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ABSTRACT:  In this study, the potential of attenuated total reflectance – Fourier 

transform infrared (ATR-FTIR) spectral imaging as a technique to determine the 

sequence of line crossings was examined.  The technique was successful in 

determining the sequence of heterogeneous line intersections produced using ballpoint 

pens and laser printers.  By imaging at characteristic frequencies, it was possible to 

form spectral images showing the spatial distribution of the materials.  By examining 

the spectral images from the inks, it was possible to determine whether the ink was 

above or below the toner.    In blind testing, ATR-FTIR spectral imaging results were 

directly compared to those obtained by eight experienced forensic document 

examiners using methods regularly employed in casework.  ATR-FTIR spectral 

imaging was shown to achieve a 100% success rate in the blind tests, whereas some 

incorrect sequence determinations were made by the forensic document examiners 

when using traditional techniques.  The technique was unable to image ink-jet 

printing, gel pens, roller ball pens and felt-tip pens, and was also unable to determine 

the sequence of intersecting ballpoint pen lines. 

KEYWORDS:  forensic science, questioned documents, spectral imaging, 

intersecting lines, line crossings, infrared, FTIR, ATR ballpoint ink, toner 
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Forensic document examiners are often called upon to determine the sequence of 

intersecting lines.  An example of where it may be important to determine the order of 

strokes could be in a document such as a will or contract.  The addition of an extra 

clause or paragraph could dramatically alter the terms of the agreement.  If the added 

text overlaps, or intersects, with the signature on the document, then the alteration 

may be detected by examining the order of the strokes. 

 

There are two main types of line intersections, homogeneous and heterogeneous.  A 

homogeneous line intersection is defined as one where the line crossings have been 

produced using the same type of writing instrument or printing device, for example 

line crossings produced using two ballpoint pens.  A heterogeneous line intersection is 

one where two different types of writing instruments and/or printing devices have 

been used to produce the line crossings, such as a laser printer and a ballpoint pen, or 

even a ballpoint pen and a gel pen (1).  In this research, both types of line crossings 

are examined. 

 

A number of techniques are available to examine intersecting line samples, and the 

choice of technique depends on a number of factors such as the writing/printing tools 

used to produce the intersecting lines, and whether a non-destructive technique is 

required over a destructive one.  A comprehensive review of the techniques available 

is given by Poulin (1).  Each of the available techniques has various advantages and 

disadvantages.  For forensic analysis, a non-destructive technique is always preferred 

over a destructive one, and therefore destructive techniques, such as the scraping 

technique (2), where part of the toner material can be scraped away to reveal whether 

the ink deposit is below or above the toner, may not be suitable in many cases.   
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Many of the techniques used to examine line crossings are based on optical 

examination and observation of physical characteristics.  These have the advantage of 

being non-destructive, but they do suffer some drawbacks.  One of the biggest 

disadvantages of many techniques currently used is that they are subject to human 

interpretation.  Optical microscopy is the most widely used technique in determining 

the sequence of intersecting lines (3).  The drawback of this technique is that optical 

illusions can occur; for example, a heavier or darker pen stroke may appear to be on 

top of a lighter pen stroke, regardless of the actual order of strokes (4, 5).  It has also 

been reported that with line intersections, ‘there is a tendency to see what one 

perceives to be the correct sequence’ (2).  It may be that two document examiners 

examine the same intersection, and come to different conclusions regarding the order 

of strokes, as demonstrated later in this paper.   

 

The ideal technique for determining the sequence of intersecting lines is one which is 

non-destructive, and can provide an objective method of analysis for a variety of 

material configurations encountered.  Infrared spectroscopy is an objective, non-

destructive technique, and is widely accepted for the analysis of many types of 

forensic evidence.  FTIR spectroscopy has been used to analyse various materials 

encountered when examining intersecting lines, such as paper (6), ballpoint pen ink 

(7), and photocopy and printer toners (8-12).  Even though FTIR spectroscopy has 

been used to analyse many of the materials commonly encountered in intersecting line 

samples, to date it has not been used to determine the sequence of strokes.  

Previously, to obtain both spectral and spatial information, a time-consuming process 

called infrared mapping had to be employed.  This involved obtaining numerous 
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infrared spectra, one at each point on a grid across the sample, through the use of a 

motorised stage.  In the past decade or so, significant improvements in technology 

have led to the development of FTIR imaging, a powerful technique that can 

simultaneously obtain both spectral and spatial information in rapid collection times 

(13, 14). 

