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We consider lamellar gratings made of dielectric or lossy materials used in classical diffraction mounts. We
show how the modal diffraction formulatien may be generalized to deal with slanted lamellar pratings and
lustrate the accuracy and versatility of the new method through study of highly sianted gratings in a homog-
enization limit. We also comment on the completeness of the eigerumode basis and present tests enabling this

completeness to be verified numerically. © 2008 Optical Society of America

OCIS codes: 050.0050, 060.1756, 050.6624.

1. INTRODUCTION

Among the many methods that have been devised to treat
electromagnetic diffraction by gratings, those based on
representation of fields by modal expansions continue to
prove of interest and value [1]. Here we are concerned
with the properties of modal methods for gratings com-
posed of dielectric and/or metallic materials, and with the
exposition of a new modal formulation for lamellar grat-
ings with slanted walls. We call the new method the dif-
ferential modal method (DMM).

Dielectric and metal gratings with slanted walls are of
theoretical and practical interest. Extending the modal
method to treat slanted walls may help improve the per-
formance of algorithms that reduce arbitrary 1D gratings
to stacks of lamellar gratings. Such algorithms unavoid-
ably introduce sharp discontinuities in the refractive in-
dex profile, a serious problem in the study of metallic
gratings {2]. More generally the method can be integrated
straightforwardly into modal methods formulated for 2D
periodic structures. In practice slanted lamellar gratings
have application in blazing, and have recently been
shown to allow the unidirectional excitation of surface
plasmons at normal incidence (31.

Slanted lamellar gratings have previously been treated
using the C method, a profile transformation method due
to Chandezon et al. {4}, and the rigorous coupled wave ap-
proach' (RCWA) {5]. In the C method, slants in the grating
are accounted for using a nonorthogonal curvilinear coor-
-dinate system, and the grating profile is treated through a
tensorial permittivity and magnetic permeability. This
simplifies the boundary conditions at the expense of Max-
well's equations becoming tensorial. In its current form
{6] the method has wide applicability and has been used
extensively for a variety of applications. The RCWA treats
arbitrary grating profiles as lameliar grating stacks, and
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has the disadvantage that each layer in the discretization
requires a separate differential equation to be solved.

In this paper we model slanted lamellar gratings as a
stack of N individual lamellar gratings whose modes are
coupled using 2 Bloch mode-matching technique. We use
a first-order treatment of mode coupling in the parameter
&, which gives the displacement of one layer from the
next in the stack, and then take the limit as N-—o and
Jc— 0 to obtain an exponential form for the modal propa-
gation equation through the whole stack. Coupling this at
the top and bottom of the stack to the plane wave expan-
sions above and below the grating enables the solution of
the grating diffraction problem.

The DMM can furnish accurate results up to angles
well beyond 89°, whereas the best previcus results to our
knowledge were based on a modified Chandezon method
[7] and were limited to angles not exceeding 64°, This
ability to treat gratings with large slant angles enables us
to discuss a surprising homogenization result, where the
slanted Iamellar grating becomes equivalent to a uniform
dielectric or lossy layer for which the relative dielectric
constant is given by a simple formula. Crucial to the per-
formance of our approach is accurately treating the con-
stituent lameliar layers compesing the slanted structure,
for which we use the modal method.

The modal formulation for dielectric lamellar gratings
is an electramagnetic theory implementation of the famil-
iar Kronig—Penney model from the quantum theory of the
solid state, and was developed independently by Botten et
al. [8] and by Sheng et al. [9]. The method is valid for
lamellar gratings composed of lossless materials—either
dielectrics or idealized metals—and relies on expanding
fields in the grating region in terms of a basis of modes,
whose completeness was demonsirated by Botten et al.
{8]. It has the advantage that structures can be accurately
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treated independently of their depth {10], and that in
some circumstances quite severely truncated modal bases
can be used to good accuracy, permitting semianalytic for-
mulas to be derived for diffraction solutions.

The analogy with the Kronig-Penney model becomes
less evident for lamellar gratings that include lossy mate-
rials, since gquantum mechanical wave functions are
based on conservation of probability, whereas electromag-
netic fields in the presence of loss are nonconservative,
losing energy to ohmic dissipation. The resoclution of this
difficulty put forward by Botten ef al. {11] was to abandon
self-adjoint bases, and to use one basis of modes for ex-
panding functions and an adjeint basis to enforce continu-
ity equations at boundaries between modal and plane-
wave expansions by projection. Naturally, as the loss
tends to zero, the adjoint basis reduces to the complex
conjugate of the field basis, restoring the self-adjoint na-
ture of the lossless solution. Note that the numerical
implementation of the modal method in the presence of
loss requires the calculation of an accurate and ad-
equately large set of complex solutions of a transcenden-
tal equation; one methed for doing this is te use a sophis-
ticated algorithm based on complex variable theory [12].

A further development of the modal method in the pres-
ence of loss was provided by Roberts aud McFhedran [13].
They showed that the modal basis for a grating composed
of dielectric and metallic ¢lements could be divided into
two groups, one oscillating slowly in the dielectric and
more rapidly in metal {8 modes), and the other {y modes)
oscillating more slowly in the metal and rapidly in air. In
the infinitely conducting limit, the 8 modes tend to those
expected for fields in dielectric, while the ¥ modes tend to
those used in expanding surface currents in a dual formu-
lation to the beta formulation based on dielectric fields. To
achieve accurate solutions for finitely conducting lamellar
gratings, both 8 and y sets must be adequately populated,

and we discuss in Section 2 a convenient numerical test .

[14] that indicates whether this has been achieved.

