Preparation and Characterization of Titanium Dioxide (TiO₂) from Sludge produced by TiCl₄ Flocculation with FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ Coagulant Aids in Wastewater H.K. Shon^{a,*}, S. Vigneswaran^a, J. Kandasamy^a, M.H. Zareie^a, J.B. Kim^b, D.L. Cho^b and J.-H. Kim^b ^a Faculty of Engineering and Information Technology, University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia ^b School of Applied Chemical Engineering & Center for Functional Nano Fine Chemicals (BK21), Chonnam National University, Gwangju 500-757, Korea Corresponding author: +612 95142629, hkshon@eng.uts.edu.au #### **Abstract** In this study, TiCl₄ coagulant together with coagulant aids such as FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ was investigated to improve photoactivity of titanium dioxide (TiO₂) produced from sludge and to increase the resulting low pH value. After TiCl₄ flocculation with three coagulant aids, the settled floc (sludge) was incinerated at 600°C to produce TiO₂ doped with Fe, Al, and Ca elements. Fe-, Al- and Ca-doped TiO₂ was characterized in terms of structural, chemical and photo-electronic properties. All the coagulant aids used together with Ti-salt flocculation effectively increased the pH values. The surface area of TiO₂-WO (without any coagulant aids), Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was 122 m²/g, 77 m²/g, 136 m²/g and 116 m²/g, respectively. The TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO2 was found to be of anatase phase. The XRD pattern on the Fe/TiO2 included an additional peak of hematite (α-Fe₂O₃). The majority of gaseous acetaldehyde with TiO₂-WO and Ca/TiO₂ for photocatalytic activity was completely removed within 40 minutes under UV irradiation. Keywords: Flocculation; Titanium dioxide (TiO₂); Wastewater; Recycle 1. Introduction Sludge disposal is one of the major problems in sewage treatment plants (STP). Chemical flocculation produces a large amount of sludge (settled floc) which is generally disposed of in landfills. However, landfills are becoming less acceptable in view of growing community resistance. An appropriate method of efficient sludge recycling is thus required. Flocculation of wastewater with Ti-salt and production of TiO₂ from flocculated sludge was investigated [1]. This work used titanium tetrachloride (TiCl₄) as an alternative coagulant instead of more commonly used salts of iron (FeCl₃) and aluminium (Al₂(SO₄)₃) to remove organic matter from wastewater. The alternative coagulant (TiCl₄) successfully removed organic matter and nutrients (phosphorus) to the same extent as Fe and Al salts. Floc size of the settled floc with the titanium salt was bigger than that of Fe and Al salts and this led to faster and more 2 effective settling. After flocculation with titanium salt, the settled floc was incinerated to produce functional TiO₂, which had the same qualities as that of commercial TiO₂. The TiO₂ was found to be mainly doped with C- and P- atoms. The atomic percentage of the TiO₂ was TiO_{1.42}C_{0.44}P_{0.14}. This results in an efficient and economical process not only in terms of removal of organic matter, but also reduction of the large amount of sludge that requires disposal. The amount of TiO₂ recovered by this process from STP can potentially meet the current demand of TiO₂ used in all major applications. However, the treated water after flocculation had the low pH. The pH value of the supernatant at the optimum concentration of 8.4 Ti-mg/L of TiCl₄ flocculation was very low (pH 3.25), and was much lower than those of Fe and Al salt flocculation [1]. The problem could be solved by post-treatment after TiCl₄ flocculation. The post-treatment could be an addition of sodium hydroxide (NaOH) to neutralize the pH value. Alternatively, coagulant aids such as FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ could be simultaneously added during flocculation with TiCl₄. Incineration of co-flocculated sludge would produce Fe-, Al- and Ca-doped TiO₂. TiO₂ is the most widely used metal oxide for environmental applications, cosmetics, paints, electronic paper, and solar cells [2-4]. Metal ions have been widely used as dopants to improve the photocatalytic efficiency of TiO₂. As metal ions are doped into TiO₂, impurity energy levels in the band gap are formed. This leads to an alteration of the electron hole recombination. Metals are either deposited or doped on the TiO₂ surfaces as metallic nanoparticles or as ionic dopants. Fe-doped TiO₂ improved photocatalytic activity under visible light irradiation [5,6]. Fe³⁺ cations acted as shallow traps in the TiO₂ lattice. Fe ions trapped not only electrons but also holes, which lead to an increase in photoactivity [7]. The maximum photoactivity appeared with 0.5 wt.