 

The theory of FTIR imaging has been covered extensively elsewhere (14), so only a 

brief overview will be given here.  The technique employs a Focal Plane Array (FPA) 

detector, with (typically) 64 x 64 discrete detectors (or pixels) laid out in a grid 

pattern.  This detector simultaneously collects 4096 spectra in a single image, 

therefore allowing spectral and spatial information to be obtained in a short period of 

time.  The image data collected can be thought of as a three-dimensional datacube, 

with vertical (x) and horizontal (y) spatial dimensions, and a spectral frequency 

domain (z) (15, 16).  In other words, at every point (x, y) on the sample, an infrared 

spectrum is collected (z).  It is possible to view an infrared spectrum at a particular 

point on the sample, and identify the chemical components present, or ‘spectral 

images’ can be formed by mapping the intensity of a particular parameter (such as 

spectral intensity at a chosen frequency) across the sample.  A false colour map is 

produced by assigning a colour to each pixel according to its intensity at the chosen 

frequency, and the scale used in this research ranges from high-intensity red to low-

intensity blue.  By imaging at particular frequencies corresponding to the vibrations of 

chemical functional groups, the spatial distribution of different chemical components 

in the sample can be seen.  It is hoped in this research that by choosing functional 

groups specific to the materials commonly encountered in intersecting line samples 

e.g. paper, ink and toner, spectral images showing their spatial distribution can be 
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formed, and that they will provide information as to the order in which the line 

crossings were applied. 

 

FTIR imaging has been shown to be successful for a number of forensic applications, 

including fingerprint visualisation (15), analysing multilayered paint chips (16), 

bicomponent fibre analysis (17) and visualising and identifying various materials 

including drugs and fibres either directly on a finger, or contained in a latent 

fingerprint (18, 19).  As can be seen with the examples above, there are a number of 

ways in which infrared imaging can be used for forensic applications, including i) the 

pure visualisation of components (e.g. detecting and enhancing latent fingerprints), 

and ii) visualisation and identification of chemical components (e.g. multilayered 

paint chips and bicomponent fibre analysis).  Determining the sequence of 

intersecting lines falls into the first category.   

 

In this paper, the authors examine the use of infrared spectral imaging as an objective, 

non-destructive method for determining the sequence of intersecting lines.  Both 

homogeneous and heterogeneous line crossings produced using a range of 

writing/printing materials are examined.  The techniques attempted in this work are 

infrared reflectance microspectroscopic imaging and “macro” ATR (attenuated total 

reflectance) infrared imaging (20, 21).  Since ATR is a surface-preferenced technique, 

and has been used successfully in conventional (non-imaging) analysis of inks and 

toner on paper (10, 22), ATR imaging holds the greater promise for sequencing of line 

crossings on paper.   
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Materials and Methods 

Sampling 

A variety of writing/printing materials was used to produce homogeneous and 

heterogeneous intersecting line samples including black ballpoint pens, gel pens, 

roller ball pens, felt-tip pens, and laser and ink-jet printers.  The materials tested are 

listed in Tables 1-4.  The line crossings sequences were known for all samples 

examined, apart from the blind sample set.  All intersections, apart from the blind 

samples, were drawn on white EXP800 Laser/Copy Paper.  For ease of analysis, an 

area roughly 2 x 2 cm in size, containing the line intersection to be imaged, was cut 

out of the document.  It is possible, however, to manoeuvre an A4 page so that the 

intersection does not have to be cut from the document to be imaged. 

 

Infrared Spectral Imaging 

The intersections were examined using a Digilab Stingray® FT-IR imaging system, 

which is comprised of an FTS7000 FTIR spectrometer, coupled to an UMA 600 

infrared microscope fitted with a Lancer 64 x 64 mercury cadmium telluride (MCT) 

focal plane array (FPA) detector.  The system also has the optional Digilab LS large 

sample accessory, which allows for imaging of macrosamples.  Images collected 

using this accessory had a spatial resolution of 44 µm, and a spectral resolution of 8 

cm-1.  Images and spectra were collected and processed using Digilab Win-IR Pro 3.4 

Software.  The spectral range collected was 900 – 4000 cm-1, with 900 cm-1 being the 

low energy cut-off of the FPA detector.   
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Feasibility Study and Optimisation of the Sampling Method 

An initial feasibility study was conducted to determine the capabilities of the 

technique and also to optimise the sampling parameters.  The feasibility study focused 

on heterogeneous intersections produced using four black ballpoint pens and two laser 

and ink-jet printers (see Table 1).  The samples were imaged using two different 

sampling methods, these being reflection analysis using the microscope, and ATR 

analysis using a zinc selenide ATR crystal in the large sampling accessory.      

 

For reflection analysis, the samples were imaged using the “expanded field of view” 

mode on the microscope in which each individual image tile is approximately 700 µm 

x 700 µm.  It is possible using a motorized stage to stitch together or “mosaic” several 

image tiles to form a larger image of up to 2 x 2 cm.  To obtain a large enough image 

size to examine an intersection, four (2 x 2) image tiles were collected, giving a total 

area imaged of ~ 1.4 x 1.4 mm.  The infrared spectra within each image tile were 

collected at 8 cm-1 resolution, using up to 1024 co-added scans.  Background images 

were collected from infrared-reflective metal oxide-coated glass slides (Kevley 

Technologies).   

 

For ATR imaging, due to the size of the intersections, it was necessary to use a macro 

ATR crystal in the large sampling accessory.  A FastIR horizontal / single bounce 

ATR accessory (Harrick Scientific) was used, which allowed for images roughly 3.0 x 

2.3 mm in size to be collected.  Initially a zinc selenide (ZnSe) ATR crystal was used, 

however results obtained (see Results and Discussion) led the authors to also 

investigate the use of a germanium (Ge) ATR crystal.  For both ATR crystals, infrared 
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spectra were collected at 8 cm-1 resolution, using 256 co-added scans.  Background 

images were collected from the vacant ATR crystal surfaces.           

