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Abstract 

 

Percolation in nanoporous gold can be achieved with as little as 8% by volume of gold. Samples 

of nanoporous gold of various morphologies are analysed with a combination of electrical and 

optical data. Growing thin films and complex multiply-connected 3-dimensional networks both 

display non-universal character. Growing films have 2-dimensional morphology but a 3-

dimensional percolation threshold and non-universal critical coefficients, yet similar silver films 

percolate as expected with universal coefficients. Growing gold however regresses to 2-

dimensional resistive behaviour between 65% to 100% gold, and this regime lies along a single 

power law curve shared by the hyper-dimensional networks of gold, suggesting underlying 

symmetry governed by diffusion limited aggregation. Models of data imply either hyper-

dimensionality or major internal property changes as density shifts. The distinctive flat spectral 

signature found near the percolation threshold is common to all highly porous samples and is 

explained quantitatively in terms of effective plasmonic response. Parameters from fits of 

effective medium models to optical and resistivity data are in close agreement, especially at the 

highest porosities. They imply an effective dimension which increases continuously as porosity 

grows via the increased branching needed for structural integrity.  



1. Introduction 

Two component nanostructured networks with one phase metallic and the other insulating 

undergo a metal-insulator transition at the critical concentration of metal known as the 

percolation threshold. DC resistivity changes by several orders of magnitude and there are 

qualitative changes in optical response in the wavelength range where the dense metal would 

begin to reflect strongly. We will prove theoretically and demonstrate experimentally for gold 

that, close to percolation, far-field spectral response in the Drude region is strikingly unique, 

being neither metallic nor insulating in character.  

 

The growth of metallic thin films during deposition shows a percolation transition at a critical 

coverage of metal. At shorter deposition times these films consist of islands of metal, and at 

longer times connected labyrinths of metal envelop remaining voids, which gradually close up 

with further deposition. The thickness ranges in these studies for metals such as gold and silver 

are typically below 8 to 14 nm for deposition onto room temperature glass substrates, with some 

variations in critical mass and thickness according to the energetics of the deposition process [1-

5]. These percolating granular films are random networks and their voids traverse the film from 

one side to the other. Far less experimental work has been done on more complex metal networks 

in which the insulating inclusions can also form complex internal networks and there is a high 

degree of local co-ordination. These are the focus of this study, with emphasis on nanoporous 

gold. The properties of this material near percolation are assuming technical importance as a 

result of the growing interest in composite nanomaterials. Emerging applications of nanoporous 

gold include surface-enhanced Raman scattering spectroscopy [6,7], solar energy, thermal 

radiation and photonics [8,9,10], capacitive biosensors [11], supercapacitors [12] and chemical 

catalysis[13,14].  

 



 

Percolation theory has an extensive history [15], which we will draw on for analysis of our data 

along with basic principles in phase transition theory [16]. The application of percolation theory 

to experimental materials has been predominantly for dc and ac electrical data on composites 

made from powders [17-19], while natural structures such as porous rocks [20] and sea ice [21] 

have also been studied. Optical studies of metal percolation exist [2,4,22-24], but since the far-

field spectral transition is more gradual, have received much less attention. Nevertheless 

percolation has a unique optical signature. Thin metal films in the early stages of growth [2-4] 

and nanostructured cermets [23,24] have been the main focus for the influence of percolation on 

optical response. Recent interest in nano-plasmonics has included fascinating data on near-field 

optical response in 2-dimensional thin metal films close to percolation [25,26]. We focus on the 

unique far-field response at percolation due to plasmonic effects as part of our data analysis.  

 

 Near a critical temperature Tc response functions such as conductivity or magnetic susceptibility 

approach criticality exponentially as 



T Tc


.   In a two part composite, percolation theory deals 

with the critical behaviour of material properties as a function not of temperature, but of 

concentration f of one component, which we take to be the conductor. In lattice models f 

represents either the fraction of occupied lattice sites or the fraction of bonds, which are 

conducting. In disordered composite materials, which are the subject of this paper, either 

continuum or random network models are needed. Then f represents the volume fraction of the 

conducting component and the form 



f  fc


describes the approach to percolation criticality at f 

= fc. Models which map continuum “Swiss Cheese” or “random void” structures onto discrete 

random networks [27] can provide a link to network models to see how critical coefficients such 

as  behave in random void structures. Most of the mesoporous gold samples analysed in this 

paper appear to be in the form of filamental networks to begin with, but a “Swiss cheese” 



approach remains a possibility and is thus explored optically via simulation. The relevance to our 

theme is that these mappings can yield critical coefficients which depart from those given by 

“The Principle of Universality” [16] in 3-dimensions, but not in 2-dimensions [27]. This principle  

states that the way in which a material’s critical coefficients such as and vary depends only 

on the physical dimension.  

 

Observed departures from universality have been seen in other percolating systems [28,29]. 

Explanations usually invoke internal local changes in relevant properties as f varies, for example 

local conductance of a bond or the link between two percolating clusters in a scaling analysis of 

criticality [27]. An alternative is to consider that the network is hyper-dimensional. Some natural 

structures appear to display critical hyper-dimensionality [21] and, in theory, multiply connected 

random networks such as Bethe lattices [15] are hyper-dimensional. The effective dimensionality 

d in a finite z tree-like Bethe lattice is z/2, where z represents the number of bonds emerging on 

average from each junction. Optical response of such networks should also be sensitive to d and 

we explore this issue in our data analysis. As z and d increase, the degrees of freedom open to 

charge movement within a filamental network will increase. Also, as the effective dimension d of 

structures increases, a decrease in lowest achievable fc values [15] occurs since it is easier to find 

a closed pathway through more complex, multiply connected networks. Morphology is thus the 

central issue in percolation theory and our nanoporous gold samples manifest a systematic 

evolution of nanostructure as production parameters are altered and porosity increases, which 

provides interesting new perspectives.  

 

The unusually low fc values for a metal-void system that we will present are not a guarantee of 

hyper-dimensionality, and other explanations of non-universal coefficients exist, as noted above. 

However the linked analysis of electrical and optical data in these random gold networks that we 



will now present is strongly supportive of that conclusion. To avoid confusion with the 

discussion of hyper-dimensionality, and also to handle a dimensional critical anomaly we find in 

growing gold films, we will utilise the symbol D to denote the spatial dimension of the structure 

and d to denote a more general structural dimension which may differ from D.  

