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Abstract 

Luminescence properties of vertically aligned, crystalline ZnO nanorods are studied by 

cathodoluminescence (CL) spectroscopy and microscopy. Results show that luminescence 

characteristics vary dramatically with location on the nanorod as well as CL excitation depth. 

Cathodoluminescence inhomogeneity is observed between the nanorod tip and sidewalls, 

accompanied by a variation in the chemical environment of surface oxygen ions as probed by 

photoemission spectroscopy. Our findings demonstrate that CL can provide useful 

information on the local optical properties of nanostructured materials, which is simply 

beyond the capability of other methods.  
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Text 

ZnO has attractive properties for possible applications in ultraviolet (UV) light 

emitting devices [1], photocatalysis [2] and solar cells [3]. Understanding the role of defects 

and their spatial distribution in ZnO is extremely important in many of these applications, 

particularly those utilising nanostructured ZnO. Surface defects have been found to affect the 

performance for such applications. For example, surface impurities such as hydroxyl are 

known to quench the UV emission in ZnO [4], while other surface defects can hinder charge 

transfer between ZnO and adsorbed molecules at the interface [5].  

In this Letter, we report cathodoluminescence (CL) inhomogeneities in ZnO nanorods 

with diameters > 100 nm. No quantum confinement effect is expected for the nanorods (the 

Bohr exciton radius of ZnO is 2.34 nm [6]), however the impact of the surface is immense 

due to the large surface-to-volume ratio. The luminescence of ZnO nanostructures at room 

temperature is commonly characterised by two bands: an UV near-band-edge (NBE) emission 

centred at 380 nm and a defect-related green emission at ~520 nm. Although 

photoluminescence (PL) measurements on individual sub-micron structures are possible [7], 

the spatial resolution and the accuracy of the technique are limited by the diffraction limit and 

poor signal-to-noise ratio. In most studies, PL spectroscopy is taken from ensembles of ZnO 

nanostructures and has thus far produced very large discrepancies in the luminescence results 

[8-10]. In this work, the local luminescence properties of ZnO nanorods were characterised by 

high spatial resolution CL and angle-resolved X-ray photoelectron spectroscopy (XPS). The 

results demonstrate that a luminescence spectrum typically obtained with conventional PL 

may not represent the optical properties of all parts of the nanorods.  

Highly oriented ZnO nanorods were grown onto an a-plane sapphire via the chemical 

vapour transport method with the use of Au as catalyst, as described in detail elsewhere [11]. 
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The morphology and structure of the grown sample were characterised using a FEI Quanta 

200 scanning electron microscope (SEM), which is equipped with a Gatan MonoCL3 CL 

spectroscopy/imaging system. The CL signal was detected using a Hamamatsu R943-02 

Peltier cooled photomultiplier tube. Low-voltage CL was employed to improve the spatial 

resolution and surface sensitivity. The typical beam energy used in this work was 1 – 5 keV, 

corresponding to a primary electron penetration range Re = 15 – 200 nm. All CL spectra were 

corrected for the overall detection response of the CL spectroscopy system. The 

crystallography of the ZnO nanorods was characterised by X-ray diffraction (XRD) on a 

Siemens D5000 X-ray diffractometer. Additionally, the electronic structure of the nanorods 

was investigated by XPS, which was conducted on the wide-range SGM (BL-24A1) beamline 

at the National Synchrotron Radiation Research Centre (Taiwan). XPS survey spectra of the 

sample revealed only zinc and oxygen signals and no other impurities were detected.  

Fig. 1a shows a top view micrograph of the aligned ZnO nanorod array. The image 

reveals the hexagonal symmetry of the nanorods and shows that most of the ZnO nanorods 

grow perpendicular to the substrate. The ZnO nanorods all have a height of approximately 

5 µm and their diameters range between 100 and 800 nm. Conventional (θ-2θ) XRD on the 

sample verifies the SEM result showing that the vertically aligned nanorods are oriented in 

the [0001] ZnO direction parallel to the [11 2 0] sapphire substrate (Fig. 1b). The 

diffractogram displays only two peaks with strong intensity, (0002) and (0004), which are 

both multiples of the [0001] ZnO growth direction, indicating that the nanorods are highly 

crystalline and were grown with the c-axis orientation. This epitaxial growth is consistent 

with the in-plane orientation relationship between ZnO and a-plane sapphire, which has 

recently been explored by Campos et al [12], while the nanorod body is enclosed by six 

crystallographic equivalent {1010} facets. The alignment of nanorods is further confirmed by 

the θ-rocking curve of the ZnO (0002) plane, which has a full width at half maximum 
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(FWHM) of 1.3o (inset of Fig 1b). The narrow FWHM implies that the c-axes of the nanorods 

are well aligned to the substrate normal.  

CL spectra obtained from individual nanorods display a NBE emission at 3.3 eV 

(380 nm) and a broad green band centred at 2.3 eV (520 nm). CL exhibits similar 

luminescence properties among vertically aligned nanorods; however, the intensity ratio of 

NBE/green varies strongly with probe location on the nanorod (Fig. 2). At the same 

acceleration voltage (5 kV), the green intensity of the nanorod tip is considerably weaker than 

that of the sidewalls. Weak green emission from the tip is indicative of better crystalline 

structure. Decreasing the acceleration voltage to 1 kV reduces the intensities of both NBE and 

green emissions as expected. However, the green peak is now completely dominant over the 

NBE emission. The relatively strong green band at ultralow voltage operation (the effective 

CL excitation depth < 10 nm) supports previous findings that the green luminescence 

originates from the ZnO surface [13, 14]. 

