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Abstract 

Thermal analysis has been employed in a study of the degradation of heritage Sydney 

sandstone used in St Mary’s Cathedral in Sydney, Australia. TGA and DSC have been used 

to characterise the clay components removed from weathered and unweathered sandstone. 

Two types of kaolin clays - kaolinite and its polymorph, dickite – have been identified. A 

higher amount of dickite present in the clay of weathered sandstone indicates that a kaolinite-

to-dickite transformation occurs upon weathering. XRD hot stage analysis was also used to 

demonstrate the presence of a more thermally stable polymorph of the kaolinite. 

 

Keywords: differential scanning calorimetry; sandstone; thermogravimetric analysis; 

weathering; x-ray diffraction. 

 

Introduction 

A number of heritage buildings located in Sydney, Australia, are built from locally 

quarried sandstone and contribute a unique character to the city. After a period of exposure to 

the elements, sandstone buildings are showing signs of deterioration. In order to determine 

the appropriate conservation techniques for such buildings, it is important to gain an 

understanding of the method of degradation of the building stones.  

A series of analytical techniques have been utilised in a study of the weathering of 

Sydney sandstones [1]. The focus has been on structural studies of the cementing clay 

component of the stone as the clay is critical to the integrity of the material. Sydney yellow 

block sandstones typically contain relatively large amounts of sand (60-68%) bound together 

by a 16-25% clay-based matrix, with small quantities of impurities including iron-rich 

minerals. For this study, thermal analysis has been used to compare clays isolated from 

weathered and unweathered sandstones. In addition, clays samples with non-structural iron 

removed were also investigated in order to determine the significance of the impurities in the 
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analyses. X-ray diffraction results are also reported and provide confirmation of the 

difference in clay structures. Sandstone removed from Sydney’s St Mary’s Cathedral as part 

of a restoration programme was investigated.   

 

Materials and methods 

Materials 

Sandstone samples from St Mary’s Cathedral were supplied by Gosford Quarries Pty 

Ltd (Australia). The samples obtained were the more extensively decayed yellow block 

sandstones replaced in recent years as part of restoration programmes. The weathered 

surfaces were separated from the unweathered cores of the decayed sandstones by use of an 

industrial diamond saw and small amounts of water were used as a coolant during cutting. 

  The clay-based material was separated from the sandstone samples because the 

presence of a high amount of quartz may interfere with the analysis. Both weathered and 

unweathered sandstones were manually crushed using a mortar and pestle and then mixed 

with distilled water (5gL
-1

).  An ultrasonic probe with frequency of 20 kHz and energy of 

20W was used to dislodge the clay-based material from the sand particles [2-3]. The decanted 

clay materials were suspended in distilled water and the clay particles ≤ 2 µm were collected 

using a gravity settling method according to Stokes’ Law [4-5].  The clay particles collected 

by centrifugation were dried in a 50ºC oven overnight and separated into two portions. One 

portion was stored in a desiccator and the second portion was further treated by 

Na2S2O35H2O and NaHCO3 to remove non-structural iron (iron impurities) from the clay 

samples [6].  Standard kaolinite from the Kentucky-Tennessee Clay Company (USA) was 

used for comparison purposes. 

 

Thermal analysis 

A Setaram Setsys 16/18 TG-DSC 15 Thermal Gravimetric Analysis instrument was 

used for the TGA and DSC analysis of the clay samples. Approximately 10 mg of clay was 

placed in a platinum crucible and analysed in atmospheric air from room temperature up to 

1200ºC at a heating rate of 1ºC min
-1

. A temperature calibration was carried out with indium, 

tin, zinc, antimony, gold and silver. The buoyancy of the furnace was corrected by measuring 

a baseline using a point to point correction.  Standard kaolinite was analysed for comparison 

purposes. Triplicate analyses were performed for each sample. 
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X-ray diffraction 

XRD patterns of the powder mounts of standard kaolinite and both weathered and 

unweathered cementing clay samples were recorded with a Siemens D5000 X-ray 

diffractometer.  A Phillips PW2276/20 X-ray tube was used at a power of 40 mA and 40 kV 

to produce CuK radiation. The instrument was configured to scan over a range of 2 = 3º - 

30º at a rate of 0.020º 2θ per second. The heating rate for the hot stage XRD was 1º s
-1

 over a 

temperature range of 25ºC to 750ºC. Triplicate analyses were performed on each sample.  

 

Results and discussion 

Thermal analysis  

 TGA and DSC analysis was carried out on weathered and unweathered clays before 

and after non-structural iron removal, as well as on a sample of standard kaolinite and the 

results are illustrated in Figures 1 and 2. The mass loss observed in the region 30-130ºC in 

each of the DTG curves indicates the dehydration of the clay. The dehydration of kaolinite is 

also observed in the DSC traces with an endothermic peak observed between 30ºC to 130ºC 

in each case. The process is associated with adsorbed non-structural moisture being driven 

out of the clay particles.   

