Confirmation of the Structure of Oxystemokerrin by Single Crystal X-Ray Structural Analysis and a Proposed Biosynthesis

Pitchaya Mungkornasawakul, Hayden Matthews, Alison T. Ung, Stephen G. Pyne, Araya Jatisatien, Wilford Lie, Brian W. Skelton, and Allan H. White

a Department of Chemistry, University of Wollongong, Wollongong, New South Wales, 2522, Australia
b Division of Environmental Sciences, Chiang Mai University, Chiang Mai 50202, Thailand
c Department of Biology, Chiang Mai University, Chiang Mai 50202, Thailand
d Chemistry M313, University of Western Australia, Crawley, Western Australia, 6009, Australia

Abstract

The crystal structure of the pentacyclic Stemona alkaloid oxystemokerrin (2), isolated from the roots of Stemona kerrii, is reported, confirming the structure proposed for this compound in a contemporaneous spectroscopic study. This compound is a diastereomer of stemocurtisinol (3), whose structure we have recently reported from St. curtisii, also confirmed by a single-crystal X-ray study. These alkaloids have opposite configurations at C-4 and C-19. A possible biosynthetic pathway for the biosynthesis of 2 and 3 is proposed.

Keywords: X-ray structure, oxystemokerrin, Stemona, alkaloid

Introduction

The Stemona group of alkaloids includes more than forty different natural products that have been structurally classified into five different groups. The pyrrolo[1,2-a]azepine (5,7-bicyclic A,B-ring system) nucleus is common to all compounds in these groups. In 2003 we reported the structure of stemocurtisine (1), the first example of a Stemona alkaloid with a pyrido[1,2-a]azepine A,B-ring system (that is, a 6,7-bicyclic A,B-ring system), isolated from the roots of St. curtisii Hook. Later in that year Hofer and Gregor reported the isolation of five Stemona alkaloids with the pyrido[1,2-a]azepine A,B-ring system, including stemocurtisine (1), which they named pyridostemin, and oxystemokerrin (2) from an unidentified Stemona species (HG 915) and St. kerrii, respectively. The structure of the latter compound was deduced from spectral interpretation and by analogy to the structurally related alkaloid, stemokerrin, for which the structure was secured by an X-ray crystallographic study. In 2004 we reported the single-crystal structure of stemocurtisinol (3), a diastereomer of 2, having the opposite configurations at C-4 and C-19 and correspondingly different spectral characteristics.

Our sample of oxystemokerrin was isolated from the root extracts of St. kerrii that were collected at Tambol Mae Hea, Amphur Maung, Chiang Mai, Thailand, in August 2003. The plant material was identified by Mr. James F. Maxwell from the Department of Biology, Chiang Mai University, where a voucher specimen has been lodged (number 17584). After purification by column chromatography, compound 2 was obtained as colourless prismatic crystals (mp 134-136 °C) by careful and slow evaporation of a solution of 2 in ethanol.

The single crystal structure of oxystemokerrin (2) is shown in Figure 1 (a single molecule, devoid of crystallographic symmetry comprising the asymmetric unit), clearly establishing that the structure and relative stereochemistry proposed for this compound by Hofer and Gregor is correct. The conformational descriptors of the fused ring system of 2 differ only slightly from those of 3 (Table 1); the hydroxyl hydrogen interacts intramolecularly with N(5) (Figure 1).

While biosynthetic studies on Stemona alkaloids have not been reported, a proposed biosynthetic pathway leading to the pyrrolo[1,2-a]azepine Stemona alkaloids has been made by Seger et al. The terpenoid origin of the C- and D-ring carbons has been postulated by Seger, while the A-ring of these alkaloids has been postulated to arise from spermide. A ring expansion of the pyrroolidine ring (A-ring) to a piperidine ring has been proposed
to account for the biosynthesis of the pyrido[1,2-\(\alpha\)]azepine *Stemona* alkaloids.\(^2\) Another possibility for formation of the A-ring of oxystemokerrin (2) and stemocurtisinol (3) is shown in Scheme 1. Our proposed biosynthesis involves an alternative biosynthesis of the A-ring of 2 and 3 based on the known biosynthesis of the hemlock alkaloid (+)-conhydride 4 from the acetate-derived polyketide derivative 5.\(^3\) Condensation of 5 with 1,4-diaminopropane, a biosynthetic product from the homospermidine synthase (HSS) production of homospermidine,\(^9\) could provide the piperidine A-ring precursor intermediate 6 (Scheme 1). A stereoselective reduction of the cyclic iminium ion intermediate 6 and a stereoselective oxidation at C-1 of the propyl side-chain of 6 may lead to intermediate iminium ion 7. Coupling of 7 to a geranyl unit, as proposed by Seger et al.,\(^6\) could then provide alkaloids 2 or 3 (Scheme 1). Whatever the biosynthetic pathway, clearly at least three *Stemona* species of plants have evolved to produce enzymes that give opposite stereochemical outcomes in their biosynthetic reactions to produce stereoselectively either oxystemokerrin (2) or stemocurtisinol (3).

![Figure 1](image_url)

Figure 1. Molecular projection of 2, showing 50% probability amplitude displacement ellipsoids for the non-hydrogen atoms, hydrogen atoms having arbitrary radii of 0.1 Å.

Experimental

Plant material

The root of *S. kerrii* were collected at Tambol Mae Hea, Amphur Maung, Chiang Mai, Thailand, in August 2003. The plant material was identified by Mr. James F. Maxwell from the Department of Biology, Chiang Mai University, where a voucher specimen is lodged (number 17584).