Important extensions of the modal method were pro-
vided by Li [15,161, who generalized it from the classical
diffraction mount to conical diffraction, provided a proof
of completeness of the conical modal basis, and showed
how to take into account multiple stacked lamellar grat-
ing layers. The extensions of the formulation to multiple
lamellar elements within a grating period and to a vector
Fresnel treatment were carried out by Miller e al. [17],
Kaushik {18], and Campbell et al. {19].

Before treating gratings with slanted walls, we investi-
gate in Section 2 claims regarding the completeness of the
lamellar modal formulation when the grating includes
materials with real and negative dielectric constants, re-
cently set forth by Sturman et al. [20,21}. We first com-
ment on moda! method formulations in lossy and lossless
systems, before demonstrating that the concerns of Stur-
man et al. were resolved previously by Roberts and
McPhedran [13]. After that we generalize the modal for-
mulation to deal with lamellar gratings having slanted
walls. In Section 3 we detail this new method for both TE
or E, polarization (incident electric field parallel to the
generator of the grating) and for TM or H, polarization. In
Section 4 we verify the accuracy of the DMM by compar-
ing its results with those of Granet et al. [22}, obtained
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using the C method [4]. We then study in detail the per-
formance of the method for slanted lamellar gratings,
where the slant angle approaches 80°.

2. MODAL DIFFRACTION FORMULATIONS
AND COMPLETENESS

Before reporting our extensions to the modal method for
slanted diffraction gratings, we address briefly two recent
papers by Sturman et al. {20,21], who have commented on
the choice of optical eigenmodes in metal—dielectric
structures. They point out the failure of the analegy with
quantum mechanics in this case and comment on the
need to use modes whose propagation constants squared
are complex even in the case of systems without dissipa-
tive loss, in particular in the important case of surface
plasmons where the dielectric constant is real and nega-
tive: ¢ <0, &'=0. They comment [21] (p. 1) in relation to
this point that:

Among the literature, we know a couple of papers
where the authors mention, on the basis of particular
model calculations, that some values of 8% [23] (Reference
is to the note below; it does fiot pertain to the quoted pa-
per.) cease to be real for ¢'=0. It seems to be that the
above warnings remain unknown and/or not understood
in the optical community.

To the contrary this case is well understood in the lit-
erature as we show below, but first we comment on the
formulation of the lamellar diffraction grating model for
systemns without and with at least one lossy medium. Qur
discussion will address issues connected with the need to
include an adequate set of eigenmodes to ensure accuracy,
and numerical tests that can indicate when this is being
achieved. Following these comments we will study the
limit as €' —0 of the mode-adjoint basis, while evaluating
completeness estimates for each set of modes. In particu-
lar, we will show that the modes claimed to be “unknown
and/or not understood” are in fact just the y modes stud-
ied by Roberts and McPhedran [13].

As we shall see in Section 3, modal formulations rely on
the establishment of a cornplete set of modes {u,,(x)v, ()},
each mode characterized by a propagation constant along
the x axis denoted £, in material 1 and ¥, in material 2.
For H, polarization these constants satisfy the two equa-
tions

1 ( )Bm € Ym€l ) . R
cos(ﬁmc)cos(yng) -5 + Sln(ﬁmc)Sin(‘)’mg)
2 Y€1 )Gm €
= coslayd), (1)
ﬁi = ﬁ§1 + kg(EE - El)a (2)

where ¢ is the width of material 1 and g is the width of
material 2. The modal eigenfunctions satisfy the electro-
magretic boundary conditions at interfaces between dif-
ferent materials and obey a quasi-periodicity condition
controlled by the quantity «g:
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(e +d) = uy(lexpliagd), an= 2w sin(@yh, {3)

for an incident wave of wavelength A approaching the
grating of peried d at an angle ¢ to the grating normal.
These modes are used to characterize fields in the grating
region, while in free space the complete plane-wave basis
normalized to the grating period is used to expand fields:

1
wiix,y) = \TE exp(iax)explxiyyy}, 4)

where the * denotes upward and downward propagating
states, and where

a, = ag+ 2np/d, (5)

\:'(kg - ai} for |a,| < kg

—_ . (6
i\;(aﬁ_kg) for |a,| > ko ©)

Xp=

Matching the plane wave expansions and the modal ex-
pansions at the interfaces between free space and the
grating then solves the diffraction problem.

In the case of a lamellar grating composed only of di-
electric materials, we can complex conjugate modal func-
tions to obtain an orthogonal set of functions also obeying
the appropriate beundary conditions at interfaces, but
with a quasi-periodicity condition corresponding to the
Bloch factor exp{—iagd):

i, +d) = u,(x)exp(- e {7)

It is the fact that the product wp,(x)w,(x) is periodic, to-
gether with both functions obeying the same boundary
conditions, that leads to their orthogonality:

J s = Gy (®)
d

using the form of the scalar product appropriate for E, po-
larization.

The idea of the completeness test proposed in {14] is
simple. To test the completeness of a truncated set of
modes, we use the modes to expand plane waves, using
the inner product between the x-dependent part of the pth
plane wave and the Ith mode:

1
Py = V—gjd exp{- iayx)u,(z)dx. (9}
Then
1 _ -
_‘E: expliayx) = 2 Ponitmix), {10)
v m
so that

1 J—
EJ explila, — axidr = 8g= 2, PumPom, (1)
a m

or in matrix form
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PPH=1. {12

We note that an analogous expression exists for the com-
pleteness of the plane wave basis in terms of the modal
basis.

The expression in Eq. (11) provides a convenient nu-
merical test of completeness. An appropriate number of
plane waves is chosen, and the completeness matrix on
the right-hand side of Eq. (11) is filled in for p and g run-
ning over the set of plane waves. The maximum deviation
from the required value (one or zero) can be used as an
estimate of the completeness of the set of modes used,
which should be enlarged until an accuracy tolerance is
attained. Note that this is in fact shown by experience to
be a reliable but stringent test: far-field quantities such
as the efficiencies of diffracted orders can converge more
quickly than this near-field test.