 

Some of the porous gold structures following have D = 2 and some D = 3 morphologies.  If a 

metal-insulator thin film structure has D = 2 a vertical trace from the substrate cuts a metal-air 

boundary either once only, or not at all if starting under a void. For D = 3 multiple cuts of metal-

void interfaces will occur. We examine both types of gold. If the second phase is void in 3D 

systems, only the percolating side is accessible to experiment, but we will see it is possible to 

approach remarkably close to the percolation threshold while maintaining structural integrity. 

Good stability at very high void density seems to be linked with increased branching in the 

network, which in turn links to effective dimensionality. In a parallel study we have found these 

highly porous networks to be more thermally stable than dense layers of gold.  

 

We will commence with an outline of sample preparation and their structural, electrical and 

optical characterisation. Models and simulations used to understand and describe the data will be 

introduced when it is analysed in sections 4 and 5. This will include a formal description of the 

unusual flat spectral response seen in both data and simulations at and near percolation in terms 

of the effective plasmonic response. Finally we will show that the parameters needed to describe 

optical behaviour can also describe dc electrical response to a good approximation.  

 

2. Preparation and structure of nanoporous gold  

 



It is not possible to simply study resistance R in situ continuously during growth as we could in 

the thin layer case [5,12] since the process we utilise is based on etching a pre-deposited alloy. 

Secondly we cannot experimentally access a void-metal 3D system with sub-percolation 

threshold f values. These are only possible when the second phase is a solid insulator.  Thus we 

need to make many separate samples to cover a range of fill factors.  We note that in-situ studies 

in 3D are possible with metal-insulator co-deposits (called cermets), which do allow isolated 

particles, and are worth carrying out. Cermets were studied for percolation by Niklasson and 

Granqvist  [23] and Cohen et al [30] for different f values of cobalt in Al2O3 and silver in SiO2 

respectively. In contrast to 2D systems these 3D structures have an intermediate regime where 

both phases percolate. In Al2O3:Co it is at  0.25 < fCo < 0.7 and in SiO2: Ag it is 0.35 < fAg < 0.65, 

but the sharpest rise in R occurs at the lower f values. Our nanoporous gold samples can have 

percolation onsets at a range of metal fill factors from similar values to these cermets, down to 

very much lower fAu. Our network however is not formed by direct co-deposition, though the 

starting point is co-deposition of two metals gold and aluminium to form an alloy. After removal 

of aluminium the final material is nanoporous gold and as an effective medium it has two 

components, with the insulator phase being voids. 

 

3.1. Film preparation 

 

3.1.1. Thins gold films on glass. This first study relates to preparation of gold thin films with in situ 

measurement of the nucleation and growth of a gold layer through the onset of electrical 

conduction. The main growth stages are, with increasing deposited material; the initial nano-

island stage, the percolation region (our main focus), and the region from onset of percolation up 

until the film becomes dense gold. The resistance Rf of Au films has been measured during 

deposition using two rectangular Au electrodes, thickness 50 nm, separation 6 mm, which were 



first deposited on the glass substrate. Electrical connections to the electrodes were made by fine 

Cu wires attached by clips or silver adhesive. The film was then deposited through a rectangular 

hole (10x6 mm
2
) in a mask placed in front of the substrate such that the deposited film 

overlapped the electrodes forming a sample of area 6x6 mm
2
. In this two-probe configuration in 

situ film resistance Rf was measured at 0.5 nm thickness intervals during film deposition with the 

plasma on, using LabView software. This procedure is similar to the one described by Maaroof 

and Evans [5].  

 

3.1.2 Nanoporous gold films on glass. The fabrication process of the three dimensional 

nanoporous gold films is similar to that described previously [8-10]. Briefly, alloy films of AuAl2 

were prepared by co-depositing the elements using high vacuum dc magnetron sputtering onto 

glass substrates. The sputtering targets of Au and Al were 99.999% pure discs (50mm diameter), 

placed 150 mm away from the substrate. The base pressure was better than ~10
-6

 Torr, while 

sputtering was carried out in the presence of flowing Ar at an inlet gas pressure of 8 mTorr. Most 

samples presented in this paper followed this procedure, but we present one which is deposited 

with ion assistance [10, 31] as this type have highest fc values. Varying pressure enabled a wider 

variety of void content to be produced. To ensure good homogeneity, uniformity and 

crystallinity, a rotating target at 400 °C substrate temperature was used during deposition. After 

co-depositing of AuAl2 on a glass substrate, aluminum was removed from the compound by 

immersing the films in NaOH (0.2 M) solution. Figure 1 shows a typical high magnification 

image of a nanoporous gold film on a glass substrate, which displays 3D nanostructure. The right 

hand image shows the cross section of the film to demonstrate it is by our definition a D = 3 film. 

All the films were produced in this work at different thicknesses using a crystal monitor and the 

same 8 mTorr inlet gas pressure. The nanostructures of these films as shown in figure 2(a)–(c). 

These have lower density than the film in figure 1 and the conventional films described in section 



3.1.1.  The morphology and hence d value, changes continuously with increase in thickness from 

22 nm to 96 nm.  

 

                 

    

 

 

Figure 1. “(Color online)”, Image of  a nanoporous gold film on a glass substrate, to demonstrate 

a 3D porous nanostructure at high magnification. The right image is a cross-section view. This 

sample has the highest f and lowest fc of those we will analyse. Its pre-cursor alloy is deposited 

with the addition of ion assistance [10]. 

 

3.2. Characterization 

 

Scanning electron microscopy (SEM) with a Zeiss Supra55VP was used to study the 

nanostructure of the films. Figure 1 shows an SEM image of a nanoporous gold film with cross 

section clearly displaying three dimensionality. Spectral transmittance T() and reflectance R() 

of all nanoporous gold films were carried out using a Perkin-Elmer Lambda 950 UV/vis/NIR 

spectrophotometer at normal incidence over the wavelength range 300nm to 2500 nm.  

 



       

 

Figure 2. “(Color online)”, SEM images of mesoporous gold film deposited at 8mTorr with final 

thicknesses (a) 21.95 nm (b) 37.5 nm (c) 96.3 nm. Associated fAu values are derived in section 5. 