% of Fe³⁺ due to a decrease in the density of the surface active centres [8]. Al-doped TiO₂ has been used for potential thermal shock applications due to its stable thermal expansion coefficient and physical property [9]. Al₂O₃ and Al₂TiO₅ were observed at AlCl₃/TiCl₄ ratios larger than 1.1 at 1400 °C [10]. They found that a new structure connected with Al-O-Ti framework was generated. For Al/TiO₂, the anatase structure was stable after incineration at 800 °C, while pure TiO2 was easily transferred to the rutile phase after incineration above 700 °C. The optical property of Al/TiO₂ prepared by a thermal plasma method responded to visible light [11]. They also found that the size of synthesized powder decreased with an increase in the amount of Al because Al species inhibited the particle growth. Al/TiO₂ has been applied as a gas sensor, which needs high conductivity of TiO₂ [12]. Ca-doped TiO₂ is an important material known for its use in ferroelectric ceramics, communication equipment for microwave frequencies and a host matrix for the fixation of lanthanides and actinides for immobilization of highlevel radioactive wastes [13,14]. CaTiO₃ has high dielectric loss, is a thermally sensitive resistor element due to its negative temperature coefficient and is a refractory material with high corrosion receptivity against caustic solutions. The compound is mostly synthesized by i) a solid state reaction between CaCO₃ or CaO and TiO₂ at 1350 °C, ii) sol-gel processing, iii) thermal deposition of peroxo-salts and iv) mechano-chemical synthesis. In this study, we tried to improve photoactivity TiO₂ produced from sludge and to increase the low pH after TiCl₄ flocculation by the use of coagulant aids. The TiCl₄ coagulant was added with coagulant aids such as FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂. The flocculation produced Fe/TiO₂, Al/TiO₂ and Ca/TiO₂. The metal-doped TiO₂ was characterized in terms of structural, chemical and photo-electronic properties. # 2. Experimental # 2.1 Organic removal by TiCl₄ flocculation with coagulant aids in synthetic wastewater Flocculation of synthetic wastewater was carried out with TiCl₄ (2.1 – 8.4 Ti-mg/L) together with different doses of coagulant aids of FeCl₃ (3.4 – 13.8 Fe-mg/L), Al₂(SO₄)₃ (4.0 – 16.0 Al-mg/L) and Ca(OH)₂ (5 – 15 Ca-mg/L). The composition of the synthetic wastewater is presented elsewhere [15]. This synthetic wastewater represents the biologically-treated sewage effluent. Tannic acid, peptone, sodium lignin sulfornate, sodium lauryle sulfate and arabic acid represent the larger molecular weight portion, while peptone, beef extract and humic acid comprise the organic matters of lower molecular weight [16]. The wastewater with TiCl₄ coagulant and coagulant aids was stirred rapidly for 1 minute at 100 rpm, followed by 20 minutes of slow mixing at 30 rpm, and 30 minutes of settling. Organic matter in terms of dissolved organic carbon (DOC) was measured using a Dohrmann Phoenix 8000 UV-persulphate TOC analyzer equipped with an autosampler. All samples were filtered through 0.45 μm membrane prior to organic measurement. The pH was measured using a pH meter (Orion, model 920A). ## 2.2 Characterization of TiO₂ Visual microscopy was used to measure the shape and aggregated particle size of TiO₂. Scanning electron microscopy/energy dispersive X-ray (SEM/EDX, Rigaku, Japan) and a Digital Instruments Multimode Nanoscope III scanning force microscope were used. Each imaging was conducted in tapping mode, with 512 × 512 data acquisitions at a scan speed of 1.4 Hz at room temperature in air. Oxide-sharpened silicon nitride tips with integrated cantilevers with a nominal spring constant of 0.38 N/m were used for atomic force microscopy (AFM). The roughness of particles was assessed by measuring the roughness parameters. Nitrogen adsorption—desorption isotherms were recorded using a ASAP 2020 model (Micromeritics Ins., U.S.A.) and the specific surface areas were determined by the Brunauer–Emmett–Teller (BET) method. X-ray diffraction (XRD) images (Rigaku, Japan) of anatase and rutile TiO₂ photocatalysts were investigated to identify the particle structure. All the XRD patterns were analyzed with MDI Jade 5.0 (Materials Data Inc., USA). The crystallite size of powders was determined from the broadening of corresponding XRD peaks by Scherrer's formula. UV-VIS-NIR spectrophotometer (Cary 500 Scan, Varian, USA) was used to identify the absorbance range. The photocatalytic activity test of TiO₂ was investigated under UV irradiation (Sankyo, F10T8BLB, three 10 W lamps) and visible light (Kumbo, FL10D, three 10 W lamps) using the method of photodecomposition of gaseous acetaldehyde. The concentration of acetaldehyde was measured by gas chromatography with flame ionization detector (Youngin, M600D, Korea). #### 3. Results and Discussion # 3.1 DOC removal and pH variation by TiCl₄ with coagulant aids DOC removal and pH variation after flocculation of synthetic wastewater at different TiCl₄ concentrations were studied. At 8.4 Ti-mg/L (the optimum concentration), the DOC removal and pH were 70% and pH 3.25, respectively. To increase the pH value, the use of coagulant aids FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ with TiCl₄ was explored. Table 1 presents DOC removal and pH variation with different concentrations of TiCl₄ and FeCl₃ coagulant aid. Here, the optimum concentrations were chosen by the measured