Let us now consider nondielectric lamellar gratings. We
at once encounter the problem that mode conjugation can
no longer be used to provide a family of functions orthogo-
nal to those used to expand fields since conjugation turns
lossy materials into materials with gain, thereby chang-
ing the physical nature of the system. The solution put
forward by Botten et al. [11] was to construct an adjoint
set of modes satisfying the same one-dimensional Helm-
holtz equation

o (x) + [Relx) - p2 1z} =0, (13)

and boundary conditiens—continuity of £, and Al at
interfaces—but with quasi-periodicity corresponding to
—cg rather than o Together the modes and their ad-
joints, denoted uf,‘,(x), obey the biorthogonality relation

j uA (@) (x)dx = Syms 14)
d

which allows us to introduce an adjoint inner product for
nondielectric systems:

1
K= —J expliax)uf (x)dx. (15)
Vil
The completeness test for gratings with loss is now
B = 2 KomPom- (16)
m

The equivalent expression for H, polarization involves re-
placing FPp; by a term incorporating the reciprocal of the
complex dielectric permittivity:

A 1 exp(—imx) & 17
pi_\TE,L ) uy(x)dx, (17)

and then the completeness test is
8pq = 2 Kprfgm- (18)
n

We now consider the question raised by Sturman et al.
in [20,21] concerning the nature of the spectrum of modes
in a case of a lamellar grating whose dielectric constant is
real, but pesitive in one region and negative in the other.
The implications of this become clear when the differen-
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Table 1. Truncation Order“as a Function of "

Npe
& 3 5 7 9 1 13
0.3 22 23 26 26 27 21
3.0% 1078 22 23 26 26 21 27

“Truncation order of the Lomellar mode basis necessary 1o keep the maximum er-
ror in the completeness matrix of Eq. {18} below 107 ax a function of the imaginary
part of the dielectric perminivity of the metal. Six different truncation orders of the
plane wave busis are shown. Data: period d=58/4; £=1; width of air region, 15,
E;:—Q.ﬁ; width of metal region, 4d/5; normal incidence $=0%, H, polarization.

tial equations are cast in self-adjoint form: —[p(x}u’}’
+q{x)u=&r(x}u, with p(z)=1, q(:c)=—kﬁs(:c), and r(x}=1 for
E, polarization, and p{x)=1/€x), q(:c):—kg, and ri{x)
=1/e&{x) for H, polarization. In both cases £=-u2, and the
primes denote derivatives with respect to x. However,
when €x) is of mixed sign over the period, the weight
funetion r(x) for H, polarization is not strictly positive
and so fails to satisfy the key condition of Sturm-
Liouville theory that is needed to establish that the eigen-
values &=—u? are purely real.

Sturman ef al. point out that the set of propagating and
evanescent modes in such cases is not complete, but re-
quires the addition of what they call “anomalous” modes
with complex propagation constants. The results of our
first investigation into this question are given in Table 1
{using the parameters from Fig. 1 of {20] and reproduced
in the caption of Table 1), where we show the complete-
ness indicator of Eq. {18) for differing numbers of modes
as the imaginary part of the dielectric constant in region 2
of the grating, €, tends to zero.

We can see from Table 1 that the basis consisting of
modes and their adjoints remains complete as € — 0, with
no tendency whatsoever for the required number of modes
to increase. This conclusion is not trivial: if we were oper-
ating in the long-wavelength limit, the negative real axis
of € would correspond to the Iocation of poles, zeros, and
essential singularities of response functions [24,25], thus
slowing convergence of series expansions for fields.

As shown by Roberts and McPhedran {13], if either
or € has magnitude much larger than the other in Eq. (1),
the modes fall into two clearly distinguished families: 8
modes, which oscillate slowly in material 1 and show
rapid exponential decay into material 2 and y modes,
which oscillate slowly in materiat 2 and decay rapidly into
material 1. Modes can oscillate rapidly in both regions,
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but then they couple only weakly to propagating plane
waves and tend to have little importance in scaitering
problems. In the very-high-contrast limit either class of
modes can be used to solve the diffraction problem: using
dual formulations based around guided modes in air be-
tween perfectly conducting rods, or medes for the currents
flowing on the rods. If both classes are present, the basis
is then overcomplete [26} for the perfect conductivity case,
but to leave either class out would give an undercomplete
basis in any finitely conducting case.

In Table 2 we show the behavior of three modes as &
— 0, where the u here is the g of Sturman et al. For the
first of these, u/kg tends to a real value, indicating a
propagating mode, while for the second it tends to an
imaginary value, indicating an evanescent mode. The
third mode retains its complex value of w/kg even in the
limit of a lossless grating, and is therefore classified by
Sturman et al. as an “anomalous” mode. On the other
hand it is a special case of the complex modes well known
in the optics community, and indeed is of the type classi-
fied by Roberts and McPhedran [13] as a ¥ mode on the
basis of its spatial variation, which is insensitive to the
precise value of €.

3. FORMULATION FOR SLANTED
GRATINGS

We consider the diffraction of monochromatic plane waves
of free-space wavelength A at an incident angle of ¢. E,
palarization is considered in Subsections 3.A and 3.B,
while the differences with the H, polarization formulation
are detailed in Subsection 3.C.