They are (a) 0.30 (b) 0.16  and (c) 0.088. Electrical properties of each follow in section 6.  

 

 

4. Percolation thresholds and critical parameters observed in gold and silver thin films  

 

Gold and silver thin films have quite distinct percolation thresholds [1,3,7,12] which can be 

observed as they develop during vacuum deposition. Observed fc = 0.5 in thin silver [1] is as 

predicted. Critical parameters and fc are consistent with D = d = 2, as also found by simulation [1]. 

Gold behaves critically quite differently, despite going through the same growth stages and having 

like silver D = 2. Fig. 3 shows graphs of Rf versus fractional coverage (f) of Au deposited on glass 

obtained in situ for sputtered gold as the film grows. The insets show the scanning electron 

microscope images for four regions of nucleation and growth of the gold films. Using t for 

equivalent thickness of dense gold deposited, actual thicknesses in the images are (i) below 3 nm (t 

= 0.3nm, f < 0.1) (ii) 4.5 nm (t = tc = 1.5nm, f = 0.33) (iii) 5 nm to 8 nm  (t > 2.5 nm). f is the ratio 

of equivalent thickness to actual thickness and is also given by the fractional area covered by gold. 

Both measurements concur quite well. In the final image (iv) the layer is almost void free and 

becomes so after actual thickness and t coincide at ~ 9 nm (assuming no nano-roughness). This 

resistance data is consistent with a percolation threshold of fc  = 0.31±0.03 as estimated using an 



established [5] quantitative technique based on experimental resistivity data, which also gives fc = 

0.5 for silver. The experimental value of the percolation threshold (fc) is estimated using the 

equation 

 

 



R( fc)  [R(0)R(1)]
1/2   (1) 

 

where R(0) is the resistance value at f = 0 and R(1) is the metallic resistance value at f = 1. 

Reference 5 provides further details on the background to this result. Image sequences as in figure 

3 also lend support to the resulting fc values being close to f = 0.3. Islands still appear at f = 0.25 

and continuous networks above f = 0.4. 

Plotted in figure 3 using this fc value are model curves of critical behaviour from the standard 

critical relations for R versus (f  - fc ) of equation (2) assuming equation (2a) applies out to when f 

= 1. Then 



A  RAu(1 fc)
  and  equation (2a) can then also be derived from the  effective 

medium models which will introduced in section 6. However anomalies we will now discuss 

means this definition of A may not apply to thin film gold, though we will see later it seems to 

work for our mesoporous samples. While different ’s are normally required above and below 

percolation, we started with a common value as this works in nanoporous silver films and has 

been used for gold previously [5]. A plot with += - = 2.2 provides a better symmetric plot for 

the data than the two for d =2 and d=3 respectively but the general model of equation (2) spanning 

all f does not work well for thin film gold.  



 

Figure 3. “(Color online)”, Resistance of a growing gold film on glass as a function of volume (or 

area) fraction f of gold. Images included show characteristic morphology at each stage of gold 

coverage. Models for d = 2 and d =3 percolation are included, along with a critical curve for 

. 

 

 



R  A( f  fc)
     ,     f  >   fc (2a) 

 



R  B( fc  f )
       ,     f  <   fc (2b) 

 

 Curves with critical exponents expected for D = d = 2 structures (as for silver both ), and 

d = 3 (both  are plotted in figure 3 along with the plot for . Based on 



equation (2a) with a dependent on fc , 2.2 also fits poorly except maybe it is better right at 

criticality. Thus the general model of equation (2) spanning all f does not work well for thin film 

gold. If we leave A and B  as arbitrary parameters rather than dependent on fc and restrict 

exponent fitting to R values within two orders of magnitude of R(fc)  two different but low critical 

exponent values emerge from quite linear log–log plots. They are  and . This 

is anomalous with d values below 2 implied along with much higher fc than the observed value of 

0.31 and at odds with images. For f > 0.6 it is interesting that the expected  plot works 

best, that is d = 2 does apply there. Unlike silver films for which equation (2a) works reasonably 

at all f [1], gold porous film morphology and hence final critical behaviour, seems to evolve 

continuously as f varies. In section 6 we look into this in more detail where continuous evolution 

in morphology and associated fc is seen to be characteristic of a much wider class of porous gold. 

Even allowing for an evolution in morphology the critical zone data for 0.15 < f < 0.40 in figure 

3 will be shown to be the different to all other nanoporous gold films in this study, which display 

common self-similarity at all f.  

 

 fc  = 0.33 and are expected if d = 3. A shift from 2.0 to near 2.2 might be explained on 

the basis of internal local scaling related changes [27, 28], or distributions of local electrical 

properties in the system [28, 29], but from 1.3 to near 2.0 or 0.7 is very hard to justify along these 

lines. In electrical low frequency studies of 3-dimensional metal-insulator particulate composites 

and  = 0.87 are commonly used or found [18,19]. In our D = 2 films the values and 

the evolution of morphology at lower f may be complicated by the influence of the substrate but 

it is clear that expected critical co-efficientsare incompatible with data. Reference 19 attributes 

most observed shifts from universality in the electrical problem to local interface effects. Our 

study is confined mainly to f > fc and charge may not need to jump across interfaces in these 

continua even close to fc.  We will attribute any non-universality to the disordered network 



structure rather than interfaces. Only in the 3-D Swiss Cheese model were significant shifts in 

exponents expected when averaging over local effects [27, 28] and then only by around 0.5. Thus 

these various approaches do not seem to explain this gold system. It is our first example where 

apparently d ≠ D at least for f close to fc. These results for gold films have also been seen by 

others [3] and are quite distinct from those of silver. Gold clearly links up more quickly. The 

morphologies of Ag and Au both evolve in the fashion noted above from islands to voided 

conductor, but percolation at lower f implies a different more open morphology at the percolation 

point for gold. The eventual reversion to d = 2 behaviour as more gold is added is also indicative 

that D =2 holds at all f as it is the thicker layers that would be more likely to show D =3 

character. Just before percolation these thin layers of gold are islands and do not have 3-

dimensional cross sections, a claim sometimes made simply on the basis of the experimental 

value of fc.  These fc values can be explained theoretically in two ways, either average particles in 

a cluster near percolation have z = 6 nearest neighbours (see section 4 for details), or via a 

“Swiss-cheese” continuum percolating system. A “Swiss-cheese” simulation for D = 2 does 

predict that fc = 0.33, [19, 32]. However universality would still require that while in 2-

dimensions mapping onto a network with correlation length scaling was predicted to give no shift 

in Thus we have to conclude that while the random overlapping void approach can 

explain the value of fc  in growing gold films it cannot explain their departure at percolation from 

universality. This example may be indicative of a more general need to consider that critical 

dimension d can differ from  physical dimension D. Increasingly higher d values cannot be ruled 

out in nanoporous metals and we now turn to samples of nanoporous gold for which d > 3 is a 

possible explanation of their optical and electrical percolation responses.   