turbidity and DOC removal. When the turbidity value of the effluent after flocculation was less than 2 NTU, the optimum concentration was considered. The optimum concentration of Ti and Fe salts was 4.2 Ti-mg/L and 6.9 Fe-mg/L, respectively. The pH value and DOC removal at the optimum concentration of Ti and Fe salts were 4.7 and 70%, respectively. DOC removal and pH were also studied with different concentrations of TiCl₄ and Al₂(SO₄)₃ (Table 2). The optimum concentration of Ti and Al salts was 4.2 Ti-mg/L and 8.0 Al-mg/L, respectively. The pH value and DOC removal at the optimum concentration of Ti- and Al-salt were 4.5 and 72%, respectively. Table 3 shows DOC removal and pH variation with different concentrations of TiCl₄ and Ca(OH)₂ in synthetic wastewater. The optimum concentration of Ti- and Ca-salts was 6.3 Ti-mg/L and 15.0 Ca-mg/L, respectively. The pH value and DOC removal at the optimum concentration of Ti and Ca were 7.6 and 70%, respectively. All the three coagulant aids increased the pH value. The Fe- and Al-salt coagulants aids increased the pH range only by a small amount (about pH 5), while the Ca-salt coagulant significantly increased the pH (close to neutral pH value). This is due to the input of OH ions from Ca(OH)₂. The DOC removal increased with the increase in concentration of the coagulant aids. The DOC removal was 70% to 72% for Fe and Al salt concentration of 6.9 Fe-mg/L and 8 Al-mg/L, respectively. Ca-salt concentration of 15 Ca-mg/L achieved DOC removal of 70%. This can be explained in terms of the charge of the cations. The higher the charge of a cation, the stronger is its effect on the zeta-potential. The higher the valance, the higher the coagulative power [17, 18]. Here, the coagulative power is defined as "the given volume of colloidal solution added to a quantity of electrolyte just sufficient to produce coagulation of the particles". Table 1 DOC removal and pH variation with different concentrations of $TiCl_4$ and $FeCl_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH of synthetic wastewater before the addition of $TiCl_4 = 7.3$) Table 2 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Al_2(SO_4)_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) Table 3 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Ca(OH)_2$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) To investigate the properties of TiO₂ obtained from flocculation sludge, the settled flocs after flocculation were collected and incinerated at 600 °C. TiO₂ without any coagulant aids is called as TiO₂-WO in this study. TiO₂ obtained from TiCl₄ coagulant together with Fe-, Al- and Ca-salt coagulant aids at the different optimum concentrations are hereafter expressed as Fe/TiO₂, Al/TiO₂ and Ca/TiO₂, respectively. # 3.2 Surface area of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ N₂ adsorption–desorption isotherms were used to investigate the surface area, average pore diameter and pore volume of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ (Figure 1 (a)). Table 4 summarizes the results of the surface area, average pore diameter and pore volume of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂. The BET specific surface area of all the TiO₂ (produced in this study) was higher than that of the P-25 TiO₂ (50 m²/g) which is the most widely used photocatalyst [19]. The surface area of Fe/TiO₂ was lower than that of TiO₂-WO. Previous studies also found a lower surface area for Fe/TiO₂ [20-22]. Adan et al. [20] observed an appreciably lower surface area and mesopore volume at 0.7–1.5 wt.% of iron content. This correlates with the attainment of the solubility limit for Fe³⁺ ions into the TiO₂ structure and could be related to the onset of the generation of some iron aggregates at the TiO₂ surface. In contrast, Neri et al. [23] found that by increasing the Fe content, the BET surface area was significantly increased, showing a maximum (49.5 m²/g) for the sample with 50 wt.% - Fe/Ti. The surface area of Al/TiO₂ showed the highest values (136.0 m²/g). This may be due to a porous structure of Al-O-Ti [10]. Choi et al. [12] reported that an increase in Al dopant concentration up to 5 wt.% resulted in an increase in crystallite size. This size decreased at 7.5 wt.% Al. Lee et al. [10] reported that with the increase of the Al dopant, the size of TiO₂ particles decreased due to the suppression of particle growth by an introduction of Al atoms into TiO₂ crystal. The surface area of Ca/TiO₂ was similar to that of TiO₂-WO. Figure 1 (b) and Table 4 show the average pore diameter and pore size distribution. The intra-particle pore size and volume were measured as the pore size distribution of incinerated TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ as calculated by the Barrett–Joyner–Halenda method [24] showed less than 10 nm. Yu et al. [25] reported that biomodal pore size distribution consists of small intra-particle pores (4-10 nm) and larger inter-particle pores (20-200 nm). The average pore diameter decreased in the following order: TiO₂-WO>Ca/TiO₂>Fe/TiO₂>Al/TiO₂. The pore volume also decreased in the