 Peaks in the range 200-400ºC for all samples indicate the dehydration of iron 

oxyhydroxide, FeO(OH)x, and the crystallisation of iron oxide, Fe2O3 [7-8]. The larger peaks 

observed in the weathered clay confirm that there are higher concentrations of iron impurities 

present in these samples. The leaching and oxidation of the detected iron impurities provides 

a source of iron for Fe
3+

 substitution for Al
3+

 and/or Si
4+

 in the kaolinite structure [1,9-10].  

 A dehydroxylation process is observed in the thermal data in the range 450-750ºC 

and structural water is lost in this process. Hydroxyl groups in the clay structure are lost as 

water. During this process the structure of the kaolin clay breaks down to form water and 

metakaolin, which is a degradation product of kaolin clay with no binding power [11]. In this 

region in each of the DTG curves, a doublet with peaks centred at 580ºC and 680ºC is 

observed.  The peak centred at 580ºC corresponds to the dehydroxylation of kaolinite [12]. 

The second peak at 650C is likely to correspond to a more thermally stable more ordered 

polymorph of kaolinite, dickite. This peak is present in both weathered and unweathered 

sandstones. The doublet is retained upon non-structural iron removal in both weathered and 

unweathered samples.   
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 A sharp peak in each of the DTG and DSC curves observed in the region 980-1030ºC 

is believed to be associated with the formation of mullite [1,4,13-15]. The formation of 

mullite, the thermal degradation product of kaolin clay in the weathered samples, indicates 

that the cementing material in the weathered sandstones retains its kaolin origin.  The 

alteration of the crystal structure through iron substitution has not reached a state of complete 

destruction. Mullite is also detected in both weathered and unweathered clays after non-

structural iron removal. This suggests that the clay structure is not altered by the non-

structural iron removal method, in which only the adsorbed iron impurities were dissolved 

without removal of the structural metals.   

 

XRD  

XRD hot stage analysis was performed on the weathered and unweathered cementing 

clay samples before and after non-structural iron removal and the data are presented in 

Figures 3-6. The patterns of both the weathered and unweathered clay samples at room 

temperature contain peaks at 2θ = 12º, 19.8º, 21.3º and 24.5º that are due to kaolinite. The 

peaks at 2θ = 12º and 24.5º (basal d spacings of 7.15Å and 3.75Å, respectively) represent the 

preferred orientation of the (0 0 1) and (0 0 2) planes and the sharpness of these peaks 

suggests that it is a relatively high crystallinity (or more ordered) clay. The peaks at 2θ = 8.6º, 

17.6º, 19.5º and 26.6º (basal d spacings of 10.3Å, 5.06Å, 4.56 Å and 3.35Å, respectively) 

represent the crystal planes of those from the mixed layer clays such as illite, muscovite and 

vermiculite [16-17].  The broadness of these peaks denotes less ordered (or more amorphous) 

crystal structures.  

The peaks representing the mixed layer clays particularly, at 2θ = 8.6º, 17.6º and 19.5º, 

show a slight increase in intensity on heating. This suggests that the mixed layer clays in the 

cementing material contains predominantly illite and/or muscovite, as illite and muscovite 

show noticeable increases in the intensities of peaks when water layers are removed upon 

heating.  Their sheet silicate structures are usually maintained up to 750ºC [4].  

The peaks representing the kaolinite crystal planes in the unweathered clay samples 

before and after non-structural iron removal decrease in intensity at approximately 550ºC and 

are completely destroyed at around 700ºC (Figures 3 and 5). This result provides support for 

the theory of the presence of two types of kaolin clays in the cementing materials noted from 

the thermal analysis, where the original clay was destroyed at a temperature similar to that of 

the standard kaolinite. However, the second type of clay structure is not completely destroyed 

until around 700ºC. This type of clay shows a stronger resistance to thermal degradation 
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compared to the first type of cementing clay and the standard kaolinite, where the total 

destruction of the crystal structure occurs at approximately 650ºC. 

         The XRD pattern of the weathered clay before iron removal shows a similar pattern to 

that of the unweathered clay. Although the kaolinite peaks start to decrease in intensity at the 

same temperature as the unweathered samples, the crystal structure is completely destroyed at 

around 650ºC. The peaks representing the mixed layer clay fraction show a similar behaviour 

to that of the unweathered clay samples. XRD patterns of both weathered and unweathered 

clay samples after non-structural iron removal show a similar trend to clay samples before 

iron removal, but the unweathered samples are slightly more resistant to heating. 

 

Conclusions 

TGA and DSC analysis of clays extracted from weathered and unweathered Sydney 

sandstone demonstrate that the clay is of the kaolin type. A polymorphic clay structure such 

as that of dickite was also found in the clay material, resulting in an extra peak in the 

dehydroxylation region.  In addition, XRD patterns further confirm the origin of the 

cementing clay and the XRD hot stage results support the presence of a more ordered clay 

structure in the cementing material.   

 The presence of dickite provides Sydney sandstone with a more heat resistant binder.  

The abundant iron in the stone gives a source of iron for the isomorphous substitution where 

it is possible for Fe
3+ 

to substitute for Al
3+

. Although substitution allows the integrity of the 

original stone to be retained, the crystal structure of the aluminosilicate is destabilised 

causing brittleness of the weathered sandstone.  
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