 

5. Experimental and modelled optical and electrical properties  

 



To characterise and model the filamental mesoporous systems made by etching alloys requires a 

different approach to that adopted for the 2D thin films in figure 3. Unfortunately as already 

noted, we do not have a continuum of data for one critical curve, even for f above fc, as growth 

by etching means each sample has different f and different structure so we cannot easily create a 

plot like that in figure 3. Simply changing metal content, which we will do, does not provide a 

sequence of identical morphology. Instead we will see that f and fc fall in tandem for our 

preparation conditions, which may be the basis of stability at high void content in 3D metal-void 

systems. Ideally to explore critical percolation parameters, we would like to make a set of 

samples with the same fc value but different f . However every change in f with the same vacuum 

deposition conditions leads in practice to a different morphology, with our etching process 

involving much gold atom movement [8-10]. A universal curve that follows may mean that in 

random self-supporting systems in 3-dimensions, self-assembled porous structures at low f 

always do this, but further work is needed to rule out such growth along the same critical curve. 

The approach we adopt is to model optical and electrical data separately to estimate f and fc and 

compare key parameters for consistency. We start however with an extended study of how 

percolation manifests itself in the optical domain as this not only helps in providing fairly directly 

an indication of how close to fc a particular sample is without modelling, but helps in assessing 

the merits of alternative models.   In the final section an overview is provided which interestingly 

sheds quite new insights into the Au thin film problem raised in section 4, along with further 

assessment of the notion that nanoporous gold approaches the critical point (even though it may 

not get there) consistently with d > D, with most d values hyper-dimensional.  

 

 

5.1 Percolation impacts on spectral response 

 



Metal-insulator transitions in principle mean a shift from reflecting to transmitting dominance at 

wavelengths that do not include inter-band transitions of either species. However as f varies 

through a percolation transition the plasmonic response of the metal comes into play in 

interesting ways. It occurs at long enough wavelengths that the real part  of the complex 

dielectric constant 



 1  i2 is negative. It is responsible for the unique optical characteristics 

for f very close to fc, can lead to spectral structure when the metal is isolated due to particle 

surface plasmon resonances and, once the metal is percolating, void-related resonant effects may 

be possible. The last two have received some recent attention for the types of thin films discussed 

in section 3 [25,26] but are not an issue for our D = 3, Au filamental structures where the gold is 

always percolating and where strong void-related resonances do not appear to be present 

according to the smooth spectral data [8]. Close to percolation a unique spectral character arises 

which is neither metallic or insulating in the plasmonic regime for gold as seen in the spectral 

transmittance plot of figure 4 for an example mesoporous thin film compared with a dense gold 

film. The zone of most interest is where dense thin gold changes from transmitting to highly 

reflective in the range 0.55 m to 3 m. Near percolation in all nanoporous gold we find if fill 

factors f  are below 0.4 then the spectra are qualitatively similar to the flat curve in figure 4.  

 



 

Figure 4. “(Color online)”, Flat spectral transmittance of a mesoporous gold film near the 

percolation threshold compared with that of a dense gold layer. A Lorentz–Drude (LD) model is 

seen to fit both layers and the associated dielectric constants for the porous layer were also fitted 

accurately with an effective medium model. 

 

 

Reflectance and absorptance spectra are also relatively flat, as in the absorptance plot for three 

nanoporous films in figure 5. It is flatter still in reflectance as in figure 4 and for other such 

samples [10]. This unusually flat spectral response occurs in a region where gold films normally 

undergo a large optical change as wavelength falls, as exemplified by the plot for a dense Au thin 

film in figure 4.  The other relevant point seen in fig. 4 is that the spectral features due to the 

lowest energy inter-band transition in gold, which is at 3.5 eV, are largely unaffected in location 

as void content increases. There is thus a wide-band near percolation where effective refractive 

index is nearly constant.  

 



 

Figure 5. “(Color online)”, Spectral absorptance of mesoporous gold films all close to different 

low fc percolation thresholds. 

 

 

Why is this? It follows primarily because nanoporous thin films when percolating behave as if 

they are homogeneous with an effective plasma frequency P* which is much less than the P 

value in dense gold. The quantitative link between P* and P has been derived previously [8,9] 

both in the general Bergman-Milton (B-M) formalism and in terms of the quasistatic effective 

medium approach due to Bruggeman [33]. The result in the Bruggeman approximation is that  

 



P

*2 P

2 f  fc 
1 fc 

 (3) 

 

Effective plasma frequency thus falls to low values as f approaches fc and of course vanishes 

once the system ceases to percolate. Direct measurement of P* gives an independent and useful 



measure of f using the B-M formalism [9]. The fall is due to a combination of the drop in average 

free electron density, and a rise in carrier effective mass m* in the complex network as f falls 

towards fc [8,9]. An effective Drude response results, such that over the near-infrared (NIR) the 

plasmonic transition has not yet occurred or is weak. This idea is supported by the L-D model fit 

in figure 4. A large energy gap opens up between the inter-band term and any weak plasmonic 

effects. Consequently the effective dielectric constant of the porous network is almost constant 

for  > 1.2 m  as seen in the data in figs. 4 and 5. Thermal emittance data [8] indicates 

reflectance does not rise much more, at even longer wavelengths. We suggest the onset of the 

ability to fit an effective Drude model to optical data should be a good guide to pin-pointing 

critical percolation. Equation (2) is expected to take on a different form involving critical 

exponents for f quite close to fc if for example we used the phenomenological effective medium 

models proposed by McLachlan and co-workers and used by Cai et al [17- 19] in place of the 

Bruggemann model. To explore this we would need a range of samples with fixed fc which we do 

not have, so it will not be addressed in this paper.  It will be presented as an interesting and direct 

approach to extracting critical coefficients from optical data, which does not seem to have been 

attempted as yet.  