The luminescence behaviour is illustrated more clearly in Fig. 3, which show an SEM 

image of ZnO nanorods and monochromatic CL images recorded from the same area. Panels 

b) and c) of Fig. 3 clearly show that the NBE emission distributes uniformly over the 

nanorod; however, the CL image of defect distributions displays a remarkable inhomogeneity 

between the nanorod tip and sidewalls. The monochromatic CL images demonstrate that low-

level luminescence signals from nanostructures can be obtained and that CL can provide a 

direct comparison of local optical properties by minimizing any possible external 

perturbations, such as effects of a non-uniform excitation density throughout the electron-

solid interaction volume [15]. All nanorods can be clearly resolved as individual emitters and 

this represents a significant advantage over the conventional PL method. The observed 

luminescence inhomogeneity could not have been distinguished without the high spatial 

resolution afforded by CL. Furthermore, the CL intensity variation with location demonstrates 
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that a luminescence spectrum typically obtained with conventional PL may not represent the 

optical characteristics of all the faces of ZnO nanorods.  

In CL measurements, the greatest number of electron-hole pairs is generated at a depth 

of ~Re/3 [15]. However, one has to take into account the diffusion length, i.e. the distance 

within which carriers can diffuse to the surface where they recombine. This diffusion length 

in ZnO was estimated to be ~60 nm [16], thus a large proportion of injected carriers can reach 

the surface at low acceleration voltages (< 5 kV). Based on this discussion and with a view 

that surface oxygen vacancies can potentially be the recombination centre for the green 

emission [14, 17], XPS studies were carried out to investigate the chemical structure of the tip 

and sidewalls of the nanorods. Angle-resolved XPS spectra were acquired at different 

detection angles, θd, measured with respect to the c-axes of the vertically aligned nanorods. It 

is expected that any spectra obtained at normal incidence (θd = 0) is dominated by the surface 

of the nanorod tip, while contributions of the sidewalls become increasingly more important 

as θd increases. Figure 4 compares the O 1s XPS spectra of the nanorods acquired at three θd 

angles. The binding energy scale was referenced to the Au 4f7/2 at 84.0 eV. It can be seen in 

Fig. 4a that, with increasing angle θd, the O 1s line shape becomes broader on the high-

binding-energy side. The change in the line width is small but significant. The O 1s line shape 

is similar to those of oxygen-deficient ZnO surfaces [18] and can be resolved by a Voigt 

fitting distribution into two peaks at 529.9 and 531.3 eV, which have been attributed to O2- 

ions surrounded by fully coordinated Zn atoms and O2- ions in oxygen-deficient ZnO, 

respectively [18, 19]. It can be seen in panels (b) and (c) of Fig. 4 that the intensity of the non-

stoichiometric component increases with θd, indicating a higher level of oxygen deficiency on 

the sidewalls of the nanorods.  

The increase in the oxygen defect density on the sidewalls is consistent with the 

enhanced green emission as revealed by CL. These experimental observations justify an 
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assignment of green emission to oxygen defect states present on the surface of the ZnO 

nanocrystals. A comparison with literature [17, 20] suggests that the green luminescence is 

likely caused by the radiative recombination of a hole with a singly ionised oxygen vacancy 

( •
oV ) defect. This assignment remains controversial although there is general agreement that 

oxygen vacancies are involved in some way in the green luminescence in ZnO. 

In summary, we have shown that CL can provide useful information on local optical 

properties and defect distributions in semiconductor nanostructures. Inhomogeneities in 

optical and chemical properties of the ZnO nanorods are observed. Our results indicate that 

interpretations of luminescence data from PL measurements on ensembles of ZnO 

nanostructures can be misleading and should be taken with caution because of possible 

inhomogeneities within a nanostructure.  

 

This work was supported by the Australian Synchrotron Research Program, which is 
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Figure Captions  

Fig. 1. (a) SEM image of vertically aligned ZnO nanorods grown on an a-plane sapphire, 

showing nanorods with regular hexagonal shape and good crystallinity. (b) Semi-logarithmic 

XRD θ-2θ plot of the ZnO nanorods. Inset shows the rocking curve of the ZnO (0002) plane.  

Fig. 2. CL spectra obtained from the tip and the sidewalls of the ZnO nanorods with a focused 

electron beam at 5 kV, 2 nA and 300 K (normalised to the intensities of the NBE emission 

peak), with the analogous spectrum of the tip at 1 kV for comparison.  

Fig. 3. Secondary electron (SE) and monochromatic CL images acquired at 3.3 eV (NBE 

emission) and 2.3 eV (green). The images were obtained from the same area. The contrast in 

the green emission between the tip and sidewalls is clear. 

Fig 4. (a) Comparison of the O 1s XPS spectra of the nanorods acquired at different detection 

angles of photoelectrons, θd. The spectrum is broadened to the high-binding-energy side as θd 

is increased from 0o to 60o. (b and c) The O 1s spectra can be resolved into two peaks 

corresponding to two chemically different environments.  
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