 

Attempts were made to image both homogeneous and heterogeneous ink-ink 

intersections produced using the various different writing pens listed in Table 2.  This 

testing was conducted using both the ZnSe and Ge ATR crystals in the large sampling 

accessory, under the parameters previously described.  

 

Validation Study and Blind Testing 

Validation studies were conducted using the optimal imaging method, i.e. using a 

ZnSe ATR crystal in the large sampling accessory.  Five black ballpoint pens and five 

laser printers were used to produce known intersections where the ballpoint pen ink 

was variously applied before and after printing (see Table 3 for details).     

 

Tests were conducted to determine whether ageing of the samples, and the pressure 

applied when producing the intersecting lines, affected the accuracy and quality of the 

results obtained.  Ballpoint pen and laser printer line crossings were prepared for the 

ageing experiments using three black ballpoint pens (Sanford Suregrip, Staedtler and 

Uni S-AS) and two laser printers (Epson AcuLaser C1900 and Minolta Magicolour 

2200).  The samples were aged up to 12 months, and were imaged at various time 

intervals along the way.  These ages were 0 days, 1 day, 3 days, 1 week, 2 weeks, 1 

month, 3 months, 6 months and 12 months.  The samples were stored in the dark in a 

drawer at room temperature.  The same set of samples was imaged at each age, along 

with replicate samples of the same age that had not previously been imaged (in case 

the original samples had been affected by being clamped repeatedly onto the ATR 
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crystal).  Pressure tests were also conducted on intersecting black ballpoint pen and 

laser printing lines, which were prepared using two black ballpoint pens (Papermate 

Kilometrico and Sanford Suregrip) and an Epson AcuLaser C1900 printer.  A 

SpectraTech Contact Alert system was used to monitor the pressure used when 

applying the ballpoint pen ink lines, both before and after printing.  The line crossings 

were prepared using a pressure indicator of 4, 7 and 10 (arbitrary scale) when 

applying the ballpoint pen ink lines.  

 

Blind tests were performed, in which the order of strokes was unknown prior to 

imaging.  Four volunteers prepared twenty-one blind samples using various ballpoint 

pens and laser printers, and were asked to sign their name, neatly print a passage of 

writing and write a paragraph in their normal style of writing, either before or after 

printing.  This protocol was used to ensure there was a variety of pen pressures and 

angles within the samples through the different styles of writing (see Table 4 for 

sample details).  The results obtained using infrared spectral imaging were directly 

compared with those obtained by eight experienced forensic document examiners, 

who used methods they would use in casework (see Table 5 for details).  The forensic 

document examiners were asked to independently examine the same set of blind 

samples and come to one of the following findings – ink over toner, ink under toner or 

inconclusive. 

 

The intersecting line samples were photographed under white light illumination using 

a Video Spectral Comparator (VSC) 2000 (Foster and Freeman, UK) or  a Sony DSC-

W1 Cyber-shot digital camera and a Leica MS5 microscope with a Leica CLS50E 

light source.      
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Results and Discussion  

Feasibility Study 

An initial feasibility study was conducted to examine the potential of infrared spectral 

imaging for determining the sequence of intersecting lines.  As mentioned previously, 

there are a number of ways the infrared spectral imaging data can be viewed.  Infrared 

spectra can be extracted from specific points on the sample to potentially identify 

individual components, and data can also be viewed as a series of images, produced 

by mapping the spectral intensity at a given frequency across the sample.  By 

choosing an infrared band specific to a given material, it is possible to view the spatial 

distribution of the chosen material across the sample.  In order to successfully 

determine the sequence of intersecting lines, the following three criteria need to be 

fulfilled: 

− the various writing/printing materials (as printed on the paper) must yield 

infrared spectra that can be resolved from the paper background; 

− each writing/printing material must have at least one characteristic infrared 

band that allows it to be independently imaged;  and 

− there must be a consistent pattern of results for the two possible line crossing 

situations (i.e. material A on material B or vice versa); this means that there 

must be no physical mixing of the two materials and that it must be possible to 

detect the spectrum of the uppermost material without interference from the 

other material in at least one of the two situations mentioned.  

 

Intersections produced using ballpoint pens, laser printers and ink-jet printers were 

initially examined using two different infrared sampling methods.  With reflection 

analysis, as mentioned previously, it is possible to image larger areas (up to 2 x 2 cm) 
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by stitching together or “mosaicking” multiple image tiles collected using an 

automated stage.  Reflection imaging using up to 1024 scans at 8 cm-1 resolution was 

attempted, and while it was possible to image a laser-printed toner character, the 

ballpoint pen ink and ink-jet printer spectra seemed to be swamped by the paper’s 

spectral contribution (from cellulose and inorganic constituents within the paper), and 

so it was not possible to image any of the ballpoint pen inks or ink-jet printers tested.  

Another disadvantage of reflection imaging is that the time needed to scan an entire 

12 point toner character (an image area of ~ 1.4 x 1.4mm) took over an hour and a 

half.  