A. Slanted Lamellar Gratings

The transition we require to make between the modal for-
mulations for conventional and slanted lamellar gratings
is illustrated in Figs. 1-3. The strategy builds from the in-
terface between two typical gratings in Fig. 2, takes into
account the thickness of each grating, and then takes the
limit as the number of gratings in a stack tends to infinity
while their thicknesses tend to zero to give a simple ex-
pression for the transfer matrix of the slanted grating
stack. This may be summarized as follows:

* formulate the transfer matrix for the interface be-
tween two offset lamellar gratings Tiierfaces

« pad the transfer matrix on either side with lamellar
diffraction gratings of thickness &/2 to give a new trans-
fer matrix %ad:lTi'lalf-layerTmterfaceq—l'-lalf-layen

Table 2. Eigenvalue Behavior as €' Approaches Zero

ulkgy

€ Mode 1° Mode 2 Made 3

1 1.21731+1.30675 % 10-% 1.00074 % 102+ 1.49967i 9.01411% 102-3.86735i
10-2 1.21849+1.31871x 10-% 1.00307 X 104+ 1.49912{ 1.20763 X 1071 -3.91227;
1074 1.21849+1.31871x 10-5% 1.00307 x 105+ 1,49912{ 1.21300 % 101 -3.91282;
10-% 1.21849+1.31871 > 107°% 100307 X 10-54 1.49912; 1.21305 x 10-1-3.91282;
10-8 1.21849+1.31871 % 10719 1.00307 x 10-10+1,49912i 1.21305 % 10-1-3.91282;
10-1@ 1.21849+1.31871 x 10713 1.00303 x 1072+ 1.4991%; . 1.21305 % 10-1-3.91282;

"ode 1 is a propagating mode in the limil as & 0. mode 2 is an evanescent mode. and mode 3 s an “anomalous™ 'mode. Duta us in Fuble 1. -
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€h

: fd d o

Fig. 1. (Color online) Geometry of the slanted lamellar grating.
The subscripted ¢ terms are dielectric constants, ¢ is the slant
angle, ¢ is the incident angle, d is the period, fis the fitl fraction,
and £ is the thickness of the slanted lameilar grating.

+ retain terms only to first order in the layer offset &x,
» take the limit as N=h/d& —= for ’I;":d to give the
transfer matrix for the slanted lamellar grating 7

Here N is the number of padded cells, and % is the total
thickness of the slanted lamellar grating.

1. Modal Expansions _

The Helmholtz equation Eq. (13) for the modes and the
modes-adjoints in a single lamellar grating is treated by
separation of variables, with a propagation constant
along the y axis for the mth mode being u,,. Thus, the
field component E, is expanded in modes as

E, =, w1 ey, exple inpyy) +ch expli pny) um{x),
m

(19)

while the x component of the magnetic field, rescaled to
have the same physical dimension as the electric field, is

) 1
K.=2, ;—,uiﬁc; expl=ity) — o €XPlEtnd m (),
1]

n

{20
where K= \!',LLOIEOI;T.

2, Interface between Displaced Gratings

We wish to treat the interface between two identical
lamellar regions, one offset from the other by &x. Denoting
region 1 as the layer above and offset by & from the layer
below, region 2, we can write the eigenfunctions in regien
1 in terms of the region 2 eigenfunctions:

Region

Fig. 2. (Color online) One vertical period of the slanted lametlar
grating is shown. Vectors ¢} denote modal amplitudes of basis 1
in region 1, and vectors ¢} denote modal amplitudes of basis 2 in
region 2. R,; and T, denote Fresnel reflection and transmission
matrices.
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g (X) = Ugp(x — &), (21}

ut (x) = wh, (- ). 22)

1m
To treat the interface between the two lamellar layers
we apply the boundary conditions-—continuity of E; and
K, —and use a hybrid projection. Equating the electric
fields of Eq. (19} in region 1 and 2 at y=0, and projecting
onto the adjoint basis by multiplying through by u’l‘f{x)
and integrating over a period, we find

-1/2, - A
Z o (C imt c;m}J ulm{x)”‘ 1r(x)d-’f
ne d

=2, 2 (eg, + ) J g x)de,  (23)
d

or in matrix form
w Ve + ey =Ku " (cg + e3), (24)

where p=diag(p,), and
Klmzj u};‘.!(x)u%:{x)dx- (25)
d

Note that since the two regions are identical with respect
to the eigenvalue equation, the propagation constants un,
of the two regions are equal.

Applying the boundary condition for K, leads to

J (e ~ f) = ez - €3), (26)

where
Jlmzjugi(x)ulm(x)dx' (27)
d

Using uﬁz(ao,x}zum(—au,x), which states that the adjoint
mode becomes the field mode when the sign of the inci-
dent angle is flipped, we find

J(ag) = KT(" ag). (28}

To form expressions for the Fresnel matrices R;y and
T, we set ¢5=0 in Eq. (24} and Eq. (26), then solve for €]
in terms of the incident field ¢] for Ry; and ¢; in terms of
¢; for Tps. One finds

R T
1 12T
: - —Ray Ty

T Ry Tos

e - | &y

- +—Raz Taz

" Raz Taz

¢ Raz Ta3
Fig. 3. {(Color online) Slanted lamellar grating is formed from a

stack of padded cells. The Fresnei matrices Ryy, Tys, Ry, and Ty
are for the interface between air and a semi-infinite lamellar

grating.
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Rys= (AB+ )" (AB - I}, (29)
T,,=2B(I+AB)}, (30)

where
A= P Rlaghp ', (31)
B= F—IIQKT(_ QO)FIIZ. (32)

A similar analysis where ¢]=0 leads to expressions for
R21 and T21:

Ry, = (I+BA)"'(I-BA), (33)

T, = 2A(1+ BA)™. (34)

By inspection AT(cro):B(—aD), which leads to the fol-
lowing symmetry properties of the Fresnel matrices:

Rg‘l(_ g} = Ryylap), (35)
R~ e} = Ruglap), (36)
TT(— ag) = Torlay). (37

3. First-Order Expansions in the Layer Shift

In view of taking the limit as the number of layers in a
slanted lamellar grating stack approximation goes to in-
finity, we now derive an expression for K to first order in
&x. To this order Eq. (21) becomes

ulm(x)=u2m(x_ ‘i‘:)n {38]
=lgm (%) — g, ()b, {39

where the prime denotes a derivative with respect to x.
Then Eq. (25) becomes

K(ag) =1 - V(ap)dr, (40)

where

d
szf |:——u (- o, ,:c):luQm(a ,x)dx. (41)
1 . dx 27 Q 0

Eq. (31) and Eq. {(32) then become
. A=1+M, 8 MA:_ ,umV(&o),ﬂ_m, (42)

B=1+Mgdr Mp=-p V(- ag)u'®  (43)

We can now formulate the transfer matrix for an inter-
face to first order in dx:

Tintrtace = {Tm “Ra iR R“ﬁ’ﬂ (44)
- T21R12 T21
After some algebra one finds
Mﬂ - Ms
Tintertace =1 + [_ M, M, ]&c +0(&h,  (45)
where
M, = ;(Mp+M,), (46)
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M, = 3(Mp-M,). 4n

The padded form of the transfer matrix takes into ac-
count propagation through the half-layers above and be-
low the interface (see Fig. 2), and is

Q 0 Ma - Ms _ Q 0
'%ad: 0 Q‘l (I+ -—Ms Ma DI) o Q7 y
(48)

where Q=diaglexp(iy;&/2)]. To first order in &y, Q=1
+iudy/2, and so retaining terms to first order in & and
§y=écftan 0, where 8 is the slant angle measured from
the vertical {see Fig. 2), we find

Tpa=1+Md, (49)

_”' 0 Ma _Ms
M=i 0 - +tan @ M, M, | (60}

4. Liinit for an Infinite Number of Grating Layers
We now form the transfer matrix for N layers, where k

=Né& is the total layer thickness:
T L+ May)N, (51)

In the limit as N — = the transfer matrix for a slanted
lamellar grating becomes

h N
T=Lm(I+ M&)" = lim(I+ —M) =exp(hM).
N 3 N

{52)

If M has the eigensystem decomposition M=XAX"? then
the transfer matrix hecomes

T=XexphA X1 {53}

We partition the eigenstates into forward and back-
ward sets: forward states carry energy in the direction of
decreasing y for propagating states, decay in the direction
of decreasing ¥ for evanescent states, and similarly for the
backward states with the direction reversed. For the lossy
metallic case all states lose energy because of chmic dis-
sipation in the direction of their propagation. The matrix

X becomes
F_ F.
X= 54
F, F | (54)

where the left half of the matrix corresponds to eigenvec-
tors for the forward states with eigenvalues exp(hA), the
right haif to the eigenvectors for the backward states with
exp(—FA ‘). The transfer matrix in Eq. (53) ean then be
written

F_ F' || exp{hA) 0 F. F' |
T=lr, F 0 exp-PAN||F, FL|

(55)
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Following seme algebra

- F. F! liexp(hA) 0 F' 0
“|F, F 0 exp(-hA)|| O F!

I -R|[(I-RR)’ 0
x
-R. I 0 I-R.R)!|

(56)

where R,,=F,F~! and R, =F’F.}. The last give reflection

matrices from half-spaces {27] filled with the slanted

lamellar grating layers, with incidence in an unslanted
structure from above and below the half-spaces

To derive the explicit expressions for the Fresnel matri-

ces R,T,R’, T’ of the slanted lamellar grating we equate

Eq. (56) with
T-R'T' 'R RT'!
T= 57
~-T'R ™1 [ 6D

where the primes denote incidence from below. Upon ex-
panding and simplifying we find

R’ =(R.-PR.P(I-R.PR.P)?, (58)
T = (I-R.ROP'(I-R,PR.P), (59)
where
P=F_exp(hA)F}, (60)
P’ =F. exp(hAYF L (61)

For R, T we note that if upward and downward propagat-
ing modes are interchanged (A —A', F,—F_, F.-F,
and vice versa) then R.—R., R.~R., P—P', P' =P,
and s0

R=(R.-PR.P}{I-R.P'R.P)', {62)

T=-{I R.R)PI-R.PR.P) (63)
In later sections we will refer to these matrices as

R23= R,
Ty=T,
R;; =R,

Tap="T".

B. External Coupling

In the previous subsection the matrices Rog, To3, Rag, and
Ty, were calculated, which are the Fresnel matrices for a
lamellar modal field incident on a slanted lamellar grat-
ing of slope 8 and total thickness . To calculate fields dif-
fracted by the slanted grating we also need the matrices
R, Tig, Ry;, and Ty, which are the Fresnel matrices
119,27] between free space and a semi-infinite famellar
grating. The natura! choice for expanding the fields above
the grating is a plane-wave basis normalized to the grat-
ing period:
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E.= )(‘!',1"2[e;J expl- ix,y) +e, expli xn) ] l/\’a)exp(i(rpx),
Jo)

(64)

K= 1k, x) [, exp(— ixuy)
¥

+ e; exp(ixpy)]( II\E) expliayx), (65}

where @, and y; are defined in-Eqs. (2)-(4).