 

This simple argument based on plasma frequency cannot fully explain the weak spectral structure 

around 850 nm to 950 nm, while the strength of absorptance in all figure 5 samples requires 

additional comment as it is higher than the simple argument above implies. It is mainly due to the 

elevated relaxation frequencies in these filamental nanostructures [8] arising from surface 

scattering of carriers. These impact on the Drude response in the flat zone and are an order of 

magnitude higher than that in dense gold films (0.80 to 1.0 eV versus 0.09eV). They are also the 

main limit on the rise in reflectance at even longer wavelengths. This flat spectral response in the 

Drude region appears to be a universal signature of proximity to percolation in nanostructured 



metal films. All three films in fig.2 are each close to the percolation threshold on this criteria 

indicating that fc is dropping as f falls. The flat NIR response is also apparent in figure 6 for the 

thin gold discussed in section 4, and shows up in simulation studies.  

 

 

Figure 6. “(Color online)”, Spectral absorptance of two vacuum grown porous gold films in the 

percolating regime near fc = 0.3 compared to a  continuous layer. The 5nm layer is just 

percolating. Absorptance drops at larger coverage due to high reflection. 

 

6. Quasistatic models and simulation of spectral response  

 

We have adopted two approaches to modelling. The first is to fit our data with a suitable quasi-

static effective medium model of optical response. This provides estimates of volume fraction f 

and the threshold fc. Phenomenological extensions for the region where f is very close to fc have 

been applied to ac and dc data [17,18] though this approach has not to our knowledge been applied 

to date in the optical domain. Since the value of fc shifts as f falls in our nanoporous gold, it is 

likely that critical exponents will also change. As we are thus unable to measure or fit exponents 



directly, we will use the standard symmetric Bruggeman model, which does give excellent fits to 

our spectral data. We will test its predictions in the next section for self-consistency with 

equivalent effective medium models of resistivity to add further support to the merits of this 

simple approximation. When it works best, in terms of the gap (f – fc ), will however turn out to be 

surprising. Our second approach is to simulate the extinction response in two complementary 

ways; with of a continuous gold layer containing randomly placed voids, and with an aggregation 

of intersecting or sintering gold particles. These have quite different critical thresholds and we 

examine their suitability to both two and three  dimensional structures. The former is the “Swiss 

Cheese” (SC) approach and in the 2-dimensional case it may apply to the growing gold films 

discussed in section 4, when its voids cross the layer.  

 

In the optical domain the simplest form of the Bruggeman model for effective dielectric constant 

* is expressed in terms of an effective depolarisation factor L as 
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L is usually linked in such models to the shape of average cells or structural units [34, 35]. 

Percolation occurs in the model in equation (4) at f = L.  However if L does not equal 1/3 one 

expects either optical anisotropy, or must replace equation (4) with an average over random 

orientations, using a complete suite of two or three L values [2,22,36]. In addition it is quite 

possible that the two components, Au and voids, have on average different L values, which in the 

context of equation (3) means different L values in the two terms say L1 and L2. Two thresholds at 

f = L1 and f = L2 follow with three percolation zones as for the cermets. The important feature in 

this work is the relevance of equation (4) and some of its variants, to percolation. For spherical 



symmetry fc = L = 0.33, but our dilemma is that we clearly have samples which are percolating at 

much lower f values than 0.33 so we cannot rule out anisotropy.  The images in figure 2 could 

indicate 3-dimensional anisotropy with in-plane isotropy. These are the ones with low fc. The 

porous films like those in figure 1 however do appear to be completely isotopic and ellipsometry 

confirms this. Best fits to these type of films with equation (3) do in fact give L ~ 1/3  and hence 

imply for these structures that fc = 0.33. It is interesting that these have the same critical threshold 

as standard gold thin films, despite their quite different structure.  

 

Equation (4) gives excellent fits to complete spectral data [9,10], especially in the critical NIR 

zone with f and L plus layer thickness t as the only adjustable parameters. Good fits are found for 

all the low f films at normal incidence where the field is in the plane. Resistivity is also measured 

in the plane of the films. Thus we will put the possible complexities of anisotropy aside for thus 

study, assume in plane anisotropy and use the f and L values predicted by equation (4). An 

additional check on this approach comes from the ability to also optically fit effective layer 

thickness t using this basic model, since t has been measured independently on some samples 

using SEM cross-sections as shown in figure 1b. Estimates of mass of gold deposited during 

deposition plus the thickness value also gives an indication of void content, though this is a lower 

limit only as some gold is lost on etching. Cell shapes which are oblate would be consistent with 

the assumption of in-plane isotropy, and this approach is backed up in three ways; by the quality 

of spectral fits to normal incidence data, the consistency we will demonstrate between parameters 

used in optical and electrical data fitting, and actual images of structure as in figures 1 and 2.  The 

implication of this approach for percolation in low f Au-void networks is that there is only one in-

plane threshold. The alternate to the Bruggeman fitting is modelling with a basic Lorentz-Drude 

model of *. This also works well as in the example shown in figure 4 and elsewhere[9,10, 26].  It 

also supports the idea of an effective homogeneous plasma system [8]. The simulation study adds 



further insights to these results, but is limited in scope since we only work with spherical holes or 

particles in setting up the nanostructures. 

 

 A simulation of how percolation in mesoporous gold impacts on optical response has been 

reported [32] using the discrete dipole approximation [37,38] and starting with a dense 3D layer 

which is then part-filled with randomly placed voids. This is the Swiss Cheese model and it was 

found for spherical voids that fc = 0.33.  We have since studied its counterpart formed from 

intersecting spheres. The extinction in all of these simulations is dominated by absorption.  The 

structure made by adding particles which can intersect does not appear to  percolate optically  

until f ~ 0.6. In porous gold we find no experimental evidence of such high fc values and thus can 

eliminate the intersecting particle model. The Swiss Cheese model in contrast could apply to both 

growing thin film data and the samples of the type in figure 1 which both have fc near 0.33. 

