relaxation rate, counter-intuitive and significant differences between optical and dc, 

and bulk and thin film parameters; and residual “non-metallic” features above the 

transition in highly oriented films. Residual, but transient high temperature d-electron 

singlet pairing on V dimers, which is sensitive to nanostructure, is examined as a source 

of some anomalies. 
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Introduction 

Many oxide, sulphide and selenide compounds exhibit metal-insulator (MI) or metal-

superconductor phase transitions [1]. Their metal phases occur above the transition 

temperature Tc and can display transport properties which do not obey fermi liquid 

theory. Such anomalies in the metal phase of VO2 are the subject of this report. VO2 is 

also technically important because its metal phase emerges above 68° C, and is 

accompanied by a drop in resistivity by up to 4 to 5 orders of magnitude. The infra red 

optical properties shift from a transmitting semiconductor phase to a reflecting 

Drude/plasmonic system.  This optical transition can occur in femtoseconds in 

nanoparticles of VO2 which is anomalously fast [2]. Such switching speeds indicate that 

electron-electron (e-e) interactions rather than phonon induced structural effects lead to 

the transition and that these e-e interactions occur at very high frequency. Persistence of 

strong e-e interactions in the metal phase will be indicated by our anomalous data on thin 

films in both the optical and dc regimes, with more anomalies observable in dc data.  

There has been occasional attention to one puzzling aspect of the metal phase properties 

in both dc and infra-red optical data, namely a carrier relaxation rate around 0.75 eV [3-

5]. It implies an anomalous mean free path less than a lattice spacing, and has been 

attributed to sample problems [3], and to  frequency dependence of  relaxation rate [5], 

but evidence is mounting that neither explanations are correct [4, 6] and that this is the 

real quasi-particle relaxation rate. For further insights we present data on dc resistivity to 

temperatures well above Tc for films with two different grain sizes. They show non-metal 

like dc response despite their good plasmonic optical properties. 
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Experimental 

VO2 films were produced on both glass and mica substrates via the same method. The 

process involved DC Magnetron sputtering of Vanadium, followed by a controlled 

oxidation/annealing process, during which the substrate temperature was maintained at 

450°C. The post deposition annealing was carried out for around 6 hours at a pressure of 

0.1 Torr after slowly introducing air into the chamber. Various thickness films were 

produced from 20nm to 150nm, with the annealing time varied to suit. The films 

produced on a glass substrate had a grain size of approximately 50nm while the mica 

substrate produced 100nm grain size, as shown in the micrographs of figure 1. 

 

Optical reflectance and transmittance measurements were carried out using a Cary 5E 

UV-VIS-IR Spectrophotometer utilising an in-house developed heating setup allowing 

measurements to be taken at temperatures from 25°C up to 150°C. The temperature was 

controllable such that optical hysteresis measurements could be made at 1°C intervals. 

 

A computer controlled four wire resistance method was utilised to measure the sheet 

resistance hysteresis of the VO2 films. Resistance and temperature data were acquired 

with 7552 Yokagawa digital multimeters, interfaced with the LabView program which 

controlled the temperature of the sample. A copper mask was deposited on top of the 

films to allow for attachment of the probes for resistance measurement. 
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Results and discussion 

The change to plasmonic response in both films can be observed in the spectral 

transmittance and reflectance plots in figures 2 and 3. The oscillations in figure 2 are due 

to interference caused by the thickness of the mica substrate. Both the films produced on 

mica and glass had very similar optical constants for VO2. Applying Drude fits to the 

long wavelength part of the metal phase data yields the plasma frequency (ωp = 3.9eV) 

and relaxation frequency (ωτ  = 0.71eV). The relaxation frequencies are always 

anomalously high. It is in dc resistivity ρ that grain size dependent differences show up as 

in the hysteresis plots of figure 4. The magnitudes in ∆ρ at Tc  are quite distinct. The 

50nm grain size sample has ∆ρ of 2 orders of magnitude while the 100nm grain size 

sample has ∆ρ of 3 orders. Similar differences in ∆ρ with grain size have been seen [7] 

on sputtered films with grain size increasing from 50 nm to 350 nm. Thus while the 

optical transition is complete, the dc change is incomplete and grain size dependent.  By 

contrast single crystal data [3] gives ∆ρ around 4 to 5 orders of magnitude. 

 

The observations in reference [6] indicate e-e correlations in metallic VO2 cause a shift  

in optical response with temperature only for field frequencies below 0.1 eV.  In 

agreement we observed no significant difference in Drude parameters for T at 80°C and 

140°C at frequencies just below 1 eV. The temperature dependence of resistance above 

Tc is anomalous and both grain size and thickness dependent. Grain size effect is stronger 

as shown by plotting ln ρ(T) versus 1/T in figure 5.  This plot is not indicative of a metal, 

but indicates instead that conduction is thermally activated and continuing to rise as T is 

raised. The activation energies of 0.108 eV and 0.064 eV are significantly lower than 
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those of the semiconductor phase [4]. Films with similar grain size but varied thickness 

were found to have only small variations in activation energy. This activation energy is 

decreasing as grain size increases and when it vanishes for large enough grains we expect 

a shift to normal resistivity rising linearly with T as observed [3]. 

 

Conclusions 

Summarising, it appears the incomplete ∆ρ transition and its associated “non-metal-like” 

activated conductivity are intrinsic to small enough grain sizes.  The activation energy is 

strongly grain size dependent and weakly dependent also on film thickness. A stronger 

plasmonic response is found for small grains [4] but counter-intuitively this does not 

translate into a lower ρ value than that found in large grains and single crystals. The 

carrier relaxation frequency is apparently independent of grain size and always 

anomalously high. 

 

These observations lead to the conclusion that e-e interactions are dominating the high T 

response and can lead to a very high relaxation rate at all frequencies below optical rates. 

A possible explanation of our thermally activated σ(Τ) in nano-grains is that these fast e-

e interactions also lead to size dependent transient pairing or quantum fluctuations [8]. 

Such transient pairing could open a transient pseudo-gap at the fermi surface [1], which 

can only be observed at low enough frequencies of the applied electric field. Transient 

coherence is a relatively new idea [8] with obvious technical potential. A theoretical 

framework beyond fermi liquid theory is needed to understand charge transport in such 

systems and VO2 looks like a good candidate for such studies. 
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Figure 1 – Scanning electron micrographs of a) 120nm of VO2 on Mica - 100nm grain size b) 50nm of 
VO2 on Glass - 50nm grain size. 
 

Figure 2 - Transmittance of 120nm of VO2 on a mica substrate, both above and below the 

semiconductor-metallic transition critical temperature, with Lorentz-Drude fit for the metallic 

phase. (100nm grain size) 

 

Figure 3 - Reflectance and transmittance of 72nm of VO2 on a glass substrate, both above and below 

the semiconductor-metallic transition critical temperature, including Lorentz-Drude fits for each. 

(50nm grain size) 

 

Figure 4 - Resistivity Hysteresis for the 50nm and 100nm grain size VO2 films. 

 

Figure 5 – Ln ρ(T) versus 1/T with linear fits for activation energy for activation energy fits for 50nm 

and 100nm grain size VO2 films. 
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Figure 1 - GENTLE 
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Figure 2 - GENTLE 

 

 

 

 

 

 

 

 



Page 10 of 12 

Figure 3 - GENTLE 
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Figure 4 - GENTLE 
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Figure 5 - GENTLE 

 

 

 

 

 

 

 

 

 

 