Setting Eq. (19) and Eq. (64} equal and projecting onto
the plane-wave basis by multiplying through by
exp(—iaqx)/\a'_ and integrating over a period we have

Yu e + o=y e +eh), (66)

where
Y= f (1/\d) expl— iagx)is,, (x)dx. (67
d

Setting Eq. (20} and Eq. (65) equal and projecting onto the
adjoint basis by multiplying through by uf‘(x}/ vd and in-
tegrating over a period yields

#]."2(0— _ c+) = ZTXIIQ{e- - e+)’ (68)
where

Zom = j (H/\d)expliaxul (x)dx. (69)
d

Setting ¢*=0 in Egs. (66) and (68), we find

Ry ={(GH+ D) (GH-T), (70)
Tp=2H({I+GH)™, (71)

where
G- XlIZYF—IIZ’ (72)
H= #-11‘2ZTX1;'2‘ (73)-

Setting e~ =0 in Egs. (66} and (68}, we find
Ry, = (I +HG) {I-HG), (74)

T, = 2G{I+ HG) L. (75)

We can now write down the Fresnel reflection and
transmission matrices for the entire structure by a pro-
cess of recursion:

Ry = Ryg+ Tai Ry (- Ry Ry) Ty, (76)

Ty = Tag(l - Ry Ryy) T, {77}
where

Rys =Ry + To Ros(I - Ry Ry) ' Ty, (78)

T3 ="Tys(I~ Ry Reg) ' Ty, (7N

Ry; = Rag+ TogRy (I - RosRyy) Ty, {80
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Ty, = Toy{I - RyzRy) o (81

These enable the solution of the scattering problem for an
arhitrary incident plane wave field diffracted by a slanted
lamellar grating of arbitrary thickness and slant angle,
made either of dielectric materials, lossy materials, or
both, for the case of E, polarization.

C. Differences for the H, Polarization Case

1. Modal Basis and the Slanted Lamellar Region
Mode integrals for H, polarization acquire a weight factor
equat to the inverse of the dielectric constant:

1
f i {x)um(x =6nn1‘ (82)
elxy

The modal expansions in the lamellar grating region are
K= 21075, expl= ) = €5, explisesyan )
(83)
Lmix)

e(x)
{84)

Be= 2—#-,” (e, expl—ipny) +c5, exp(t,ﬂmy)]

Equating Eq. {83) in regions 1 and 2 at y=0, and project-
ing onto the adjoint basis by multiplying through by
u’l"l(x)/el(x) and integrating over a period, leads to

p ey - e}) = Ku (e, - ¢3), (85)
where
1 A
Klru:f mull{x)u2m{x)dx- (86)
g 1

Equating Eq. (84) at the interface of regions 1 and 2, and
projecting onto the adjoint basis of regton 2 [u?_n(x)]

Jule] + by = p®e; + c3), (87)
where
L,
T = f - {x)uﬂ(x)ulm(x)d.x. (88)
d "1

We note that J(aD)=KT(—aO}. Using this result, and the
same approach as in Subsection 3.A.2, we find

R, =(1+AB) {I-AB), (89
Tz =2B( + AB) ™, (90)
Ro: = (I+BAY {(BA-T), (91)
Ty = 2A(T + BAYL (92)

where A and B take the same form as in the E, case, but
for a different K.
To first order Eq. (21) becomes
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HEm{I) = h',lm(I + ‘it) » (93)
=) + g, o) dx, (94)

and so
Riwg) =1+ V{ag)dx, {95)

where

1 d
V(ao)zL e )uu( aosx)[dxum(ﬂu,x)]df- (96)

Finally
T+M,%& -DM,dx

- = 97
’l—mterfﬂce _ Msﬁx I+ M,:,Ex : ( )

where now
My = p1!?V(ag) 2, (98)
Mp = V2V (- ag)ul™, (99)
M, = (Mg - M,), {100}
M, = - 3(Mj + M,). (101)

From this point the derivation proceeds as for E, polar-
ization.

2. External Coupling
The field component expansions we now use are

K, = x5 f; exp(-ixgy) - £ explixy) MU d)expliays),
P

(102)

= lﬂzoz Ve [f; expl(~ixyy) + + 1y expliyy)]

x (1/\/&)exp(i ). (103)

Setting Eq. (83} and Eq. (102) equal and projecting onto
the adjoint basis of region 1 by multiplying through by
uln( )/ €,(x) and integrating over a period gives

Yy Y — )= p e - e*), {104}

where
Ymp:J' {1/\!E)exp(iwpx)[llel(:c)]u?m{:c)dx. {105)
d

Setting Eq. {84) and Eq. {103} equal and projecting onto
the plane-wave basis gives

YA+ ) =ZTu e + '), (106)

where
1 1
quzJ' =iy {x)exp(— fagridx. (107)
od \d El( )

Note in the E, polarization case the continuity equation
for the electric field is projected onto the plane-wave ba-
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sis, whereas the magnetic field continuity equation is pro-
jected onto the adjoint modal basis. Here the basis projec-
tions are permuted, the required form if the formulation
is to have the correct limiting behavior in the infinite con-
ductivity limit as shown by Roberts and McPhedran [13].
The rest of the derivation proceeds as before in the E, po-
larization case, with Eqs. (78) and (83) giving the reguired
reflection and transmission matrices.

4, VERIFICATION AND APPLICATIONS

A. Verification

We now establish the accuracy of the new formulation by
comparing its results with those from the Chandezon
method, taken from Granet et al. [22]. The three cases in
Table 3 refer to two lossless gratings with (A} low refrac-
tive index contrast and (B) high contrast, while {C) corre-
sponds to a good metal.

We see from Table 3 that the agreement between our
method and the results of Granet et al. is to two signifi-
cant figures in all cases, with best agreement for E, polar-
ization. To ensure the accuracy of the results from our
method, it is necessary to choose appropriate values for
both the number of plane waves M; and the number of
modes M. In doing this we must keep two considerations
in mind. First, for a given number of plane waves the
number of modes must be sufficient to ensure that the
completeness tests described in Section 2 are accurately
satisfied (maximum errors of 1078 for E,, 1072 for H,). Sec-
ond, for a given number of modes the number of plane
waves must be large enough to avoid relative convergence
[28,29]. The number of modes and plane waves used in
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Table 3 corresponds to an absolute accuracy equal to the
number of figures quoted. In relation to the method used
by Granet et al. Li [6] has commented that the Fourier se-
ries representations of products of discontinuous func-
tions were not correctly incorporated, which would par-
ticularly limit the use of this implementation for large
slant angles. Nonetheless, the results of Granet ef al.
quoted here are expected to be of good quality for the
small slant angle considered.