 

It was therefore necessary to try another sampling method.  Imaging with an ATR 

crystal was thought to be suitable since the IR penetrates a short distance into the 

sample from the surface.It was hypothesized that the infrared spectra collected would 

contain less contribution from the paper background and allow for the ballpoint ink 

and ink-jet printing spectra to be seen.  The theory of ATR analysis is covered 

elsewhere (23), therefore only a brief explanation will be given here as to why it is 

considered a surface-preferenced technique.  Under the right conditions, the IR beam 

undergoes an internal reflection within the ATR crystal.  Even though the IR beam is 

completely reflected at the internal interface, part of the radiation’s electrical field 

penetrates a small distance into the sample material; this penetrating field is often 

referred to as the evanescent wave.  The distance the evanescent wave penetrates into 

the sample depends on a number of factors, including the refractive index of the ATR 

crystal material and of the sample. 
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ATR infrared imaging, using the ZnSe ATR crystal in the large sampling accessory, 

was found to successfully image laser toner and ballpoint ink crossings.  Around six 

minutes was required to collect a 3.0 x 2.3 mm image (with 256 co-added scans at 8 

cm-1 resolution).  By choosing an infrared band present only in either the toner 

spectrum or the ink spectrum, separate spectral images showing the spatial 

distribution of these materials could be obtained.  An example of the spectral images 

formed can be seen in Fig. 1.  Figure 1a shows the visible light image of a line 

crossing produced with a black Staedtler ballpoint pen and an Epson AcuLaser 

printer.  Figures 1b and 1c show the infrared spectra of the toner and ink materials, 

respectively.  Figure 1d shows the infrared image of the toner material, and has been 

formed using the integrated peak intensity under 1724 cm-1, which has previously 

been assigned as a carbonyl band in some major resins typically found in toner, such 

as polystyrene-co-acrylate or epoxy plus acrylate (8).  Figure 1e is an infrared image 

of the ink material, which has been formed using the integrated peak intensity under 

1584 cm-1.  The peak at 1584 cm-1 is characteristic of the ballpoint pen ink, and has 

previously been assigned to a skeletal vibration of triarylmethane dye and the C=C 

stretch vibration of epoxy resin (7).  In this work, the actual identification of the peaks 

used to form the images is not vital; it is only necessary that the peaks are 

characteristic of the ink or toner materials and allow for them to be independently 

imaged, so that their respective distributions within the sample can be viewed. 

 

The third criterion for the infrared spectral imaging technique to be successful in 

determining the sequence of intersecting lines was that a consistent pattern needed to 

be observed when one material was lying above or below the other material.  The 

preliminary results indicated that examining the toner spectral image was not 
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particularly useful in determining the sequence of intersecting lines.  No consistent 

changes or breaks were seen in the toner image at the point of intersection to indicate 

whether the ink line was present above or below the toner.  However, when 

examining the ink spectral image, a consistent trend was observed.  When the ink was 

underneath the toner, there was a gap in the ink image where the toner had passed 

over the ink (see Fig. 1).  When ink was present over toner, no break was seen in the 

ink line where it crossed over the toner line (see Fig. 2).  This can be explained by 

noting that the toner material absorbs strongly in the infrared, and blocks the infrared 

light from penetrating through to the ink material, causing a gap in the image where 

the ink lies under the toner.  When the ink lies on top of the toner, the ink spectrum is 

stronger, as there is less spectral contribution from the cellulose in the paper.  In this 

case, no gap is seen in the ink line, and generally the image is stronger at the point of 

intersection (i.e. closer to a red colour (high intensity) in the image than green-blue 

(lower intensity)).  The toner material generally gives a strong spectrum, and most of 

the time could be seen in the toner infrared images regardless of whether the ink lay 

above or below the toner.  It therefore does not appear to help in determining the 

sequence order of the strokes.    

 

Overall the preliminary study indicated great potential for infrared spectral imaging in 

determining the sequence of intersecting ballpoint pen ink and laser printer toner 

lines.  However, infrared spectral imaging was unable to image either brand of ink-jet 

printer ink on paper, with the weak ink-jet spectrum being swamped by strong paper 

spectral interference.  Therefore it was necessary to look at further sampling methods 

to see if any improvement could be made to the technique to make it more sensitive to 

ink-jet printing and/or less sensitive to the underlying paper.  One approach was to 
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investigate the use of a different ATR crystal material.  The higher the refractive 

index of the ATR crystal, the shorter the distance the evanescent wave penetrates into 

the sample.  Therefore germanium, which has a refractive index of 4.0, gives a lower 

depth of penetration into the sample than the zinc selenide crystal, which has a 

refractive index of 2.4.  The expected downside from using a crystal with a higher 

refractive index is that the overall signal from the sample would be reduced, but it was 

hoped that using the germanium crystal would reduce the spectral contribution from 

the paper substrate relative to that of the ink, and thus enable the imaging of ink-jet 

printed characters on the paper surface.   