following order: TiO₂-WO>Ca/TiO₂>Fe/TiO₂>Fe/TiO₂=Al/TiO₂. Figure 1 (a) N₂ adsorption–desorption isotherms and (b) pore size distribution of incinerated TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ Table 4 Surface area, average pore diameter and pore volume of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ ## 3.3 XRD results Figure 2 presents the XRD patterns of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ incinerated at 600°C. The XRD patterns were made to identify the particle structure and size. The TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ exhibited the majority of the anatase phase. The XRD pattern on the Fe/TiO₂ showed a peak of hematite (α-Fe₂O₃). The peak of low intensity, due to an iron-TiO₂ mixed phase, of composition Fe₂TiO₅, crystallized poorly in very small grain sizes evidenced by the remarkable enlargement of the diffraction peak, as detected on the Fe/TiO₂. Neri et al. [23] reported that for iron content > 50%, the XRD patterns showed only the strong reflections of α-Fe₂O₃, whose intensity increased with larger Fe content. The pattern on the Fe/TiO₂ also suggests a decrease of crystallinity compared with other TiO₂. This may be due to high iron concentration. In contrast, Zhang et al. [26] demonstrated that when iron concentration was less than 10 wt.%, the TiO₂ was all in anatase phase and there was no peak of iron oxide in the XRD patterns. A crystalline phase containing Al atoms (α -Al₂O₃ and Al₂TiO₅) was not observed in the Al/TiO₂. This is due to low concentrations of Al₂O₃ and/or a substitute site (Al³⁺) for a Ti⁴⁺ ion [26]. Since the ionic radius for Al and Ti are similar (0.68 Å for Al³⁺), Al can occupy a regular cation position, forming a substitutional solid solution. In addition, Al species dissolve well into the TiO₂ crystal [11]. The crystalline phase containing Ca atoms (CaO and CaTiO₃) was not observed on the Ca/TiO₂. To sum up, different crystalline phases such as α -Al₂O₃ and Al₂TiO₅ from Al/TiO₂ and CaO and CaTiO₃ from Ca/TiO₂ were not found. On the other hand, the XRD pattern of α -Fe₂O₃ from Fe/TiO₂ was observed. The crystalline size of different TiO₂ was calculated using Scherrer's formula [28]. The crystallite size of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was approximately 11 nm, 6 nm, 8 nm and 11 nm, respectively. The intensity of the anatase phase on Fe/TiO₂ and Al/TiO₂ significantly decreased. This suggests that the Fe and Al species inhibited a crystalline growth [11]. On the other hand, the intensity of the anatase phase on the Ca/TiO₂ was similar to that on the TiO₂-WO. Figure 2 XRD patterns of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 produced from incineration of the settled floc at 600 °C (A: anatase phase (TiO_2) ; H: hematite $(\alpha$ - $Fe_2O_3)$) ## 3.4 SEM/EDX results Figure 3 shows the SEM images and EDX spectra of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂. The SEM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ consisted of different size, shape and dimension of the particles. The majority of particles were found to be less than 1 μm, which were constituted by aggromerates of 0.05 μm particles. The SEM image of Fe/TiO₂ particles included very irregular shape and smaller dimensions of 0.1 μm size compared to other particles observed by SEM images of TiO₂-WO, Al/TiO₂ and Ca/TiO₂. Navio et al. [22] reported that Fe/Ti samples (less than 3 wt.% Fe) gave deposits irregular in shape and dimensions, while the Fe/Ti samples (more than 5 wt.% Fe) showed deposits homogeneous in shape and dimensions. Adan et al. [20] reported that the presence of iron in the samples apparently affected the particle size. A maximum effect on the particle size is observed at around 1 wt.% doping level. The SEM image of Al/TiO₂ particles indicated that the size of the irregular shape and dimensions in Al/TiO₂ were smaller than those in Fe/TiO₂. Lee et al. [11] reported that with the increase of Al dopant, the size of TiO₂ particles decreased due to the suppression of particle growth by an introduction of Al atoms into TiO₂ crystal. EDX analysis was performed to determine the presence of the different elements in TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ (Figure 3). EDX mapping technique showed that different elements were uniformly spread in/on TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂. Table 5 shows the atomic fraction of different elements. The constitutive elements of TiO₂-WO were mainly Ti, O, C and P, Fe/TiO₂ were mainly Fe, Ti, O, C and P, Al/TiO₂ were mainly Al, Ti, O, C and P and Ca/TiO₂ were mainly Ca, Ti, O, C, P. Here, the C atom came from remaining organic carbon of the settled organic matter. The P atom was from phosphorus nutrients present in wastewater. It is well known that flocculation removes the majority of organic matter and phosphorus from waste sludge [1]. Most C and P atoms were doped as a substitute site for an O atom, while the Fe, Al and Ca atoms were doped as a substitute site for a Ti atom [1,29]. Although a relatively small amount of Fe concentration (6.9 Fe-mg/L) was added with TiCl₄ flocculation compared to Al (8.0 Al-mg/L) and Ca (15 Ca-mg/L) concentration, the atomic percentage of Fe, Al, Ca atoms in Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was 6.5%, 3.5% and 0.4%, respectively. This suggests that flocculation of Ti-salt with Fe-salt coagulant was more favorable than with the Al- and Ca-salts. Figure 3 EDX spectra and SEM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles Table 5 Atomic (%) fraction of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ powders after incineration at 600 °C ## 3.5 Optical absorbance The optical property of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was investigated using the ultra violet–visible-near infrared (UV-VIS-NIR) spectrophotometer (Figure 4). Generally, the absorption band of Ti⁴⁺ tetrahedral symmetry appears around 300 nm. The absorption bands of Fe/TiO₂ and Al/TiO₂ were significantly shifted to the visible range, while that of Ca/TiO₂ was not shifted. The red shift associated with the presence of Fe ions may be attributed to i) a charge transfer transition between the Fe ion electrons and the TiO₂ conduction or valence band and/or ii) a dark reddish colour with the increase of Fe concentration [30]. Swanepoel [31] found that the red shift of absorption edge by Fe/TiO₂ was attributed to the excitation of 3d electrons of Fe³⁺ to the TiO₂ conduction band. When Al/TiO₂ was prepared using a thermal plasma method, the band edge of the powders shifted from UV region to visible light, suggesting that the shift of absorption spectrum was attributed to the band gap narrowing relating to the interstitial Al species in the TiO₂ crystal [11]. Figure 4 Optical absorbance of TiO₂-WO, Fe/TiO₂, Al/ TiO₂ and Ca/TiO₂ #### 3.6 AFM results Figure 5 shows AFM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles. Surface morphology of different nanoparticles was determined using tapping mode AFM. TiO₂ powders prepared by the addition of different metals evidently consisted of a spherical shape and the size of the secondary particles was quite uniform. The results are contradictory to the previous finding [32]. They reported that Al-doped TiO₂ had a positive ionic radius that was greatly different from Ti⁴⁺ and was not uniform due to severe agglomeration and had the larger secondary particle sizes. The image of Al/TiO₂ obtained in this study clearly shows the particles with different sizes from 34 - 80 nm. The variation of the sizes was observed in all images (TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂). The higher resolution of this image is given in the inset with scan area of 300 x 300 nm. The shape features of Fe/TiO₂ particles consisted of particle size in the range of 33 to 70 nm. Ca/TiO₂ particles included the size from 18.9 nm to 39.7 nm. The crystalline particle size measured by AFM was different from that of XRD (measured using Scherrer's formula). This may be due to aggregation of particle as the secondary particles [33]. Table 6 presents the roughness values of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles. The preparation method of TiO₂ produced in this manner was difficult to produce the TiO_2 thin film so that the aggregated particles were measured. This measurement of each roughness could be affected by the aggregated structure. They were measured in terms of average roughness (S_a) , root-mean-square roughness (S_q) , surface area (S_{dr}) , peak-peak count (S_y) and ten point height (S_z) . Here, the peak-peak count is an estimate of the shape of the overall distribution of z-values which is short or wide and tall or narrow. The ten point height is defined as the average height of the five highest local maximums plus the average height of the five lowest local minimums. The average roughness (S_a) of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 was 8.7 nm, 11.1 nm, 8.1 nm and 9.6 nm, respectively. Sankapal et al. [31] also found that the root mean square roughness of 9 nm (which was calculated with contact mode for TiO_2 film). Figure 5 AFM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles. All images are 1 x 1 μm and the insets in all images are 300 x 300 nm Table 6 Roughness measurements of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 nanoparticles (average roughness (S_a) , root-mean-square roughness (S_q) , surface area (S_{dr}) , peak-peak count (S_y) and ten point height (S_z)) #### 3.7 Photocatalytic activity The photocatalytic property of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was examined under irradiation of UV and visible light for the photodecomposition of gaseous acetaldehyde (Figure 6). P-25 TiO₂ was used to compare the photocatalytic activity with other TiO₂. The concentration of acetaldehyde was measured by gas chromatography. The removal by adsorption showed the following order: Al/TiO₂ (136 m²/g) >> Ca/TiO₂ (116 m²/g) > TiO₂ (122 m²/g) > Fe/TiO₂ (77 m²/g)>= P-25 (50 m²/g). The majority of acetaldehyde with TiO₂-WO and Ca/TiO₂ was completely removed under UV irradiation within 40 minutes. P-25 TiO₂ and Al/TiO₂ led to a high photoactivity with the removal of 90%. However, at a high iron concentration (6.5 at.