In comparing the DMM with other computational
methods for diffraction grating scattering, & number of
features are clear. First, computational times and accu-
racy tend to be wealk functions of the grating depth. This
is not so for other methods, where increasing the profile
depth generally leads to slower and less accurate results.
Second, the most difficult numerical problems arise in
high-contrast gratings for H, polarization. In the DMM,
the choice of modes in this case is critical for the accuracy
of results,

When considering metallic gratings we must be careful
in choosing the set of grating modes to make sure there is
a sufficient number of 8 and y modes. In practice all
modes that are clearly of the 8 and y types, as well as a
number of modes that are strongly evanescent in both re-
gions of the lameilar grating must be included.

It should be noted that the DMM starts with a formu-
lation for a lamellar grating with vertical walls and incor-
porates a slant of those walls as an additional element. It
might therefore be expected that the computational accu-
racy of the method would diminish as the slant angle &
increases. To test this, we study the behavior of both di-
electric and metallic slanted lamellar gratings as the

Table 3. Comparison of Efficiencies Caleulated Using the DMM and the C Method®

E, Polarization

H, Polarization

Case C Method DMM C Method DMM
A
M, 10 5 10 5
M, 25 10 25
Reflected orders -1 0.0179 0.0179 0.023 0.0231
0 0.0137 0.0137 0.001 0.0011
Transmitted orders -1 0.0399 0.0398 0.0232 0.0227
0 0.9286 0.9286 0.9528 0.9531
B
M, 40 15 40 15
M, 75 40 55
Reflected Orders -1 0.4191 0.4179 0.2742 0.275
0 0.0562 0.0562 0.2361 0.237
Transmitted orders -1 0.0232 0.0229 0.096 0.097
0 0.5015 0.5030 0.3938 0.391
C
M, 10 10 20 10
M, 40 a0
Refiected orders -1 0.2357 0.2359 02214 0.2247
0 0.4269 0.4267 0.3061 0.307
Transmitted orders -1 0.1645 0.1646 0.2066 0.2075
0 0.1558 0.1557 0.2408 0.241
“For the C methad #, is the truncation parameter of the Floquet harmonics (2M1+ 1 in total). For the DMM 7 is the runcation parameter of plane waves {2+ 1 in toal),
and M is the truncation parameter for the meclul basis. Parameters: h=0.2. j=0.5. d=1. §=10° A=1, $=30" =1, =2.1025 (1, = 1.45). Case (A} g =1. =225 (n,= 1.5}

(B) =1, ex=23 {n:=3): (C) e= . £,=—~4L.97574 205247 (n,=0.22+i6.71).
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slant angle increases toward 90° in Subsection 4.A below.
We note in passing that the original Chandezon method
experiences numerical difficulties as the slant angle tends
toward zero. Plumey [30] et al. and Preist [7] et ai. ex-
tended the Chandezon method to enable it to deal with
gratings having a vertical facet, or even overhanging pro-
files. Preist et al. showed that their extended method can
cope with slant angles from 0 to 64° for a silver metallic
grating, and commented that the method became numeri-
cally unstable at high inclination angles because of the
greatly increased profile “depth,” measured parallel to the
originally vertical grating walls, within the period.

For large slant angles, drawing general conclusions for
methods whose lineage begins with the original Chand-
ezon method is difficult, as the interaction of theory, nu-
merical algorithms, and programming details would all
need to be considered. Nonetheless, one expects this lim-
iting case to present significant challenges to any method,
as reported by Preist et al. [7], and as experienced in this

work, where the truncation order of field expansions must

he increased significantly for large slant angles.

B. Large Slant Angles

The difficulty inherent in calculations for lamellar grat-
ings with large slant angles is illustrated in Fig. 4. Here
we show the profile of a grating with fill fraction 0.5 and
equal height and peried. As we increase the slant angle,
profile elements from one period begin to intrude into ad-
jacent periods, so that the profile function becomes more
and more multivalued. For slant angles approaching 90°
the depth of the profile, measured parallel to the origi-
nally vertical interfaces, tends to infinity; equally, the
number of profiles intersecting a given period also tends
to infinity. At the same time as illustrating the computa-
tional difficulties associated with extreme slanting, Fig.
4(d) illustrates the possibility of a simple physical out-
come: we might expect that lamellar gratings for slant
angles approaching 90° become equivalent to alternating
thin-film stacks. Of course for a fixed height the thickness
of each layer in the equivalent thin-film stack tends to
zero as the number of layers within the stack goes to in-
finity. Since the layer thickness is becoming a smaller and
smaller fraction of the incident light’s wavelength we also
expect that the stratified thin-film layer could be well

Fig. 4. Schematic periods of stanted lamellar gratings for (a} no
slant, (b) #=45°, {c) #=63.4°, (d) #=85.2°.
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approximated by an equivalent layer with an effective or
homogenized set of optical properties.

In Fig. 5 we show the energy reflected from a dielectric
lamellar grating for E, polarization versus slant angle.
The oscillations in the reflectance correlate with the
variation of the slope angle, as indicated by the vertical
lines that mark integer values of tan & Remarkably, the
numerical results from the DMM are stable for slope
angles as large as 89.99°, which enables us to determine
the limiting reflectance for the structure very accurately.
In fact at 89.99° the reflectance has converged to four sig-
nificant figures, and gives the value R=0.6191. Referring
to Fig. 4(d) we would expect the homogenized dielectric
constant of the structure to be the average of the values
for air and that for the dielectric regions, i.e., €y=0.5
® 1+0.5X25=13. A homogeneous slab with this dielectric
constant and the same thickness as the grating gives a re-
flectance of 0.6191, showing both the accuracy of the he-
mogenization result and the accuracy and stability of the
DMM. We also verified that the reflectance versus grating
height is predicted to better than graphical accuracy up to
at least ten times the period with the same eg=13 at @
=89.99°. It follows the phase is correctly reproduced in
the E, homogenized limit, and that the DMM is stable for
gratings with large refractive index contrasts, heights,
and slant angles.