 

Attempts were made to image the feasibility sample set using a germanium ATR 

crystal in place of the ZnSe crystal.  Unfortunately, it was still not possible to image 

either brand of ink-jet printing using the germanium ATR crystal.  This is possibly 

due to the mechanism of printing.  With laser printing, the toner material, which 

consists of fine black particles, is fused to the paper surface through the action of heat 

or pressure.  However, with ink-jet printing, the liquid ink droplets are simply sprayed 

onto the paper, and absorb into it (24, 25).   

 

Overall the results obtained with the ZnSe ATR crystal were far superior to those 

obtained using the Ge ATR crystal, including for the laser printed samples.  This is 

demonstrated in Fig. 3, where the differences in results between the two types of ATR 

crystals are depicted.  The Ge ATR crystal struggled to image the toner and ink 

materials, whereas the ZnSe ATR gave very good images of these materials.  A 

further disadvantage of using the Ge ATR crystal was that its sensitivity was so poor 

that it was difficult to see if the line intersection was clamped down onto the correct 
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location on the ATR crystal prior to imaging.  With the ZnSe ATR crystal, it was 

possible to push the sample onto the crystal surface using a finger, and by viewing the 

‘real time’ infrared window (which shows the integrated intensity response of the 

detector in real time), instantly tell whether the line intersection of interest was in the 

correct position on the crystal for imaging (see Fig. 4b).  However with the Ge ATR 

crystal, no image could be seen in the ‘real time’ infrared window, so there was a 

lengthy trial and error process to get the intersection onto the correct position on the 

crystal (see Fig. 4c).   

 

Ink-ink Intersections 

Attempts were made using both the germanium and zinc selenide ATR crystals to 

image various ink-ink intersections.  Four different types of writing pens were tested, 

these being ballpoint pens, gel pens, roller ball pens and felt-tip pens.  Unfortunately, 

the technique failed to give infrared spectra of the ink from gel pens, roller ball pens 

and felt-tip pens on paper.  It appeared that as for the ink-jet printing, the spectra were 

swamped by the paper spectrum.  The only pen type that could be imaged was the 

ballpoints. As with the ink-jet printing, this can be explained by the different ways in 

which these inks deposit onto the paper surface.  Ballpoint pen ink is a viscous paste-

like material that smears onto the surface of the paper, and is only partly absorbed into 

the paper, whereas the other types of pens, such as the felt-tip and roller ball pens, 

contain water-based inks that are more readily absorbed into the paper material (26, 

27). 

 

Line intersections produced using a number of different ballpoint pens were 

examined, and even though spectra of the inks could be obtained, the peaks allowing 
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the formation of spectral images were common to all types of ballpoint pens 

encountered.  The major ink peaks observed in the spectra occurred at 1584, 1360 and 

1176 cm-1, and are characteristic of triarylmethane dyes (7).  Any minor differences in 

the ballpoint pen ink spectra that may exist between the different pen brands were 

swamped by the paper spectral contribution.  This meant that, even though it was 

possible to form images showing the spatial distribution of the ink lines, these images 

gave no information as to which line lay on top of the other, as can be seen in Fig. 5.  

In a previous study by Wang et al, over 100 blue ballpoint pens were analysed by 

FTIR spectroscopy (7).  They found two major categories of ink spectra, as shown in 

Fig. 6.  One of the categories is the typical ballpoint pen ink spectrum that was 

encountered in this study, where the major peaks were due to the triarylmethane dyes 

(1584, 1360 and 1176 cm-1).  However, the other type of spectrum was quite different, 

with the major peaks occurring at 1730 and 1285 cm-1.  It is possible that infrared 

images of a line crossing produced using the two different types of ballpoint ink might 

be used to determine the order of the strokes, if the inks do not mix significantly at the 

intersection.  Unfortunately in this study only one of these two types of ballpoint pen 

spectrum was encountered, and so this hypothesis could not be tested.   

 

Validation Study 

In the validation study, over 100 intersections produced using five brands of ballpoint 

pens and five laser printers were examined.  Similar results were obtained to those 

found in the feasibility study, and the technique could accurately identify the 

sequence of all of the line crossings.  A consistent pattern was observed in the ink 

spectral images, in that if the ink was above the toner material, no gap was seen in the 

ink line at the point of intersection, but if the ink was below the toner material, then a 
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gap could be seen.  The peaks used to form the spectral images were the same across 

the different brands of writing/printing materials, i.e. 1584 cm-1 for the ballpoint pen 

inks and 1724 cm-1 for the toner materials.   

 

In the validation study it was observed that the spectral images were horizontally 

stretched in comparison with the visible light images such that the sample area 

imaged was 3.0 x 2.3 mm.  This is due to the elliptical imaging area formed on the 

crystal surface when the circular beam of light hits it at 45o.  A detailed explanation of 

the phenomenon can be found in Chan and Kazarian (20).  It would be possible to 

convert the image back to an un-stretched version using image processing software, 

but this was unnecessary for this study.  For presentation at court it may be 

worthwhile un-stretching the image, or otherwise explaining why it appears slightly 

different to the visible image so as to avoid any confusion. 