However neither a Swiss Cheese or particle aggregation model as set up here is able to describe 

the nanoporous samples with f and fc below 0.3.  This is due to limiting this simulation study to 

spheres and hence optically isotropic systems. A need to introduce lower L values for the 

randomly placed voids and maybe to make them oblate to simulate what we see in low fc  systems 

is implied by this result.  

 

Spectral absorptance data in figure 5 for the nanoporous gold films made by etching is 

qualitatively different to that in figure 6 for the thin 2-dimensional gold layers made directly by 

vacuum deposition. For these layers at wavelengths beyond 900 nm, percolating films show 

falling transmittance and in non-percolating films it rises. In figure 6 it can be seen that the 5 nm 

thick layer is above but very close to percolation. The 7 nm layer is well above the percolation 

threshold. We estimate the critical thickness to be at 4.5 nm for our sputter deposition conditions. 

This value is supported by a different approach to quantitatively estimate the percolation point 



using a formula based on resistance values over time [3]. For all of the porous layers made by 

etching with f below 0.2, the transmittance spectral plot is exceptionally flat at NIR and longer 

wavelengths. This implies as noted above that all samples despite their differences in f are close 

to a percolation threshold specific to each sample. 

 

6.1 Linking resistivity and optical models : the case for hyper-dimensions  

 

 Considering the way gold evolves, and to link consistently with the effective medium analysis 

(EMA) of optical data, we analysed resistivity data with both the symmetric and asymmetric dc 

analogues of the optical EMA. The general form is given by equation (5a) [40, 17,18] with one 

phase metal and the other insulator, each with conductivities m  and i  respectively. It is 

expressed in terms of effective dimension d = z/2 as defined by the average branching number z 

at each junction in a bond percolation model [41]. The symmetric EMA has both ’s1 and is 

the direct dc equivalent of the Bruggeman optical model which is widely used for nanoporous 

materials, and its symmetric analogue has also been used in the dc limit with voids as the 

insulator[40]Dc electrical data in table 1 has been fitted to find fc for various possible critical 

exponents in equation (5a) including 1 . The asymmetric version of (5a) has  been widely 

used for low-frequency studies of metal insulator composites [17-19, 40] but does not seem to 

have been applied to highly porous percolating metals.  
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With voids as the insulator phase i = 0  and we obtain for the symmetric model 
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while the asymmetric models yield at f  >  fc and with i =0 
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which is in effect identical to equation (2a) if applicable at all f. d is allowed to take on arbitrary 

values in these models [41, 42] and percolation clearly occurs when f = 1/d = fc.  Since optical 

spectra and dc conductivity arise from the same structure with the same critical concentration 

then comparing equations (4) and (5) one might expect 

 



f
c
 L 

1

d
 (6) 

 

 

This simple relation would break down if significant current transport could occur even when the 

metal is not quite linking up via say tunnelling, a process which has been proposed in some 

percolation systems [43,28,29]. Discrepancies if any, would normally be more likely if both 

relations become imprecise as f approaches fc, but we find the opposite.  That is, in our data that 

follows, the predictions of the two simple models are most consistent and accurate when f and fc 

are smallest, and also very close in value, while the two model predictions diverge most at the 



highest f samples which have f near 0.5 and fc  near 0.3. The opposite trend as f varies was 

expected since the basic EMA models are expected to work best at f values well away from fc and  

to break down for f close to fc. We believe the most likely source of this anomaly is that our 

assumptions about in-plane isotropy may be less accurate in this concentration regime but future 

studies are needed to better understand the origins of this counter-intuitive outcome.  

 

Before the self-consistency overview and the comparison with asymmetric models, we present a 

table of resistivity data as a function of f in table 1. The f value used is based on good fitting of 

optical spectra with the BR model. Since all four samples shown are percolating, one approach 

might be to consider that these systems have a vanishingly small critical threshold and that all 

samples are then far from the critical zone.  

  

 

 

 

 

Table 1  Measured resistivity of mesoporous gold films as a function of fill factor and associated 

SEM images  

Resistivity (cm f ( percolating gold) Sample SEM image 

(figure number) 

1350 0.088 2c 

317 0.15 2b 

163 0.30 2a 

36.5 0.47 1 
 

A single curve for R as a function of f might support this idea, though such a plot could also be  

indicative of the way gold porous nanostructures adapt to maintain their self-supporting ability. 



Put simply, as f increases z also increases, since a higher z value adds strength to the network. In 

other words morphology is evolving at low f, with a continuous change in z, hence in d needed to 

maintain structural integrity.  We also find indications of the evolution of morphology with 

falling f on a closer analysis of the thin film resistivity data.  Does this evolution stop at some 

high f value once z = 4 or d = 2 morphology is present? Analysis of the thin film data to follow 

indicates that at f above 0.65, d = 2  behaviour does occur and no further morphology changes 

arise as f increases  further. This also means significant morphology change has occurred in gold 

films with f  below the fc where d = 3 applied.  We have combined this d~ 2 segment at f > 0.65 

of thin gold film data with the data in table 1 to produce the interesting plot in figure 7. The 

normal film data is clear from the closely spaced data points. The continuous curve is a best fit 

plot  

 

 

 



Figure 7. “(Color online)”, Resistivity as function of gold volume fraction f for four mesoporous 

gold films plus a sub-set of normal gold films with f  > 0.65. The continuous curve is a best fit 

plot to indicate possible universal behaviour. 

 

which can be reduced to a simple exponential form of equation 7 
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The exponent fit has some uncertainly in the range 2.25 to 2.50. It is indicative of a universal 

fractal-like response probably linked to the way gold atoms diffuse and aggregate when free to 

move, both during etching in bulk, and on a glass surface at higher densities. It is interesting to 

note that the fractal dimension for random diffusion-limited aggregation in 3-dimensions is 

commonly stated to be 2.50. While this plot indicates that the percolation threshold itself is 

elusive in these porous gold structures, it is still instructive to examine these films from a hyper-

dimensional percolation perspective. This will also give us better insights into where all the 

standard gold thin film data fits into the complete picture, and also allow us to see how close to 

the percolation point, at which structural collapse occurs in this case, one can get as f varies.  

Apart from estimates of fc this analysis also allows the predictions of the simple models of 

resistivity and optical data when fitted to our data, to be tested for self-consistency.  