For H, polarization and lossless gratings the calcula-
tions converge more slowly for large slant angles. Inves-
tigations into this numerical problem are in course; how-
ever preliminary results indicate the reflectance agrees
with the value found for an equivalent dielectric slab
where the effective dielectric constant is the average of
the gratings’ dielectric constants.

We next consider metallic gratings, where perhaps sur-
prisingly both the E, and H, polarizations can be ad-
dressed with high accuracy up to very large slant angles.
In Fig. 6 we show the energy reflected versus slant angle
for both polarizations. The characteristic difference be-
tween these polarizations is quite evident. For E, polar-
ization the curve increases smoothly from R=0.707 for #
=0 to R=0.973 for 0=89.99°. This value agrees again with
that expected from a slab with a homogenized dielectric
constant obtained from the linear mixing formula: K

Lo |
0.8 |

06| é{“f\k[m{mwﬁw—

0.4

0.2

£5 86 37 88 R9 90 9
Fig. 5. Energy reflected from a lamellar grating under normal
E, incidence versus slant angle for f=0.5, d=1, i=05, =1, &
=25 (n,=5), =11 and the grating suspended in air. Angles
where tan # incresses by 1 are shown as vertical lines, from
tan(85.2°)=12 up to tan{87.7°)=26.
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02 \ \

D 10 20 30 40 50 60 70 80 90
Fig. 6. Energy reflected from a lameilar grating under normal
H, (solid curve} and E, (dashed curve) incidence versus slant
angle ¢, with f=05, d=1, h=0.5, &=1, &=-44.9757+2.9524
(ne=0.22+i6.71), A=1.1 and the grating suspended in air.

=0.973. For H, polarization the reflectance is a strongly
oscillating function of angle, indicating interference ef-
fects. We obtain converged results up to #=89.8°, and at
this angle the reflectance R=0.972. Note that for both po-
larizations the light that is not reflected is absorbed for
large slant angles {transmittance of ~10~'2 for E,, ~107
for H,).

An important feature of Fig. 6 is that the reflectance is
independent of the polarization of the incident wave in
the limit of large slant angles. This feature is a conse-
quence of our choice of normal incidence in Fig. 6, and is
in keeping with the geometrical limit of Fig. 4. The onset
of E, homogenization is rapid, while the oscillations
present in H, polarization delay the attainment of the
limit, and this difference may offer designs with strong
polarization dependence.

As our final example we show in Fig. 7 the energy ab-
sorbed by the lamellar grating of Fig. 6 for H, polarization
as a function of slant angle and height. Note the interfer-

0.5 o s 2.0

h

Fig. 7. Energy absorbed by a lamellar grating under normal H,
incidence as a function of slant angle # and height h, where [
=05, d=1, =1, =—449757+2.9524i (n,=0.22+i6.71), x=1.1
and the grating suspended in air. The maximum absorptance
(lighter fringes) is 0.517, and the minimum is 0.017.
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ence effects that become increasingly finely spaced as ¢
—90°. The homogenized layer has an absorptance of
0.028, which is much less than the maximum absorptance
in Fig. 7. The maximum oceurs in a resonance region ly-
ing below the homogenized zone; at k=05, for example,
the maximum absorptance is 0.517 and occurs at /¢
=80°.

5. DISCUSSION AND CONCLUSIONS

The additions to the modal formulation presented extend
the applicability of the method in several interesting
ways. Slanted lamellar structures, or combinations of
slanted lamellar structures, can now be treated accu-
rately. In fact any grating profile that can be modeled as a
stack of lamellar gratings can now be slanted, simply by
inclining and offsetting the constituent layers in the
stack. This greatly increases the parameter space over
which the modal method is applicable. The usefulness of
the extensions presented decreases when used for grat-
ings where the inclination angles of the structures’ walls
are not equal, however. For example in a triangular grat-
ing profile one would not necessarily see any improve-
ment if slanted lamellar gratings were used in a lamellar
grating stack approzimation to the grating.

More possibilities exist in 2D modal formulations, how-
ever, where shifts along two orthogonal axes open up a
wider range of interesting geometries. For example a 2D
grating where the periods are offset in such a way as to
produce a helical geometry could be treated. Such a struc-
ture has been suggested by Toader and John {31,32] as a
three-dimensional photonic crystal that can be fabricated
[33], and has previously been discussed in the optical lit-
erature on columnar thin films [34].

A more theoretical aspect of the method is the new per-
spective it offers on homogenization theory. Much of the
existing homogenization analysis relies on replicating a
structure on an ever smaller scale, or on making the
wavelength increase in comparison with the scale size of
the structure. Introducing a slanted structure and study-
ing its behavior as the slant angle tends to 90° is a third
method, and has the advantages of being carried out at a
fixed wavelength and scale size.

To conclude, we have presented extensions to the modal
method for lamellar diffraction gratings that now permit
the study of slanted structures. We have demonstrated
that the new method is accurate and versatile, coping
with both dielectric and lossy metallic structures and
with slant angles ranging from 0° to very close to 90°. In
the latter case we have shown that the grating becomes
equivalent to a stratified thin-film structure, and indeed
may be replaced by an equivalent, homogenized layer. We
hope to pursue applications of the new method in future
work, and will also extend it to the case of conical inci-
dence.
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