 

The aged samples were successfully imaged up to the age of 12 months, and the ink 

spectral images could still be used to correctly determine the order of strokes.  At the 

age of 12 months, the general pattern of a gap in the ink image at the point of 

intersection if the ink was underneath the toner and no gap when the ink was lying on 

top of the toner could still be seen.  A study by Wang et al. found that when ballpoint 

pen ink samples were artificially aged (through heating to 50-150 0C and exposure to 

UV irradiation), the intensity of the 1584 cm-1 peak decreased (7).  In this study, no 

consistent trend in the intensity of the peak at 1584 cm-1 over time was observed, and 

this peak could still be used to form images showing the spatial distribution of the ink 

materials aged 12 months.   
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Pressure testing was conducted to determine whether the pressure used when applying 

the ballpoint pen ink, either before or after laser printing, affected the accuracy of the 

technique in determining the correct sequence of strokes.  The pen pressure applied 

ranged from heavy to light.  The results showed that, even with the varied pen 

pressure, there was still a consistent pattern in the ink images which could be used to 

accurately identify whether the ink was above (no gap at the point of intersection) or 

below (with a gap at the point of intersection) the laser printing.  A notable finding 

was the effect the pen pressure had on the toner images produced.  As stated 

previously, there was no consistent pattern in the toner images to indicate whether the 

ink was above or below the toner.  More often than not, no gap was seen where the 

ink was lying on the top of the toner, leading to the earlier hypothesis that this was 

due to the strong toner spectrum produced.  However, with the heaviest pen pressure 

(pressure indicator of 10), there was a gap in the toner image at the point of 

intersection with the ink (see Fig. 7d), at the medium pen pressure there was a small 

gap seen at the point of intersection (see Fig 7e), and at the weakest pen pressure, 

there was no gap seen in the toner image (see Fig. 7f).  Observation of the toner 

spectral image may therefore help in some cases to reinforce the determination of the 

order of strokes; however the main focus should remain on the more reliable pattern 

seen in the ink spectral images, i.e. whether or not there is a gap in the ink line at the 

point of intersection.  It is also important to examine the infrared spectra around the 

point of intersection to confirm whether toner or ink peaks are present, in addition to 

viewing the infrared images.  
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Blind Testing 

Twenty one blind tests, where the order of strokes was unknown prior to examination, 

were conducted.  The results obtained using the infrared spectral imaging technique 

were directly compared with those obtained by eight experienced forensic document 

examiners, using techniques they would employ in casework.  The infrared spectral 

imaging technique was the most successful in determining the correct sequence of the 

line crossings, with a 100% success rate.  The results obtained by the document 

examiners can be seen in Table 6; the majority of the document examiners got most 

sequences correct or made an inconclusive determination.  However, there were two 

samples (BS1 and BS16) for which an incorrect determination was made by some of 

the document examiners.  The samples where there were differing opinions among the 

document examiners were more difficult intersections, where the ink line was fairly 

heavy underneath the toner character (BS16) or where there was a fairly light ink line 

over the toner (BS1).  This emphasises the need for a technique which does not rely 

on visual interpretation, as optical illusions can occur.  The infrared imaging results 

for BS16 are shown in Fig. 8.  This was one of the samples for which two document 

examiners incorrectly assigned the order of strokes, and two document examiners 

came to inconclusive results.  By examining the ink spectral image (Fig. 8c) it is very 

clear from the gaps seen at the points of intersection that the ink was under the toner.  

This example highlights the effectiveness of the imaging technique, and the 

advantages of producing images based on chemical differences, rather than relying on 

visual observations, which can be subject to optical illusions and varied human 

perceptions. 
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For the majority of the blind samples, the sequence order of the strokes was fairly 

apparent upon visual examination, and in those cases the use of the more advanced 

technique of infrared spectral imaging may not be warranted.  However, for more 

borderline intersections, or ones where an inconclusive determination is made, it 

would be worthwhile to examine the intersection using infrared spectral imaging, 

where available, to ensure that no errors are made in determining the sequence of line 

crossings.  A further advantage of infrared spectral imaging is that images are formed 

that can clearly convey the results to a layperson, such as a jury member. 

 

Conclusions 

Overall, the infrared spectral imaging technique, using a ZnSe ATR crystal in the 

large sampling accessory, was found to be very successful in determining the 

sequence of intersecting ballpoint pen and laser printer lines.  The chief advantages of 

the technique are that it is an objective method of analysis, and relies on chemical 

differences in the samples rather than simply visual differences that are subject to 

human interpretation.  The technique is relatively fast, taking only six minutes to 

analyse a sample, and is non-destructive as long as the document can be manoeuvred 

so that the line crossing of interest is placed in contact with the ATR crystal.  The 

results are also displayed in a way that makes them more easily understood by a 

layperson, such as a jury member.     

 

The disadvantages of the technique include its inability to image a number of 

writing/printing materials on paper, including ink-jet printing, and various pens such 

as gel pens, roller ball pens and felt-tip pens.  The instrumental requirements are more 

demanding than infrared microscopic imaging: it is necessary to have the optional 
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large sampling accessory, and also a large enough focal plane array detector to collect 

an image of a line intersection.  Many forensic laboratories do not have the infrared 

imaging instrumentation, but as more companies enter the market, the cost is starting 

to drop.  Instrument companies are now marketing infrared microscopes that can be 

upgraded with the addition of an imaging detector, a much less expensive purchase 

than a complete new instrument.   
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TABLE 1 - Feasibility study samples.  