%), acetaldehyde removal by photo-oxidation under UV irradiation was marginal. Wang et al. [34] reported that formation of Fe₂O₃ and Fe₂TiO₅ at high incineration temperature (600 °C - 800 °C) resulted in a decrease of photocatalytic activity. Hung et al. [21] reported that the optimum concentration of iron ions was 0.005% (Fe/Ti) and this enhanced gaseous dichloromethane removal. When the concentration of iron ions was high, the iron ions became recombination centres for the electron-hole pairs and reduced the photocatalytic activity. Under visible light, the photo-decomposition of acetaldehyde using TiO₂-WO, Fe/TiO₂, Al/TiO₂, Ca/TiO₂ and P-25 was marginal. Figure 6 Variation of CH_3CHO concentration with UV irradiation time (TiO_2 concentration = 1 g; initial concentration of CH_3CHO = 2000 mg/L; UV irradiation = black light three 10 W lamps) ## 4. Conclusions TiCl₄ coagulant was added together with a predetermined quantity of coagulant aids such as FeCl₃, Al₂(SO₄)₃ and Ca(OH)₂ to improve photoactivity of TiO₂ increase the pH values after TiCl₄ flocculation. A detailed investigation was examined with Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ produced from TiCl₄ co-flocculation. This led to the following conclusions: - 1. All the coagulant aids helped to increase the pH values. The pH value and DOC removal at the optimum concentration of Ti and Fe salts were 4.7 and 70%, respectively as compared to 3.2 and 70% with TiCl₄ without any coagulant aids. The pH value and DOC removal at the optimum concentration of Ti- and Al-salt were 4.5 and 72%, respectively. The pH value and DOC removal at the optimum concentration of Ti and Ca were 7.6 and 70%, respectively. - 2. The surface area of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 was $122 \text{ m}^2/\text{g}$, $77 \text{ m}^2/\text{g}$, $136 \text{ m}^2/\text{g}$ and $116 \text{ m}^2/\text{g}$, respectively. The surface area was higher than that of P-25 (50 m^2/g). - 3. TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 predominantly had anatase phase. However, the XRD pattern of the Fe/TiO_2 showed an additional peak of hematite (α - Fe_2O_3). - 4. The SEM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ consisted of different size, shape and dimension of the particles. The majority of particles were found to 0.05 μm. The average roughness of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ was 8.7 nm, 11.1 nm, 8.1 nm and 9.6 nm, respectively. 5. The removal of acetaldehyde by adsorption was in good agreement with surface area of TiO₂-WO, Fe/TiO₂, Al/TiO₂, Ca/TiO₂ and P-25. With TiO₂-WO and Ca/TiO₂ as photocatalyst, the majority of acetaldehyde was completely removed under UV irradiation within 40 minutes. However, at a high iron concentration (6.5 %), acetaldehyde removal was marginal. Under visible light, the photo-decomposition of acetaldehyde using TiO₂-WO, Fe/TiO₂, Al/TiO₂, Ca/TiO₂ and P-25 was not identified. # 5. Acknowledgments This research was supported by UTS internal, ARC, and Korea Research Foundation grants (KRF-2007-412-J02002). ## References - Shon, H.K., Vigneswaran, S., Kim, I.S., Cho, J., Kim, G.J., Kim, J-.B., Kim, J-.H. (2007) Preparation of functional titanium oxide (TiO₂) from sludge produced by titanium tetrachloride (TiCl₄) flocculation of wastewater. *Environ. Sci. Technol.*, 41: 1372. - Kaneko, M., Okura, I. (2002) Photocatalysis: Science and Technology. Springer, Tokyo. - Jelks, B. (1966) Titanium: its occurrence, chemistry and technology. Ronald Press, New York. - Serpone, N., Pelizzetti, E. (1989) Photocatalysis: fundamentals and applications. John Wiley & Sons, New York. - 5. Teoh, W.Y., Amal, R., Madler, L., Pratsinis, S.E. (2007) Flame sprayed visible light-active Fe-TiO₂ for photomineralisation of oxalic acid. *Catal. Today*, 120: 203. - Liu, J., Zheng, Z., Zuo, K., Wu, Y. (2006) Preparation and Characterization of Fe3+doped Nanometer TiO₂ Photocatalysts. Journal of Wuhan University of Technology (Materials Science Edition), 21: 57. - 7. Litter, M.I. (1999) Heterogeneous photocatalysis transition metal ions in photocatalytic systems. *Appl. Catal. B: Environ.*, 23: 89. - 8. Chatterjee, D., Dasgupta, S. (2005) Visible light induced photocatalytic degradation of organic pollutants. *J. Photoch. Photobio.*, 6: 186. - Li, C., Shi, L., Xie, D., Du, H. (2006) Morphology and crystal structure of Al-doped TiO₂ nanoparticles synthesized by vapor phase oxidation of titanium tetrachloride. J. Non-Cryst. Solids, 352: 4128. - 10. Lee, B.Y., Park, S.H., Kang, M., Lee, S.C., Choung, S.J. (2003) Preparation of Al/TiO₂ nanometer photocatalyst film and the effect of H2O addition on photocatalytic performance for benzene removal. *Appl. Catal. A: Gen.*, 253: 371. - 11. Lee, J.E., Oh, S.M., Park, D.W. (2004) Synthesis of nano-sized Al doped TiO₂ powders using thermal plasma. *Thin Solid Films.*, 457: 230. - Choi, Y.J., Seeley, Z., Bandyopadhyay, A., Bose, S., Akbar, S.A. (2007) Aluminium-doped TiO₂ nano-powders for gas sensors. *Sensor. Actuat. B-Chem.