Extraction and isolation

The dry ground root of *S. kerrii* (2.5 kg) was extracted with 95% ethanol (3 x 2000 mL) over 3 days at room temperature. The ethanolic solution was evaporated to give a dark residue (139 g). A portion of the extract (50 g) was partitioned between water and dichloromethane (DCM). The DCM extract was extracted with 5% HCl solution, and the aqueous solution was made basic with aqueous ammonia and extracted with DCM to afford 1.4 g of crude alkaloid material. This material was chromatographed on silica gel (120 mL) using gradient elution from 100% DCM to 25% MeOH/DCM containing 1% conc. aqueous ammonia as eluent. A total of 1.1 L of eluent was collected in test tubes of 20 mL. On the basis of TLC analysis tubes 14-17 were pooled and evaporated and the resulting mixture (661 mg) was re-chromatographed as described above. Tubes 25-26 were pooled together to give a sample of oxystemokerrin (2) (90 mg). The \(^1\)H and \(^13\)C NMR and MS data of 2 are identical to that reported in the literature.\(^3\) Compound 2 was obtained as colourless prismatic crystals (mp. 134-136 °C) by careful and slow evaporation of a solution of 2 in ethanol.

Structure determination

A full sphere of low-temperature CCD diffractometer data was measured (Bruker AXS instrument; o-scan, \(2\theta_{\text{max}} = 58^\circ\), monochromatic Mo Kα radiation, \(\lambda = 0.71073\ Å; T \text{ ca. } 153\ K\) yielding 10321 reflections, these merging to 2825 unique (\(R_{\text{int}} 0.041\) after 'empirical'/multiscan absorption correction ('Friedel' data also merged, there being no non-trivial anomalous scatterer); 2184 with \(F > 4\sigma(F)\) were considered 'observed' and used in the full-matrix least squares refinement, refining anisotropic displacement parameter forms for C, N, O, (\(x,y,z,U_{ij}\)) being included constrained at estimates. Conventional residuals on \(|F|\) are 0.060, 0.063, reflection weights \(2\) being \((\sigma^2(F) + 0.0004 F^2)^{1/2}\). Neutral atom scattering factors were employed, computation using the Xtal 3.7 program system.\(^10\) The setting of the chirality follows the known chemistry.

Crystal data: \(C_{22}H_{31}NO_6, \ M = 405.5\). Monoclinic, space group \(P2_1\) (\(C_2^+\), No. 4), \(a = 9.148(3), \ b = 10.530(3), \ c = 11.152(4)\ Å, \ \beta = 103.711(5)\), \(V = 1044\ Å^3\). \(D_C (Z = 2) = 1.29\text{gcm}^{-3}\). \(\mu_{\text{Mo}} = 0.093\ mm^{-1}\); specimen: 0.24 x 0.18 x 0.08 (diffraction poorly). \(|\Delta P_{\text{max}}| = 0.70(4)\).
Scheme 1. Proposed biosynthesis of alkaloids 2 and 3.

Table 1. Fused ring torsion angles (degrees) of 2 (Atoms are denoted by number only, N, O, italicized)

<table>
<thead>
<tr>
<th>Atoms</th>
<th>Angle</th>
<th>Atoms</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-9-9-10</td>
<td>31.8(5), 28.9(2)</td>
<td>10a-5-6-7</td>
<td>50.6(7), 55.0(3)</td>
</tr>
<tr>
<td>9-9-10-11</td>
<td>-18.8(5), -20.9(2)</td>
<td>5-6-7-8</td>
<td>-71.1(7), -75.5(3)</td>
</tr>
<tr>
<td>9-10-11-12</td>
<td>0.7(5), 6.4(2)</td>
<td>6-7-8-9</td>
<td>51.1(6), 52.1(3)</td>
</tr>
<tr>
<td>10-11-12-9</td>
<td>19.0(5), 11.2(2)</td>
<td>7-8-9-10</td>
<td>-67.9(6), -64.4(3)</td>
</tr>
<tr>
<td>11-12-9-9</td>
<td>-32.5(5), -25.6(2)</td>
<td>8-9-10-10a</td>
<td>99.4(5), 96.3(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9-10-10a-5</td>
<td>-81.7(4), -83.5(2)</td>
</tr>
<tr>
<td>10a-1-2-3</td>
<td>40.2(6), 37.2(8)</td>
<td>10-10a-5-6</td>
<td>22.6(6), 21.0(3)</td>
</tr>
<tr>
<td>1-2-3-4</td>
<td>-47.3(6), -44.9(3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-3-4-5</td>
<td>60.4(5), 56.1(2)</td>
<td>9-1-1-10a</td>
<td>28.7(4), 24.1(2)</td>
</tr>
<tr>
<td>3-4-5-10a</td>
<td>-52.9(4), -58.4(2)</td>
<td>1-10a-10</td>
<td>-42.1(3), -38.6(2)</td>
</tr>
<tr>
<td>4-5-10a-1</td>
<td>51.9(5), 49.0(2)</td>
<td>1-10a-10-9</td>
<td>39.4(4), 38.4(2)</td>
</tr>
<tr>
<td>5-10a-1-2</td>
<td>-47.6(6), -38.9(2)</td>
<td>10a-10-0-1</td>
<td>-23.7(4), -25.5(2)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10-9-1-1</td>
<td>-3.2(4), 0.6(2)</td>
</tr>
</tbody>
</table>
Acknowledgements
We are grateful to the National Research Council of Thailand (NRCT), the National Center for Genetic Engineering and Biotechnology, Thailand (BIOTEC), and the University of Wollongong for supporting this project.

References
5. Details have been deposited at the Cambridge Crystallographic Data Centre, CCDC deposition no. 245089.