Black Ballpoint Pens Laser Printers Ink-jet Printers 

Papermate Kilometrico (M) Epson AcuLaser C1900 Epson Stylus Photo 700 

Uni SA-S (M)  HP LaserJet 1000 Canon Bubble-Jet BJC200 

Staedtler Stick 430 (M)   

Sanford Suregrip (M)   
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TABLE 2 - Ink-ink intersection samples.  

Ballpoint Pens Gel Pens Roller Ball Pens Felt-tip Pens 

Sanford Suregrip 

(M) 

BIC Intensity Clic  Staedtler cool roller Artline 220 

Superfine 

Uni SA-S (M) Hybrid Gel Grip DX Uni-ball Micro Pilot drawing ink 

(pigment ink) 

Reynolds (F) Zebra Sarasa  Bic Exact-Tip Roller Staedtler triplus 

fineliner 

Biro (F) Pentel Energel (liquid 

gel ink) 

  

Staedtler Stick 

430 (M) 

   

Bic Cristal (M)    

Ohto Gripper (F)    

Papermate 

Kilometrico (M) 
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TABLE 3 - Validation study samples. 

Ballpoint Pens Laser Printers 

Biro (F) Epson C1900 AcuLaser 

Pentel BKL10 Minolta Magicolour 2200 

Artline (M) HP LaserJet 1000 

Sanford Suregrip (M) Ricoh Aficio 1060 RPCS 

Reynolds (F) Kyocera FS-1000 

 



 

 

39 

 TABLE 4 - Blind sample details. 

Sample ID  Ballpoint pen type Laser printer type Paper type 

BS1 Zebra Canon LBP-810 EXP 

BS2 Biro Canon LBP-810 EXP 

BS3 Sanford Suregrip Canon LBP-810 EXP 

BS4 Sanford Suregrip Canon LBP-810 EXP 

BS5 Schmidt Apple Laserwriter 16/600PS EXP 

BS6 Pilot BP-S Epson C1900 Aculaser HP 

BS7 Pilot BP-S Epson C1900 Aculaser HP 

BS8 Uni SA-S Xerox Docucolour 3535 Unknown 

BS9 Schmidt Ricoh Aficio 1060 RPCS Canon 

BS10 Papermate  Konika PPC 

BS11 Ohto Konika PPC 

BS12 Bic HP Laserjet Xerox 

BS13 Schmidt HP Laserjet Xerox 

BS14 Reynolds HP Laserjet Xerox 

BS15 Sanford Suregrip Panasonic KX-P7305 HP 

BS16 Sanford Suregrip Panasonic KX-P7305 HP 

BS17 Zebra Canon LBP-810 Reflex 

BS18 Biro Ricoh Aficio 1060 RPCS Reflex 

BS19 Staedtler Stick Minolta magicolour 6100 

DeskLaser 

EXP 

BS20 Staedtler Stick Lexmark T522 EXP 

BS21 Staedtler Stick Brother MFC-8840D EXP 
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TABLE 5 - Techniques used by forensic document examiners to examine blind 

samples. 

Forensic Document 

Examiner (FDE) 

Testing performed 

FDE 1 Visual observation through stereomicroscope & ring light 

illumination (looking for ‘bronzing’ of the ink) 

FDE 2 Incident lighting at 100x mag.  Polarising microscope using 

reflected light. 

FDE 3 Light stereomicroscope. 

FDE 4 All intersections examined using polarizing microscope with 

reflected light, which gave colour contrast between ink / 

toner. 

FDE 5 Visual inspection using magnification.  VSC2000 – infrared, 

ultraviolet examinations. 

FDE 6 Oblique and vertical lighting, spectral reflectance. 

FDE 7 All binocular microscope (x6.5 – 40), F.O. lighting – 

specular reflectance. 

FDE 8 Microscope 
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TABLE 6 - Blind testing results. 

       

Blind 
Sample 

Correct 
Order 

IR 
Imaging 

FDE 1 FDE 2 FDE 3 FDE 4 FDE 5 FDE 6 FDE 7 FDE 8 

BS1 Ink over 
toner 

     Inconclusive Inconclusive Inconclusive Inconclusive 

BS2 Ink over 
toner 

     Inconclusive    

BS3 Ink under 
toner 

     Inconclusive    

BS4 Ink under 
toner 

     Inconclusive    

BS5 Ink over 
toner 

     Inconclusive    

BS6 Ink under 
toner 

     Inconclusive    

BS7 Ink under 
toner 

     Inconclusive    

BS8 Ink over 
toner 

     Inconclusive    

BS9 Ink under 
toner 

   Inconclusive  Inconclusive  Inconclusive  

BS10 Ink over 
toner 

       Inconclusive Inconclusive 

BS11 Ink over 
toner 

 Inconclusive        Inconclusive 

BS12 Ink over 
toner 

     Inconclusive    

BS13 Ink over      Inconclusive    
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toner 
BS14 Ink over 

toner 
     Inconclusive    

BS15 Ink under 
toner 

     Inconclusive     

BS16 Ink under 
toner 

   Inconclusive  Inconclusive    

BS17 Ink under 
toner 

     Inconclusive Inconclusive Inconclusive Inconclusive 

BS18 Ink over 
toner 

     Inconclusive    

BS19 Ink over 
toner 

 Inconclusive   Inconclusive  Inconclusive Inconclusive Inconclusive Inconclusive 

BS20 Ink over 
toner 

     Inconclusive    

BS21 Ink over 
toner 

     Inconclusive    
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LIST OF FIGURES 