*, 124: 111. - 13. Mi, G., Murakami, Y.D., Shindo, S. (1999) Mechnochemical synthesis of CaTiO₃ from a CaO-TiO₂ mixture and its HR-TEM observation. *Powder Technol.*, 105: 162. - Brankovic, G., Vutotic, V.Z., Brankovic, J.A. (2007) Investigation on possibility of mechanochemical synthesis of CaTiO3 from different precursors. *J. Eur. Ceram.* Soc., 27: 729. - 15. S.H. Kim and H.K. Shon, Adsorption Characterization for Multi-Component Organic Matters by Titanium Oxide (TiO₂) in Wastewater. Sep. Sci. Technol., 42 (2007) 1775-1792. - 16. Shon, H.K., Vigneswaran, S., Ngo, H.H. (2005) Is semi-flocculation effective to ultrafiltration? *Water Res.*, 39: 147. - Mekhamer, W.K., Assaad, F.F. (1999) Flocculation and Coagulation of Ca- and K-Saturated Montmorillonite in the Presence of Polyethylene Oxide. *J. Appl. Polym. Sci.*, 73: 659. - 18. Hunter, R.J. (1981) Zeta potential in colloid science Principles and applications, AP academic press, Sydney. - 19. Asiltürk, M., Sayılkan, F., Erdemoğlu, S., Akarsu, M., Sayılkan, H., Erdemoğlu, M., Arpaç, E. (2006) Characterization of the hydrothermally synthesized nano-TiO₂ crystallite and the photocatalytic degradation of Rhodamine B. *J. Hazard. Mater.* 129: 164. - Adán, C., Bahamonde, A., Fernández-García, M., Martínez-Arias, A. (2007) Structure and activity of nanosized iron-doped anatase TiO₂ catalysts for phenol photocatalytic degradation. *Appl. Catal. B: Environ.*, 72: 11. - 21. Hung, W.C., Fu, S.H., Tseng, J.J., Chu, H., Ko, T.H. (2007) Study on photocatalytic degradation of gaseous dichloromethane using pure and iron ion-doped TiO₂ prepared by the sol–gel method. *Chemo.*, 66: 2142. - 22. Navio, J.A., Colon, G., Macias, M., Real, C. (1999) Iron-doped titania semiconductor powders prepared by a sol-gel method. Part I: synthesis and characterization. *Appl. Catal. A: Gen.*, 177: 111. - Neri, G., Rizzo, G., Galvagno, S., Loiacono, G., Donato, A., Musolino, M.G., Rombi, E. (2004) Sol-gel synthesis, characterization and catalytic properties of Fe-Ti mixed oxides. *Appl. Catal. A: Gen.*, 274: 243. - 24. Barrett, E.P., Joyner, L.G., Halenda, P.P. (1951) The determination of pore volume and area distributions in pure substances, *J. Am. Chem. Soc.*, 73: 373. - 25. Yu, J.G., Yu, J.C., Cheng, B., Hark, S.K., Iu, K. (2003) The effect of F-doping and temperature on the structural and textural evolution of mesoporous TiO₂ powders. J. Solid State Chem., 174, 372. - 26. Zhang, W., Li, Y., Zhu, S., Wang, F. (2003) Surface modification of TiO₂ film by iron doping using reactive magnetron sputtering. *Chem. Phys. Lett.*, 373: 333. - 27. Kang, M. (2005) The superhydrophilicity of Al-TiO₂ nanometer sized material synthesized using a solvothermal method. *Mater. Lett.*, 59: 3122. - 28. Suryanarayana, C. (1995) Nanocrystalline materials. *Int. Mater. Rev.*, 40: 41. - 29. Yamashita, H., Takeuchi, M., Anpo, M. (2004) Visible-light-sensitive photocatlaysts. Encyclopedia of Nanoscience and Nanotechnology, UK. - 30. Zhu, J., Chen, F., Zhang, J., Chen, H., Anpo, M. (2006) Fe³⁺-TiO₂ photocatalysts prepared by combining sol–gel method with hydrothermal treatment and their characterization. *J. Photoch. Photobio. A.*, 180: 196. - 31. Swanepoel, R. (1983) Determination of the thickness and optical constants of amorphous silicon. *J. Physics E.*, 16: 1214. - 32. Hwang, D.S., Lee, N.H., Lee, D.Y., Song, J.S., Shin, S.H., Kim, S.J. (2006) Smart Mater. Struct., 15: S74. - 33. Sankapal, B.R., Lux-Steiner, M.C., Ennaoui, A. (2005) Phase transition control of nanostructured TiO₂ powders with additions of various metal chlorides. *Appl. Surf. Sci.*, 239: 165. - 34. Wang, Z.M., Yang, G., Biswas, P., Bresser, W., Boolchand, P. (2001) Processing of iron-doped titania powders in flame aerosol reactors. *Powder Technol.*, 114: 197. - Table 1 DOC removal and pH variation with different concentrations of $TiCl_4$ and $FeCl_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH of synthetic wastewater before the addition of $TiCl_4 = 7.3$) - Table 2 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Al_2(SO_4)_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) - Table 3 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Ca(OH)_2$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) - Table 4 Surface area, average pore diameter and pore volume of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ - Table 5 Atomic (%) fraction of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ powders after incineration at 600 °C - Table 6 Roughness measurements of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 nanoparticles (average roughness (S_a) , root-mean-square roughness (S_q) , surface area (S_{dr}) , peak-peak count (S_y) and ten point height (S_z)) Table 1 DOC removal and pH variation with different concentrations of $TiCl_4$ and $FeCl_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH of synthetic wastewater before the addition of $TiCl_4 = 7.3$) | Ti concentration (Ti-mg/L) | | Fe concentration (Fe-mg/L) | pН | DOC removal (%) | | |----------------------------|--------------|----------------------------|-----|-----------------|--| | | | 3.4 | 4.6 | 45 | | | 2.1 | \leftarrow | 