 

The results of fitting equations (5a, 5b) to data to find fc and hence an estimate of effective hyper-

dimension d, and the consistency of these predictions with those of optical models are in tables 

2a and 2b.  

 



 

 

 

Table 2a.  A summary of the parameters derived from fitting optical and electrical data with 

for the four mesoporous films using fc =1/L for optical data and fc =1/d for resistivity data.  

Gold fill factor f Critical threshold 

fc  (optical) 

Critical threshold 

fc  (resistivity) 

f - <fc> Effective d 

(1/<fc>) 

0.47 0.33 0.38 0.11 2.8 

0.30 0.26 0.28 0.03 3.7 

0.16 0.145 0.150 0.012 6.8 

0.088 0.084 0.086 0.003 11.7 

 

 

 

Table 2b Comparison of fc values from dc data predicted by varying in equation (5c) for the 

samples in table 2a. 

Gold fill factor f fc ( fc ( fc ( fc ( 

0.47 0.38 0.39 0.42 0.43 

0.30 0.28 0.28 0.29 0.29 

0.16 0.15 0.14 0.14 0.14 

0.088 0.086 0.085 0.086 0.086 

 

 

Predicted fc values are more sensitive to  at higher f values. These tables indicate that using the 

symmetric EMA for optical modelling gives useful approximations to f and fc  especially for high 



d value systems. Optical modelling with an asymmetric power law EMA model is a task for the 

future but these tables indicate that predicted fill factors are not expected to shift much. The 

effective d values in table 2a are calculated using the averaged values of fc ( labelled < fc > ) from 

the two sets of data. The agreement between all models and optical and dc data appears 

surprisingly to be much better the closer f gets to fc.  The proximity to fc  is quite remarkable in 

the lowest f samples. 

 

As an additional check, a series of three plots of equation (5b) using the L and f values from 

optical fitting, and assuming L =1/d  appear in figure  8 , along with the data points from table 1. 

To complete the overview with another important novel insight, we include in this figure the 

complete resistivity data for growing gold films from figure 3, along with the two basic models 

appropriate to the observed fc value of 0.31 and an fc value of 0.5. The latter was expected on the  

grounds of the 2-dimensional structure. A curve is not plotted for the sample with f = 0.47, only 

the data point to avoid clutter. A curve with fc  = 0.33 would pass just below that data point. 
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Figure 8. “(Color online)”, Models of resistivity (dashed curves) using equation (5b) assuming d 

= 1/L, with L values from table 2a based on optical data for the three samples with f < 0.5 . The 

experimental points are also plotted for these and the f = 0.47 sample, along with those for 

growing gold films (x). Symmetric model curves (solid) are also plotted for fc = 0.31 as found for 

normal gold films, for fc = 0.50 as expected from basic morphology, and for fc = 0. For interest 

critical behaviour for a single high hyper-dimension is plotted for the three low f  samples using 

equations (1a) and a common  = 2.7. 

 

This figure and figure 7 need to be looked at together. Firstly gold films do behave as expected at 

high enough f (> 0.65) but morphology clearly shifts at lower f to yield near 3-dimensional 

criticality in terms of an fc value near 0.33 in a random system. The observed low critical 



exponent is however inconsistent with this  fc  value. All samples whose data lies along the curve 

in figure 7 can be modelled with consistent values of d , fc and but not the gold films (except 

at high f). The low f mesoporous samples can thus be modelled successfully as high hyper-

dimension systems. Secondly, the model plots of resistivity based on the optically derived 

parameters pass remarkably close to the actual data points for the two lowest f values.  

 

Whether these model plots remain hypothetical and porous gold is always restrained to evolve at 

low f along the curve of figure 7 remains to be seen. However since departures from this curve 

are seen in normal gold films as f approaches fc we cannot yet rule them out. The driving force of 

structural stability may allow for other stable structural evolution. As seen here, high hyper-

dimensional behaviour can be seen as a consequence of a more branching network and higher 

average co-ordination number z evolving as f falls, to avoid structural collapse.  

 

While hyper-dimensionality can be considered in terms of the parameter d = z/2  in equations (5) 

it may not be practicable to justify it using critical plots as in figure 3 to find .  However looking 

at the potential critical plots in figure 10, assuming a high d value, it seems that a value of at or 

belowas needed for 3-dimensions, is unlikely to work on the samples with very low f. This 

adds weight to the case for hyper-dimensionality while the observed departure of the normal gold 

films from a d = 2 critical response is clearly non-universal. Various other explanations proposed 

for departure from universality do not seem to work here, apart from explaining small down-

shifts such as  from d = 3.0 to 2.8 . This data thus points to a need either for some new 

explanations of departures from universality, or its re-appraisal in terms of d rather than the 

applicable D. 

 

7. Conclusion 



 

Nanoporous gold in complex 3-dimensional networks can percolate at very low volume fill 

factors f of gold. As f falls, models of optical and resistivity data provide evidence that 

morphology seems to evolve continuously for f values less than 0.5 as the mobile gold atoms 

move during etching to ensure structural stability. Final structures seem to have a common 

underlying symmetry as seen in universal fractal-like behaviour found for resistivity from f = 1.0 

to f = 0.08 consistent with gold networks growing by diffusion-limited aggregation. Greater 

branching and an associated varying hyper-dimensional character emerges as f drops. Normal 

thin films of gold on glass depart from this universal plot via changes in structural evolution once 

f < 0.65 to yield an anomalous critical threshold and non-universal coefficients. The issue of 

universality needs re-examining in the light of this data, while further experiments on gold and 

other nanoporous metals are needed to better understand these unusual results, to assess if the low 

f samples are optically anisotropic, to explore if alternative optical effective models to that of 

Bruggeman designed for near critical behaviour [17-19] are applicable  and to see if gold’s ability 

to adjust structurally to yield percolating structures with such low metal content is unique.  A 

simple approach to extracting critical coefficients from optical data has been suggested based on 

effective  plasmonic response near the critical threshold. 

 

Acknowledgements We thank Angus Gentle for help with interpreting optical data and Ric 

Wuhrer for help with imaging.  