 

FIG. 1 – Example of ballpoint pen ink under laser printing showing a) visible image 

of intersection; b and c) infrared spectra of laser printing and ballpoint pen 

ink; d and e) infrared spectral images of laser printing and ballpoint pen ink 

formed by imaging at 1724 cm-1 and 1584 cm-1.  

 

FIG. 2 – Example of ballpoint pen ink over laser printing showing a) visible image of 

intersection; b and c) infrared spectra of laser printing and ballpoint pen ink; 

d and e) infrared spectral images of laser printing and ballpoint pen ink 

formed by imaging at 1724 cm-1 and 1584 cm-1.  

 

FIG. 3 – Comparison of the quality of infrared spectral images obtained when using 

different ATR crystals.  Visible image of ink over toner shown in (a); (b-c) 

shows the toner and ink spectral images obtained using a Germanium ATR 

crystal; (d-e) shows the toner and ink spectral images obtained when using a 

Zinc Selenide ATR crystal. 

  

FIG. 4 – ‘Live infrared window display’ of line intersection (a) produced when using 

the (b) Germanium and (c) Zinc Selenide ATR crystal.  

 

FIG. 5 – Example of ink-ink intersection showing (a) visible image of two intersecting 

ballpoint pen lines; (b) infrared spectra of two ballpoint pens and (c) infrared 

spectral image of ink lines formed using the integrated peak intensity under 

1584 cm-1. 
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FIG. 6 – Infrared spectra of two main types of ballpoint pen ink found in Wang et al. 

(2001) study (7) (Reprinted, with permission, from the Journal of Forensic 

Sciences, Vol. 46, Issue 5, copyright ASTM International, 100 Barr Harbor 

Drive, West Conshohocken, PA   19428). 

  

FIG. 7 – Example showing results obtained when different pen pressures used. (a-c) 

shows the visible light images of Sanford ink over Epson toner using pressure 

indicators of 10, 7 and 4 respectively; (d-f) the respective toner spectral 

images formed using the integrated peak intensity under 1724 cm-1; (g-i) the 

respective ink spectral images formed using the integrated peak intensity 

under 1584 cm-1. 

 

FIG. 8 – Infrared spectral image results for blind sample 16, with the visible light 

image shown in (a), the toner spectral image formed using the peak intensity 

at 1724 cm-1 in (b) and the ink spectral image formed using the peak intensity 

at 1584 cm-1 in (c). 

  

 

 


	Katherine Bojko,1 B.Sc.(Hons); Claude Roux,1 Ph.D.; and Brian J. Reedy,1 Ph.D.
	Telephone:  +61 2 95141709
	ABSTRACT:  In this study, the potential of attenuated total reflectance – Fourier transform infrared (ATR-FTIR) spectral imaging as a technique to determine the sequence of line crossings was examined.  The technique was successful in determining the...
	Forensic document examiners are often called upon to determine the sequence of intersecting lines.  An example of where it may be important to determine the order of strokes could be in a document such as a will or contract.  The addition of an extra...
	There are two main types of line intersections, homogeneous and heterogeneous.  A homogeneous line intersection is defined as one where the line crossings have been produced using the same type of writing instrument or printing device, for example lin...
	A number of techniques are available to examine intersecting line samples, and the choice of technique depends on a number of factors such as the writing/printing tools used to produce the intersecting lines, and whether a non-destructive technique is...
	Many of the techniques used to examine line crossings are based on optical examination and observation of physical characteristics.  These have the advantage of being non-destructive, but they do suffer some drawbacks.  One of the biggest disadvantage...
	The ideal technique for determining the sequence of intersecting lines is one which is non-destructive, and can provide an objective method of analysis for a variety of material configurations encountered.  Infrared spectroscopy is an objective, non-d...
	The theory of FTIR imaging has been covered extensively elsewhere (14), so only a brief overview will be given here.  The technique employs a Focal Plane Array (FPA) detector, with (typically) 64 x 64 discrete detectors (or pixels) laid out in a grid ...
	FTIR imaging has been shown to be successful for a number of forensic applications, including fingerprint visualisation (15), analysing multilayered paint chips (16), bicomponent fibre analysis (17) and visualising and identifying various materials in...
	In this paper, the authors examine the use of infrared spectral imaging as an objective, non-destructive method for determining the sequence of intersecting lines.  Both homogeneous and heterogeneous line crossings produced using a range of writing/pr...
	Materials and Methods
	Sampling
	Infrared Spectral Imaging
	Results and Discussion
	Feasibility Study
	References