6.9 | 4.2 | 60 | | | | | 13.8 | 4.0 | 66 | | | | | 3.4 | 4.8 | 65 | | | 4.2 | \leftarrow | 6.9 | 4.7 | 70 | | | | | 13.8 | 3.8 | 72 | | | | | 3.4 | 3.3 | 69 | | | 6.3 | | 6.9 | 3.2 | 72 | | | | | 13.8 | 3.2 | 76 | | | | | 3.4 | 3.2 | 75 | | | 8.4 | \leftarrow | 6.9 | 3.1 | 76 | | | | | 13.8 | 3.1 | 76 | | Table 2 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Al_2(SO_4)_3$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) | Ti concentration (Ti-mg/L) | | Al concentration (Al-mg/L) | pН | DOC removal (%) | | |-----------------------------------------|--------------|----------------------------|-----|-----------------|--| | | | 4.0 | 4.8 | 53 | | | 2.1 | \leftarrow | 8.0 | 4.7 | 55 | | | | | 16.0 | 4.5 | 58 | | | | | 4.0 | 4.7 | 65 | | | 4.2 | | 8.0 | 4.5 | 72 | | | *************************************** | | 16.0 | 4.1 | 72 | | | | | 4.0 | 4.1 | 65 | | | 6.3 | \leftarrow | 8.0 | 4.1 | 73 | | | | | 16.0 | 3.9 | 75 | | | | | 4.0 | 3.2 | 75 | | | 8.4 | \leftarrow | 8.0 | 3.1 | 75 | | | | | 16.0 | 3.0 | 75 | | Table 3 DOC removal and pH variation with different concentrations of $TiCl_4$ and $Ca(OH)_2$ in synthetic wastewater (initial concentration of DOC = 10.05 mg/L; initial pH = 7.3) | Ti concentration (Ti-mg/L) | | Ca concentration (Ca-mg/L) | pН | DOC removal (%) | |----------------------------|--------------|----------------------------|-----|-----------------| | | | 5 | 7.8 | 40 | | 2.1 | \leftarrow | 10 | 8.2 | 45 | | | | 15 | 8.9 | 50 | | | | 5 | 7.7 | 53 | | 4.2 | \leftarrow | 10 | 8.0 | 55 | | | | 15 | 8.7 | 59 | | | | 5 | 6.3 | 63 | | 6.3 | | 10 | 7.2 | 65 | | | | 15 | 7.6 | 70 | | | | 5 | 6.1 | 72 | | 8.4 | \leftarrow | 10 | 6.7 | 73 | | | | 15 | 7.8 | 75 | Table 4 Surface area, average pore diameter and pore volume of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 | | Surface area | Average pore diameter | Pore volume | |----------------------|--------------|-----------------------|-------------| | | (m^2/g) | (nm) | (cm^3/g) | | TiO ₂ -WO | 122.0 | 9.7 | 0.30 | | Fe/TiO ₂ | 76.8 | 7.4 | 0.14 | | Al/TiO ₂ | 136.0 | 4.2 | 0.14 | | Ca/TiO ₂ | 115.7 | 8.0 | 0.23 | | | | | | Table 5 Atomic (%) fraction of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 powders after incineration at 600 °C | Element | TiO ₂ -WO | Fe/TiO ₂ | Al/TiO ₂ | Ca/TiO ₂ | |-------------|----------------------|---------------------|---------------------|---------------------| | Ti atomic % | 20.9 | 18.1 | 20.7 | 20.4 | | O atomic % | 65.6 | 64.3 | 65.3 | 67.2 | | C atomic % | 10.9 | 8.2 | 7.8 | 8.3 | | P atomic % | 2.7 | 2.9 | 2.7 | 3.7 | | Fe atomic % | - | 6.52 | - | - | | Al atomic % | - | - | 3.5 | - | | Ca atomic % | - | - | - | 0.4 | ^{*} Trace elements found in TiO₂-WO: Si (0.2%), Fe (0.02%), S (0.01%), Al (0.01%), V, Ca, Na, Cr, Cl, Ni, and Br Table 6 Roughness measurements of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 nanoparticles (average roughness (S_a) , root-mean-square roughness (S_q) , surface area (S_{dr}) , peak-peak count (S_y) and ten point height (S_z)) | | S _a (nm) | S_q (nm) | S _{dr} (%) | S_{y} (nm) | S_{z} (nm) | |----------------------|---------------------|------------|---------------------|--------------|--------------| | TiO ₂ -WO | 8.7 | 12.2 | 18.8 | 101.0 | 65.9 | | Fe/TiO ₂ | 11.1 | 14.2 | 20.0 | 88.3 | 78.0 | | Al/TiO ₂ | 8.1 | 10.3 | 13.1 | 59.9 | 54.0 | | Ca/TiO ₂ | 9.6 | 12.1 | 45.5 | 83 | 62.7 | - Figure 1 (a) N₂ adsorption–desorption isotherms and (b) pore size distribution of incinerated TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ - Figure 2 XRD patterns of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 produced from incineration of the settled floc at 600 °C (A: anatase phase (TiO_2) ; H: hematite $(\alpha$ -Fe₂O₃)) - Figure 3 EDX spectra and SEM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles - Figure 4 Optical absorbance of TiO2-WO, Fe/TiO2, Al/ TiO2 and Ca/TiO2 - Figure 5 AFM images of TiO₂-WO, Fe/TiO₂, Al/TiO₂ and Ca/TiO₂ nanoparticles. All images are 1 x 1 μm and the insets in all images are 300 x 300 nm - Figure 6 Variation of CH_3CHO concentration with UV irradiation time $(TiO_2$ concentration = 1 g; initial concentration of CH_3CHO = 2000 mg/L; UV irradiation = black light three 10 W lamps) Figure 1 (a) N_2 adsorption–desorption isotherms and (b) pore size distribution of incinerated TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 Figure 2 XRD patterns of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 produced from incineration of the settled floc at 600 °C (A: anatase phase (TiO_2) ; H: hematite $(\alpha$ - $Fe_2O_3)$) Figure 3 EDX spectra and SEM images of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 nanoparticles Figure 4 Optical absorbance of TiO_2 -WO, Fe/TiO_2 , $Al/\ TiO_2$ and Ca/TiO_2 Figure 5 AFM images of TiO_2 -WO, Fe/TiO_2 , Al/TiO_2 and Ca/TiO_2 nanoparticles. All images are 1 x 1 μ m and the insets in all images are 300 x 300 nm Figure 6 Variation of CH_3CHO concentration with UV irradiation time $(TiO_2$ concentration = 1 g; initial concentration of CH_3CHO = 2000 mg/L; UV irradiation = black light three 10 W lamps)