 

References: 

 

1. K. Seal, M.A.Nelson, Z. Charles, D.A. Genov, A.K. Sarychev and V.M. Shalaev, J. Modern 

Optics 49, 2431-2435 (2002) 



2. G. B. Smith, G.A.Niklasson, J. S. E. M.Svensson, C. G. Granqvist, J. Appl. Phys. 59,571-581 

(1986) 

3. S. Xu, B. L. Evans, D. I. Flynn and C. En, Thin Sold Films 238, 54-61 (1994) 

4. Y. Yagil, P. Gadenne, C. Julien, and G. Deutscher, Phys. Rev. B 46, 2503–2511 (1992) 

5. A.I. Maaroof, and B.L. Evans, J. Appl. Phys. 76(2), 1047-1054(1994). 

6. S. O. Kucheyev,a_ J. R. Hayes, J. Biener, T. Huser, B, C. E. Talley, and A. V. Hamza, Appl. 

Phys. Lett. 89, 053102 (2006) 

7. L. H. Qian, X. Q. Yan, T. Fujita, A. Inoue, and M. W. Chen, Appl. Phys. Lett. 90, 153120 

(2007) 

8. G. B. Smith A. R. Gentle and A. I. Maaroof, Journal of Nanophotonics 1, 013507 (2007) 

9. A. I. Maaroof, A Gentle, G B Smith, and M B Cortie,  Journal of Physics D: Applied  Physics 

40, 5675-5682 (2007)  

10. A. I. Maaroof, M. B. Cortie and G. B. Smith, J. Opt. A: Pure Appl. Opt. 7, 1-7 (2005) 

11. A. Mortari, A. I. Maaroof, D.Martin and M. B. Cortie, Sensors & Actuators B 123, 262-268 

(2007) 

12. M. B. Cortie, A. I. Maaroof, G. B. Smith, Gold Bulletin  38/1, (2005) 

13. L. Glaner, E. Van der Lingen and M.B. Cortie, Gold catalysts and methods for their 

preparation, Australian Patent 2003/215039, 30
th

 January (2003) 

14. C. Xu, J. Su, X. Xu, P. Liu, H. Zhao, F. Tian, Y. Ding, J. Am. Chem. Soc. 129,42-43 (2006) 

15. D. Stauffer and A. Aharony, “Introduction to Percolation Theory” (2
nd

 Edition Taylor and 

Francis, 1992) 

16. P. M. Chaikin and T.C. Lubensky, in “Principles of Condensed Matter Physics” (Cambridge 

University Press, Cambridge UK, 1995) pp 230 

17. J.Wu and D.S. McLachlan, Phys. Rev. B 56,  1236-1248 (1997) 

18. C. Chiteme and D.S. McLachlan, Phys. Rev. B 67, 024206 11-17 (2003)  



19. W.Z. Cai, S.T. Tu and J.M. Gong, Journal of Composite Materials, 40, 2131-2142 (2006)  

20. J.N Roberts and L.M. Schwartz, Phys. Rev. B 31, 5990 - 5997 (1985)  

21. S. Shabtaie and C.R. Bentley, J. of Geophysical Research 99, 19,757-770 (1994) 

22. G. B. Smith, G. A. Niklasson, J. S.  E. M. Svensson and C. G. Granqvist, Solar Energy 

Materials 14, 257-268 (1986) 

23. G. A. Niklasson and C. G. Granqvist, J. Applied Physics 55, 3382-3410 (1984) 

24. J.S. Helman and B. Abeles , Phys.Rev.Lett., 37, 1429-1432  (1976)  

25. S. Gresillon, L. Aigouy, A.C. Boccara, J.C. Rivoal, X. Quelin,  C. Demarist , P. Gadenne, V. A. 

Shubin, A. K, Sarychev, and V. M. Shalaev, Phys. Rev. Lett. 82, 4520-4523 (1999) 

26.  K. Seal, S. Gresillon , L. Aigouy, A. C Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, A. K. 

Sarychev, H. Noh, D. A. Genov, A. Yamilov, V. M.  Shalaev, Z. C. Ying and H. Ca, Phys. Rev. Lett. 94 

226101/1-4 (2005) 

27. B.I. Halperin and S. Feng, Phys. Rev. Letters 54, 2391-2394 (1985) 

28. S. Feng, B.I. Halperin and P. N. Sen, Phys. Rev. B, 35, 197-214 (1987)  

29. I. Balberg, Phil.Mag. B, 56, 991-1003 (1987) 

30. R.W. Cohen, C.G. Cody, M.D. Coutts and B. Abeles, Phys. Rev. B 8, 3689 (1973) 

31. G.B. Smith, A. Maaroof and A. Gentle , Optics Communications, 271, 263-268 (2007) .  

32. A. I. Maaroof, A. R Gentle, M B Cortie and G.B. Smith, Proc. SPIE 6647, Nanocoatings (Eds. 

Smith and Cortie) 6647OD1-6647OD10 (2007)   

33. D. A. G. Bruggeman, Ann. Phys. Lpz. 24, 636–679 (1935) 

34. G. B. Smith, J. Phys. D: App. Phys. 10, 139- 142 (1977)  

35. G. B. Smith, App. Phys. Lett. 35, 668- 670 (1979) 

36. G. B. Smith, G. A. Niklasson, J. S.  E. M. Svensson and C. G. Granqvist, Proc. SPIE, 562, 

116-123 (1985) 

37. B. T. Draine & P. J. Flatau, J. Opt. Soc. Am. A 11, 1491-1499 (1994) 



38. M. I. Mishchenko, J.W.  Hovenier, and L. D.Travis, “The discrete-dipole approximation for 

light scattering by irregular targets, in Light Scattering by Nonspherical Particles: Theory, 

Measurements, and Geophysical Applications” 131-145 (Academic Press, New York, 2000) 

39. W. Xia and M.F. Thorpe, Phys. Rev. A 38, 2650-2656 (1988) 

40. D.S. McLachlan, J. Phys. C, 20, 865- 877 (1987) 

40. J.P Clerc, G.Giraud, J.M. Laugier and J. M. Luck, Advances In Physics 39, 191-309 (1990) 

41. X Zhang and D. Stroud, Phys. Rev .B 52, 2131-2137 (1995)  

42. B. Abeles , H. L. Pinch and J.I. Gittleman, Phys. Rev. Lett., 35, 247-250 (1975)  

 

 


